Kriging of financial term-structures

Areski Cousin1, Hassan Maatouk2, and Didier Rullière1

1Institut des Science Financière et d’Assurances (ISFA) – PRES Université de Lyon, Université Claude Bernard - Lyon I – 50 avenue Tony Garnier 69007 Lyon, France
2École Nationale Supérieure des Mines de Saint-Étienne (ENSM-SE) – Groupe des Écoles des Mines (GEM) – 158, Cours Fauriel - 42023 Saint Étienne cedex 2, France

Abstract

Due to the lack of reliable market information, building financial term-structures may be associated with a significant degree of uncertainty. In this paper, we propose a new term-structure interpolation method that extends classical spline techniques by additionally allowing for quantification of uncertainty. The proposed method is based on a generalization of kriging models with linear equality constraints (market-fit conditions) and shape-preserving conditions such as monotonicity or positivity (no-arbitrage conditions). We define the most likely curve and show how to build confidence bands. The Gaussian process covariance hyper-parameters under the construction constraints are estimated using cross-validation techniques. Based on observed market quotes at different dates, we demonstrate the efficiency of the method by building curves together with confidence intervals for term-structures of OIS discount rates, of zero-coupon swaps rates and of CDS implied default probabilities. We also show how to construct interest-rate surfaces or default probability surfaces by considering time (quotation dates) as an additional dimension.