Capital distribution in the mean-field Atlas model

Julien Reygner

CERMICS – École des Ponts ParisTech

Based on joint works with B. Jourdain.

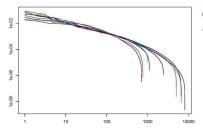
Capital distribution curve

Consider a market with n stocks, or a population with n individuals. Let

$$X_1,\ldots,X_n>0$$

be the capitalisations of the companies, or the wealth of the individuals.

- ▶ Define the market weights $\mu_i := \frac{X_i}{X_1 + \dots + X_n}$, $i \in \{1, \dots, n\}$.
- ► Reverse-order statistics: µ_[1] ≥ · · · ≥ µ_[n].



U.S. Stock market capital distribution curves (December 31 of 1929, 1939, ..., 2009). Source: R. Fernholz. **Capital distribution curve**: **log-log plot** of $k \mapsto \mu_{[k]}$.

- Stable shape over time.
- Linear behaviour for large capitalisations indicates power law distribution of capital.

Purpose of this talk: explain these curves from a (simple) model of equity market evolution.

Rank-based model of equity market

Fernholz – *Stochastic Portfolio Theory*, '02: equity market model with $X_1(t), \ldots, X_n(t) > 0$ describing the **capitalisations** of the companies on the market.

Asymptotically stable markets can be approximated by

$$X_i(t) = \exp(Y_i(t)),$$

where log-capitalisations Y_1, \ldots, Y_n satisfy the **rank-based SDE**:

$$\mathrm{d}Y_i(t) = \sum_{k=1}^n \gamma_k \mathbb{1}_{\{Y_i(t) = Y_{[k]}(t)\}} \mathrm{d}t + \sum_{k=1}^n \sigma_k \mathbb{1}_{\{Y_i(t) = Y_{[k]}(t)\}} \mathrm{d}W_i(t),$$

for growth rate coefficients $\gamma_1, \ldots, \gamma_n \in \mathbb{R}$ and volatility coefficients $\sigma_1, \ldots, \sigma_n > 0$.

- The stock with (reverse) rank k has constant drift γ_k and constant volatility σ_k .
- Bass, Pardoux PTRF '87: global weak existence and uniqueness.
- Banner, Fernholz, Karatzas AAP '05: Atlas model $\gamma_n = ng > 0$, $\gamma_1 = \cdots = \gamma_{n-1} = 0, \sigma_1 = \cdots = \sigma_n$.

Stability condition for the interacting particle system

Consider $Y_1(t), \ldots, Y_n(t)$ as a system of 1D Brownian particles.

• Centre of mass $\bar{Y}(t) := \frac{1}{n} \sum_{i=1}^{n} Y_i(t)$ satisfies

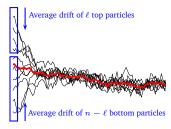
$$\bar{Y}(t) = \bar{Y}(0) + \bar{\gamma}t + \bar{\sigma}\bar{W}(t), \qquad \bar{\gamma} := \frac{1}{n}\sum_{k=1}^{n}\gamma_k, \quad \bar{\sigma}^2 := \frac{1}{n^2}\sum_{k=1}^{n}\sigma_k^2.$$

Under the stability condition

$$\forall \ell \in \{1, \dots, n-1\}, \qquad \frac{1}{\ell} \sum_{k=1}^{\ell} \gamma_k < \frac{1}{n-\ell} \sum_{k=\ell+1}^n \gamma_k,$$

convergence of $(Y_1(t) - \overline{Y}(t), \dots, Y_n(t) - \overline{Y}(t))$ to equilibrium measure.

Stability condition related to size effect: small stocks grow faster than large ones.



- Pal, Pitman AAP '08, Ichiba,
 Papathanakos, Banner, Karatzas, Fernholz
 AAP '11: explicit equilibrium measure when
 ²_k linear in k.
- Jourdain, Malrieu AAP '08: exponential convergence rate when the sequence γ_k is decreasing, uniform in n.

Large markets with mean-field interactions

Take coefficients $\gamma_1, \ldots, \gamma_n$ and $\sigma_1, \ldots, \sigma_n$ of the form

$$\gamma_k = \gamma\left(\frac{k}{n}\right), \qquad \sigma_k = \sigma\left(\frac{k}{n}\right),$$

where γ and σ are continuous functions on [0, 1], $\sigma(u) > 0$. The evolution of log-capitalisations rewrites

$$dY_i(t) = \gamma (1 - R_n(t, Y_i(t))) dt + \sigma (1 - R_n(t, Y_i(t))) dW_i(t),$$

where $R_n(t, y) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{Y_i(t) \le y\}}$ is the **empirical CDF** of $Y_1(t), \dots, Y_n(t)$.

- Interactions only occur through empirical measure.
- We are interested in the **mean-field limit** $n \to +\infty$.

Propagation of chaos (Bossy-Talay, Jourdain-R.)

Assume $Y_1(0), \ldots, Y_n(0)$ iid according to $m \in \mathcal{P}(\mathbb{R})$. The empirical measure

$$\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{(Y_i(t))_{t \ge 0}} \quad \in \mathcal{P}(C([0, +\infty)))$$

converges in probability to the law ν of the solution to the **nonlinear SDE**

$$\begin{cases} dY(t) = \gamma \left(1 - R(t, Y(t)) \right) dt + \sigma \left(1 - R(t, Y(t)) \right) dW(t) \\ Y(0) \sim m, \quad R(t, y) = \mathbb{P}[Y(t) \le y]. \end{cases}$$

We call this process the **mean-field Atlas model**.

Mean-field capital density

Introduce the capital measure

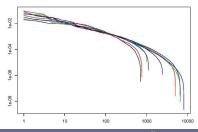
$$\pi_n(t) := \sum_{k=1}^n \underbrace{\exp(Y_1(t))}_{\text{market weight } \mu_{[k]}(t)} \delta_{k/n}$$

so that $\pi_n(t)([0, 0.01])$ is the amount of capital held by the 1% largest companies.

As a consequence of the propagation of chaos result, $\pi_n(t)$ converges to the **mean-field** capital density

$$\pi(t,u) := \frac{\exp(R^{-1}(t,1-u))}{\mathbb{E}[\exp(Y(t))]}$$

as soon as m is sufficiently integrable.



- ► Capital distribution curve \simeq log-log plot of $u \mapsto \pi(t, u)$.
- US stock picture: capital distribution curves are stationary in time.
- ► It is therefore of interest to describe the **stationary behaviour** of *Y*(*t*).

Average growth of Y(t)

A first remark: the expectation of Y(t) satisfies

$$\begin{split} \mathbb{E}[Y(t)] &= \mathbb{E}[Y(0)] + \int_{s=0}^{t} \mathbb{E}[\gamma(1 - R(s, Y(s)))] ds + \mathbb{E}\left[\int_{s=0}^{t} \sigma(1 - R(s, Y(s))) dW(s)\right] \\ &= \mathbb{E}[Y(0)] + \int_{s=0}^{t} \int_{u=0}^{1} \gamma(1 - u) du ds \\ &= \mathbb{E}[Y(0)] + \bar{\gamma}t, \end{split}$$

with $\bar{\gamma} = \int_{u=0}^{1} \gamma(1-u) \mathrm{d}u.$

> A stationary behaviour can only be observed on the fluctuation process

$$\tilde{Y}(t) := Y(t) - \bar{\gamma}t,$$

with CDF $\tilde{R}(t, y) = R(t, y + \bar{\gamma}t)$.

The mean-field capital density is not affected by the recentering:

$$\pi(t,u) = \frac{\exp(R^{-1}(t,1-u))}{\mathbb{E}[\exp(Y(t))]} = \frac{\exp(\tilde{R}^{-1}(t,1-u) + \bar{\gamma}t)}{\mathbb{E}[\exp(\tilde{Y}(t) + \bar{\gamma}t)]} = \frac{\exp(\tilde{R}^{-1}(t,1-u))}{\mathbb{E}[\exp(\tilde{Y}(t))]}$$

Stationary behaviour of the fluctuation process

Letting $\tilde{\gamma}(v) := \gamma(v) - \bar{\gamma}$, we obtain a shifted nonlinear SDE

$$d\tilde{Y}(t) = \tilde{\gamma} \left(1 - \tilde{R}(t, \tilde{Y}(t)) \right) dt + \sigma \left(1 - \tilde{R}(t, \tilde{Y}(t)) \right) dW(t).$$

The law $\tilde{\nu}_t = \partial_y \tilde{R}$ satisfies the **nonlinear Fokker-Planck equation**

$$\partial_t \tilde{\nu}_t = \frac{1}{2} \partial_{yy} \left(\sigma^2 (1 - \tilde{R}(t, y)) \tilde{\nu}_t \right) - \partial_y \left(\tilde{\gamma} (1 - \tilde{R}(t, y)) \tilde{\nu}_t \right).$$

Integrate in y and take $\tilde{\nu}_{\infty} = \partial_y \tilde{R}_{\infty}$ a stationary solution:

$$0 = \frac{1}{2} \partial_y \left(\sigma^2 (1 - \tilde{R}_{\infty}(y)) \tilde{\nu}_{\infty} \right) - \left(\tilde{\gamma} (1 - \tilde{R}_{\infty}(y)) \tilde{\nu}_{\infty} \right)$$
$$= -\frac{1}{2} \partial_{yy} A (1 - \tilde{R}_{\infty}(y)) + \partial_y \tilde{\Gamma} (1 - \tilde{R}_{\infty}(y)),$$

with $A(v) := \int_{v'=0}^{v} \sigma^2(v') \mathrm{d}v'$ and $\tilde{\Gamma}(v) := \int_{v'=0}^{v} \tilde{\gamma}(v') \mathrm{d}v'$.

Explicit solution: if $\tilde{\Gamma}(v) < 0$ for all $v \in (0, 1)$,

$$\tilde{R}_{\infty}(y) = 1 - \Psi^{-1}(y + \text{cte}), \qquad \Psi(v) := \int_{v'=1/2}^{v} \frac{\sigma^2(v')}{2\tilde{\Gamma}(v')} \mathrm{d}v'.$$

- All the stationary solutions are translations of each other.
- A stationary solution is determined by its expectation.

Convergence to the stationary solution

The condition $\tilde{\Gamma}(v) < 0$ for all $v \in (0, 1)$ rewrites

$$\forall v \in (0,1), \qquad \frac{1}{v} \int_{v'=0}^{v} \gamma(v') \mathrm{d}v' < \frac{1}{1-v} \int_{v'=v}^{1} \gamma(v') \mathrm{d}v'.$$

- Continuous version of the **stability condition** for the particle system.
- Known as Oleinik's entropy condition in the language of scalar conservation laws.

Long time behaviour

Assume Oleinik's entropy condition, and let \tilde{R}_∞ be the stationary CDF with the same expectation as m. Then

$$\lim_{t \to +\infty} \|\tilde{R}(t, \cdot) - \tilde{R}_{\infty}\|_{L^1(\mathbb{R})} = 0.$$

- ▶ The function $R_{\infty}(t, y) := \tilde{R}_{\infty}(y \bar{\gamma}t)$ is a **traveling wave** for the Fokker-Planck equation associated with $(Y(t))_{t>0}$.
- Long history of proofs of stability of traveling waves: Freistühler, Serre CPAM '98, Gasnikov – IRAN '09, see also Jourdain, R. – SPDE '13 for convergence in Wasserstein distance at all orders.

Stationary mean-field capital density

We are willing to let $t \to +\infty$ in the mean-field capital density

$$\pi(t, u) = \frac{\exp(\tilde{R}^{-1}(t, 1 - u))}{\mathbb{E}[\exp(\tilde{Y}(t))]}$$

Recall that $\tilde{R}(t,y) \to \tilde{R}_{\infty}(y) = 1 - \Psi^{-1}(y + \text{cte})$, with $\Psi(u) := \int_{u'=1/2}^{u} \frac{\sigma^2(u')}{2\tilde{\Gamma}(u')} \mathrm{d}u'$.

- ► du-a.e., $\tilde{R}^{-1}(t, 1-u)$ converges to $\tilde{R}_{\infty}^{-1}(1-u) = \Psi(u) \text{cte.}$ ► For $\tilde{Y}_{\infty} \sim \tilde{R}_{\infty}$.
- For $Y_{\infty} \sim R_{\infty}$,

$$\mathbb{E}[\exp(\tilde{Y}_{\infty})] = \int_{u=0}^{1} \exp(\tilde{R}_{\infty}^{-1}(1-u)) \mathrm{d}u = \int_{u=0}^{1} \exp(\Psi(u) - \mathrm{cte}) \mathrm{d}u.$$

Whether this expectation is finite or not depends on the behaviour of $\Psi(u)$ when $u \downarrow 0$. Assume that $\gamma(0) < \bar{\gamma}$ (strong size effect, known as **Lax entropy condition**):

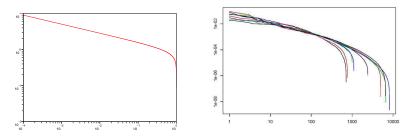
$$\Psi(u) \simeq_{u \downarrow 0} \frac{\sigma^2(0)}{2(\gamma(0) - \bar{\gamma})} \int_{u'=1/2}^{u} \frac{\mathrm{d}u'}{u'} \simeq -\frac{1}{\alpha} \log u, \qquad \frac{1}{\alpha} := \frac{\sigma^2(0)}{2(\bar{\gamma} - \gamma(0))} > 0.$$

- If α < 1: 𝔼[exp(𝒱_∞)] = +∞ and π(t, u) converges to δ₀.
- If $\alpha > 1$: $\mathbb{E}[\exp(\tilde{Y}_{\infty})] < +\infty$ and $\pi(t, u)$ converges to the stationary density

$$\pi^{\infty}(u) := \frac{\exp(\Psi(u))}{\int_{u'=0}^{1} \exp(\Psi(u')) \mathrm{d}u'} \underset{u \downarrow 0}{\simeq} \frac{u^{-1/\alpha}}{\mathrm{Cte}} : \text{yields power law!}$$

Power law for the stationary mean-field capital density

We plot an example of capital distribution curve for the mean-field model:



The power index is $\alpha = 2(\bar{\gamma} - \gamma(0))/\sigma^2(0)$.

- Only depends on characteristics of largest stocks.
- A small γ̄ γ(0) indicates a small rebalancing and yields a small α, which increases the concentration of capital.
- The intensity of the noise for large stocks also increases the concentration of capital.

A main characteristic of the model: weak interactions.

- Results on the capital density only depend on the law of large numbers: would have been the same for independent copies of the nonlinear diffusion process.
- ▶ Beyond law of large numbers: rare events / fluctuations of π_n around the limit π^{∞} for large but finite *n* can be described by large deviation theory.
- ▶ McKean-Vlasov models: large deviation function is different for iid models and weakly interacting models exhibiting the same law of large numbers.

Some nice questions to investigate

- Can we compute the large deviation function of π_n for the **iid model** and the **mean-field model**?
- Does the weak interaction increases or decreases the probability of an atypical concentration of capital?