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Capital distribution curve

Consider a market with n stocks, or a population with n individuals. Let

X1, . . . , Xn > 0

be the capitalisations of the companies, or the wealth of the individuals.

◮ Define the market weights µi :=
Xi

X1 + · · ·+Xn
, i ∈ {1, . . . , n}.

◮ Reverse-order statistics: µ[1] ≥ · · · ≥ µ[n].

U.S. Stock market capital distribution curves
(December 31 of 1929, 1939, ..., 2009).

Source: R. Fernholz.

Capital distribution curve: log-log plot of
k 7→ µ[k].

◮ Stable shape over time.
◮ Linear behaviour for large

capitalisations indicates power law
distribution of capital.

Purpose of this talk: explain these curves
from a (simple) model of equity market

evolution.
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Rank-based model of equity market

Fernholz – Stochastic Portfolio Theory, ’02: equity market model with X1(t), . . . ,Xn(t) > 0
describing the capitalisations of the companies on the market.

Asymptotically stable markets can be approximated by

Xi(t) = exp(Yi(t)),

where log-capitalisations Y1, . . . , Yn satisfy the rank-based SDE:

dYi(t) =
n∑

k=1

γk1{Yi(t)=Y[k](t)}
dt+

n∑

k=1

σk1{Yi(t)=Y[k](t)}
dWi(t),

for growth rate coefficients γ1, . . . , γn ∈ R and volatility coefficients σ1, . . . , σn > 0.

◮ The stock with (reverse) rank k has constant drift γk and
constant volatility σk.

◮ Bass, Pardoux – PTRF ’87: global weak existence and uniqueness.
◮ Banner, Fernholz, Karatzas – AAP ’05: Atlas model γn = ng > 0,

γ1 = · · · = γn−1 = 0, σ1 = · · · = σn.
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Stability condition for the interacting particle system

Consider Y1(t), . . . , Yn(t) as a system of 1D Brownian particles.
◮ Centre of mass Ȳ (t) := 1

n

∑n
i=1 Yi(t) satisfies

Ȳ (t) = Ȳ (0) + γ̄t+ σ̄W̄ (t), γ̄ :=
1

n

n∑

k=1

γk , σ̄2 :=
1

n2

n∑

k=1

σ2
k .

◮ Under the stability condition

∀ℓ ∈ {1, . . . , n− 1},
1

ℓ

ℓ∑

k=1

γk <
1

n− ℓ

n∑

k=ℓ+1

γk,

convergence of (Y1(t) − Ȳ (t), . . . , Yn(t) − Ȳ (t)) to equilibrium measure.
◮ Stability condition related to size effect: small stocks grow faster than large ones.

Average drift of ℓ top particles

Average drift of n − ℓ bottom particles

◮ Pal, Pitman – AAP ’08, Ichiba,

Papathanakos, Banner, Karatzas, Fernholz

– AAP ’11: explicit equilibrium measure
when σ2

k linear in k.
◮ Jourdain, Malrieu – AAP ’08:

exponential convergence rate when
the sequence γk is decreasing, uniform
in n.
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Large markets with mean-field interactions

Take coefficients γ1, . . . , γn and σ1, . . . , σn of the form

γk = γ

(
k

n

)

, σk = σ

(
k

n

)

,

where γ and σ are continuous functions on [0, 1], σ(u) > 0.
The evolution of log-capitalisations rewrites

dYi(t) = γ
(
1−Rn(t, Yi(t))

)
dt+ σ

(
1− Rn(t, Yi(t))

)
dWi(t),

where Rn(t, y) :=
1
n

∑n
i=1 1{Yi(t)≤y} is the empirical CDF of Y1(t), . . . , Yn(t).

◮ Interactions only occur through empirical measure.
◮ We are interested in the mean-field limit n → +∞.

Propagation of chaos (Bossy-Talay, Jourdain-R.)

Assume Y1(0), . . . , Yn(0) iid according to m ∈ P(R). The empirical measure

νn :=
1

n

n∑

i=1

δ(Yi(t))t≥0
∈ P(C([0,+∞)))

converges in probability to the law ν of the solution to the nonlinear SDE

{

dY (t) = γ
(
1−R(t, Y (t))

)
dt+ σ

(
1−R(t, Y (t))

)
dW (t),

Y (0) ∼ m, R(t, y) = P[Y (t) ≤ y].

We call this process the mean-field Atlas model.
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Mean-field capital density

Introduce the capital measure

πn(t) :=
n∑

k=1

exp(Y[k](t))

exp(Y1(t)) + · · ·+ exp(Yn(t))
︸ ︷︷ ︸

market weight µ[k](t)

δk/n

so that πn(t)([0, 0.01]) is the amount of capital held by the 1% largest companies.

As a consequence of the propagation of chaos result, πn(t) converges to the mean-field
capital density

π(t, u) :=
exp(R−1(t, 1− u))

E[exp(Y (t))]
,

as soon as m is sufficiently integrable.

◮ Capital distribution curve ≃ log-log
plot of u 7→ π(t, u).

◮ US stock picture: capital distribution
curves are stationary in time.

◮ It is therefore of interest to describe
the stationary behaviour of Y (t).
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Average growth of Y (t)

A first remark: the expectation of Y (t) satisfies

E[Y (t)] = E[Y (0)] +

∫ t

s=0
E[γ(1 −R(s, Y (s)))]ds+E

[∫ t

s=0
σ(1 − R(s, Y (s)))dW (s)

]

= E[Y (0)] +

∫ t

s=0

∫ 1

u=0
γ(1 − u)duds

= E[Y (0)] + γ̄t,

with γ̄ =

∫ 1

u=0
γ(1 − u)du.

◮ A stationary behaviour can only be observed on the fluctuation process

Ỹ (t) := Y (t) − γ̄t,

with CDF R̃(t, y) = R(t, y + γ̄t).
◮ The mean-field capital density is not affected by the recentering:

π(t, u) =
exp(R−1(t, 1− u))

E[exp(Y (t))]
=

exp(R̃−1(t, 1− u) + γ̄t)

E[exp(Ỹ (t) + γ̄t)]
=

exp(R̃−1(t, 1− u))

E[exp(Ỹ (t))]
.
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Stationary behaviour of the fluctuation process

Letting γ̃(v) := γ(v) − γ̄, we obtain a shifted nonlinear SDE

dỸ (t) = γ̃
(
1− R̃(t, Ỹ (t))

)
dt + σ

(
1− R̃(t, Ỹ (t))

)
dW (t).

The law ν̃t = ∂yR̃ satisfies the nonlinear Fokker-Planck equation

∂tν̃t =
1

2
∂yy

(

σ2(1− R̃(t, y))ν̃t
)

− ∂y
(

γ̃(1− R̃(t, y))ν̃t
)

.

Integrate in y and take ν̃∞ = ∂yR̃∞ a stationary solution:

0 =
1

2
∂y

(

σ2(1− R̃∞(y))ν̃∞
)

−
(

γ̃(1 − R̃∞(y))ν̃∞
)

= −
1

2
∂yyA(1− R̃∞(y)) + ∂yΓ̃(1− R̃∞(y)),

with A(v) :=
∫ v
v′=0

σ2(v′)dv′ and Γ̃(v) :=
∫ v
v′=0

γ̃(v′)dv′ .

Explicit solution: if Γ̃(v) < 0 for all v ∈ (0, 1),

R̃∞(y) = 1−Ψ−1(y + cte), Ψ(v) :=

∫ v

v′=1/2

σ2(v′)

2Γ̃(v′)
dv′.

◮ All the stationary solutions are translations of each other.
◮ A stationary solution is determined by its expectation.
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Convergence to the stationary solution

The condition Γ̃(v) < 0 for all v ∈ (0, 1) rewrites

∀v ∈ (0, 1),
1

v

∫ v

v′=0
γ(v′)dv′ <

1

1− v

∫ 1

v′=v
γ(v′)dv′.

◮ Continuous version of the stability condition for the particle system.
◮ Known as Oleinik’s entropy condition in the language of scalar conservation laws.

Long time behaviour

Assume Oleinik’s entropy condition, and let R̃∞ be the stationary CDF with the same
expectation as m. Then

lim
t→+∞

‖R̃(t, ·)− R̃∞‖L1(R) = 0.

◮ The function R∞(t, y) := R̃∞(y − γ̄t) is a traveling wave for the Fokker-Planck
equation associated with (Y (t))t≥0 .

◮ Long history of proofs of stability of traveling waves: Freistühler, Serre – CPAM ’98,
Gasnikov – IRAN ’09, see also Jourdain, R. – SPDE ’13 for convergence in Wasserstein
distance at all orders.
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Stationary mean-field capital density

We are willing to let t → +∞ in the mean-field capital density

π(t, u) =
exp(R̃−1(t, 1− u))

E[exp(Ỹ (t))]
.

Recall that R̃(t, y) → R̃∞(y) = 1−Ψ−1(y + cte), with Ψ(u) :=

∫ u

u′=1/2

σ2(u′)

2Γ̃(u′)
du′.

◮ du-a.e., R̃−1(t, 1− u) converges to R̃−1
∞ (1 − u) = Ψ(u)− cte.

◮ For Ỹ∞ ∼ R̃∞,

E[exp(Ỹ∞)] =

∫ 1

u=0
exp(R̃−1

∞ (1− u))du =

∫ 1

u=0
exp(Ψ(u)− cte)du.

Whether this expectation is finite or not depends on the behaviour of Ψ(u) when u ↓ 0.
Assume that γ(0) < γ̄ (strong size effect, known as Lax entropy condition):

Ψ(u) ≃
u↓0

σ2(0)

2(γ(0) − γ̄)

∫ u

u′=1/2

du′

u′
≃ −

1

α
log u,

1

α
:=

σ2(0)

2(γ̄ − γ(0))
> 0.

◮ If α < 1: E[exp(Ỹ∞)] = +∞ and π(t, u) converges to δ0.
◮ If α > 1: E[exp(Ỹ∞)] < +∞ and π(t, u) converges to the stationary density

π∞(u) :=
exp(Ψ(u))

∫ 1
u′=0 exp(Ψ(u′))du′

≃
u↓0

u−1/α

Cte
: yields power law!
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Power law for the stationary mean-field capital density

We plot an example of capital distribution curve for the mean-field model:
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The power index is α = 2(γ̄ − γ(0))/σ2(0).
◮ Only depends on characteristics of largest stocks.
◮ A small γ̄ − γ(0) indicates a small rebalancing and yields a small α, which

increases the concentration of capital.
◮ The intensity of the noise for large stocks also increases the concentration of

capital.
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Conclusion: beyond the law of large numbers?

A main characteristic of the model: weak interactions.
◮ Results on the capital density only depend on the law of large numbers: would

have been the same for independent copies of the nonlinear diffusion process.
◮ Beyond law of large numbers: rare events / fluctuations of πn around the limit

π∞ for large but finite n can be described by large deviation theory.
◮ McKean-Vlasov models: large deviation function is different for iid models and

weakly interacting models exhibiting the same law of large numbers.

Some nice questions to investigate

◮ Can we compute the large deviation function of πn for the iid model and the
mean-field model?

◮ Does the weak interaction increases or decreases the probability of an atypical
concentration of capital?
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