Community detection with the non-backtracking operator

Marc Lelarge ¹
Charles Bordenave² Laurent Massoulié³

¹INRIA-ENS
²CNRS Université de Toulouse
³INRIA-Microsoft Research Joint Centre

International Conference on Monte Carlo techniques,
July 2016
Motivation

- Community detection in social or biological networks in the sparse regime with a small average degree.

Adamic Glance ’05

- Performance analysis of spectral algorithms on a toy model (where the ground truth is known!).
Motivation

- Community detection in social or biological networks in the sparse regime with a small average degree.

Adamic Glance ’05

- Performance analysis of spectral algorithms on a toy model (where the ground truth is known!).
A model: the stochastic block model
The sparse stochastic block model

A random graph model on n nodes with two parameters, $a, b \geq 0$.

total population
The sparse stochastic block model

A random graph model on n nodes with two parameters, $a, b \geq 0$.

- Assign each vertex spin $+1$ or -1 uniformly at random.

+1 and -1
The sparse stochastic block model

A random graph model on n nodes with two parameters, $a, b \geq 0$.

- Independently for each pair (u, v):
 - if $\sigma_u = \sigma_v = +1$, draw the edge w.p. a/n.
 - if $\sigma_u \neq \sigma_v$, draw the edge w.p. b/n.
 - if $\sigma_u = \sigma_v = -1$, draw the edge w.p. a/n.

$a/n, b/n, a/n.$
Community detection problem

- Reconstruct the underlying communities (i.e. spin configuration σ) based on one realization of the graph.
 - Asymptotics: $n \to \infty$
 - Sparse graph: the parameters a, b are fixed.
 - notion of performance:
 w.h.p. strictly less than half of the vertices are misclassified
 = positively correlated partition.
Community detection problem

- Reconstruct the underlying communities (i.e. spin configuration σ) based on one realization of the graph.

- **Asymptotics**: $n \to \infty$

- Sparse graph: the parameters a, b are fixed.

- Notion of performance: w.h.p. strictly less than half of the vertices are misclassified = positively correlated partition.
Community detection problem

- Reconstruct the underlying communities (i.e. spin configuration \(\sigma \)) based on one realization of the graph.
- **Asymptotics:** \(n \rightarrow \infty \)
- **Sparse graph:** the parameters \(a, b \) are fixed.
- **Notion of performance:**
 - w.h.p. strictly less than half of the vertices are misclassified
 - = positively correlated partition.
Community detection problem

- Reconstruct the underlying communities (i.e. spin configuration σ) based on one realization of the graph.
- **Asymptotics**: $n \to \infty$
- **Sparse graph**: the parameters a, b are fixed.
- **notion of performance**: w.h.p. strictly less than half of the vertices are misclassified = positively correlated partition.
Boppana ’87, Condon, Karp ’01, Carson, Impagliazzo ’01, McSherry ’01, Kannan, Vempala, Vetta ’04...

Theorem

Suppose that for sufficiently large K and K',

$$\frac{(a - b)^2}{a + b} \geq (\asymp) K + K' \ln (a + b),$$

then ′trimming+spectral+greedy improvement′ outputs a positively correlated (almost exact) partition w.h.p.

Coja-Oghlan ’10
Spectral algorithm with adjacency matrix

Take a finite, simple, non-oriented graph \(G = (V, E) \).

Adjacency matrix: symmetric, indexed on vertices, for \(u, v \in V \),

\[
A_{uv} = 1(\{u, v\} \in E).
\]

Low rank approximation of the adjacency matrix works as soon as

\[
(a - b)^2 > a + b
\]
Spectral algorithm with adjacency matrix

Take a finite, simple, non-oriented graph $G = (V, E)$. Adjacency matrix: symmetric, indexed on vertices, for $u, v \in V$,

$$A_{uv} = 1(\{u, v\} \in E).$$

Low rank approximation of the adjacency matrix works as soon as

$$(a - b)^2 \gg a + b$$
Spectral analysis

Assume that $a \to \infty$, and $a - b \approx \sqrt{a + b}$ so that $a \sim b$.

$$A = \frac{a + b}{2} \begin{bmatrix} 1 & 1^T \end{bmatrix} \begin{bmatrix} \sqrt{n} & \sqrt{n} \end{bmatrix} + \frac{a - b}{2} \sigma \sigma^T + A - \mathbb{E}[A]$$

$\frac{a+b}{2}$ is the mean degree and degrees in the graph are very concentrated if $a \gg \ln n$. We can construct

$$A - \frac{a + b}{2n} J = \frac{a - b}{2} \sigma \sigma^T + A - \mathbb{E}[A]$$
Spectral analysis

Assume that $a \to \infty$, and $a - b \approx \sqrt{a + b}$ so that $a \sim b$.

$$A = \frac{a + b}{2} \frac{1}{\sqrt{n}} \frac{1^{T}}{\sqrt{n}} + \frac{a - b}{2} \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}} + A - \mathbb{E}[A]$$

$\frac{a + b}{2}$ is the mean degree and degrees in the graph are very concentrated if $a \succ \ln n$. We can construct

$$A - \frac{a + b}{2n} J = \frac{a - b}{2} \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}} + A - \mathbb{E}[A]$$
Spectrum of the noise matrix

The matrix $A - \mathbb{E}[A]$ is a symmetric random matrix with independent centered entries having variance $\sim \frac{a}{n}$. To have convergence to the Wigner semicircle law, we need to normalize the variance to $\frac{1}{n}$.

$$ESD \left(\frac{A - \mathbb{E}[A]}{\sqrt{a}} \right) \rightarrow \mu_{sc}(x) = \begin{cases} \frac{1}{2\pi} \sqrt{4 - x^2}, & \text{if } |x| \leq 2; \\ 0, & \text{otherwise.} \end{cases}$$
To sum up, we can construct:

\[
M = \frac{1}{\sqrt{a}} \left(A - \frac{a + b}{2n} J \right) \\
= \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^T}{\sqrt{n}} + \frac{A - \mathbb{E}[A]}{\sqrt{a}},
\]

with \(\theta = \frac{a - b}{\sqrt{2(a + b)}} \).

We should be able to detect signal as soon as

\[
\theta > 2 \iff \frac{(a - b)^2}{2(a + b)} > 4
\]
Naive spectral analysis

To sum up, we can construct:

\[M = \frac{1}{\sqrt{a}} \left(A - \frac{a + b}{2n} J \right) \]

\[= \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^T}{\sqrt{n}} + \frac{A - \mathbb{E}[A]}{\sqrt{a}}, \]

with \(\theta = \frac{a - b}{\sqrt{2(a+b)}} \).

We should be able to detect signal as soon as

\[\theta > 2 \iff \frac{(a - b)^2}{2(a + b)} > 4 \]
We can do better!

A lower bound on the spectral radius of \(M = \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^T}{\sqrt{n}} + W \):

\[
\lambda_1(M) = \sup_{\|x\|=1} \|Mx\| \geq \|M\frac{\sigma}{\sqrt{n}}\|
\]

But

\[
\|M\frac{\sigma}{\sqrt{n}}\|^2 = \theta^2 + \|W\frac{\sigma}{\sqrt{n}}\|^2 + 2\langle W, \frac{\sigma}{\sqrt{n}} \rangle \\
\approx \theta^2 + \frac{1}{n} \sum_{i,j} W_{ij}^2 \\
\approx \theta^2 + 1.
\]

As a result, we get

\[
\lambda_1(M) > 2 \iff \theta > 1 \iff (a - b)^2 > 2(a + b).
\]
We can do better!

A lower bound on the spectral radius of $M = \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^T}{\sqrt{n}} + W$:

$$\lambda_1(M) = \sup_{\|x\| = 1} \|Mx\| \geq \|M \frac{\sigma}{\sqrt{n}}\|$$

But

$$\|M \frac{\sigma}{\sqrt{n}}\|^2 = \theta^2 + \|W \frac{\sigma}{\sqrt{n}}\|^2 + 2\langle W, \frac{\sigma}{\sqrt{n}} \rangle \approx \theta^2 + 1 \sum_{i,j} W_{ij}^2 \approx \theta^2 + 1.$$

As a result, we get

$$\lambda_1(M) > 2 \iff \theta > 1 \iff (a - b)^2 > 2(a + b).$$
We can do better!

A lower bound on the spectral radius of $M = \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^T}{\sqrt{n}} + W$:

$$\lambda_1(M) = \sup_{\|x\|=1} \|Mx\| \geq \|M \frac{\sigma}{\sqrt{n}}\|$$

But

$$\|M \frac{\sigma}{\sqrt{n}}\|^2 = \theta^2 + \|W \frac{\sigma}{\sqrt{n}}\|^2 + 2\langle W, \frac{\sigma}{\sqrt{n}} \rangle \approx \theta^2 + 1 \sum_{i,j} W_{ij}^2$$

$$\approx \theta^2 + 1.$$

As a result, we get

$$\lambda_1(M) > 2 \iff \theta > 1 \iff (a - b)^2 > 2(a + b).$$
Baik, Ben Arous, Péché phase transition

Rank one perturbation of a Wigner matrix:

\[\lambda_1(\theta\sigma\sigma^T + W) \xrightarrow{a.s.} \begin{cases} \theta + \frac{1}{\theta} & \text{if } \theta > 1, \\ 2 & \text{otherwise.} \end{cases} \]

Let \(\tilde{\sigma} \) be the eigenvector associated with \(\lambda_1(\theta uu^T + W) \), then

\[|\langle \tilde{\sigma}, \sigma \rangle|^2 \xrightarrow{a.s.} \begin{cases} 1 - \frac{1}{\theta^2} & \text{if } \theta > 1, \\ 0 & \text{otherwise.} \end{cases} \]

Watkin Nadal ’94, Baik, Ben Arous, Péché ’05
Newman, Rao ’14
For SBM with \(a, b \to \infty \),

\[\theta^2 = \frac{(a - b)^2}{2(a + b)} > 1 \]

Benaych-Georges, Couillet, Lelarge ’16
Rank one perturbation of a Wigner matrix:

\[\lambda_1(\theta\sigma\sigma^T + W) \xrightarrow{a.s.} \begin{cases} \theta + \frac{1}{\theta} & \text{if } \theta > 1, \\ 2 & \text{otherwise}. \end{cases} \]

Let \(\tilde{\sigma} \) be the eigenvector associated with \(\lambda_1(\theta uu^T + W) \), then

\[|\langle \tilde{\sigma}, \sigma \rangle|^2 \xrightarrow{a.s.} \begin{cases} 1 - \frac{1}{\theta^2} & \text{if } \theta > 1, \\ 0 & \text{otherwise}. \end{cases} \]

Watkin Nadal ’94, Baik, Ben Arous, Péché ’05
Newman, Rao ’14
For SBM with \(a, b \to \infty \),

\[\theta^2 = \frac{(a - b)^2}{2(a + b)} > 1 \]

Benaych-Georges, Couillet, Lelarge ’16
When $a, b \to \infty$ spectral is optimal

SBM with $n = 2000$, average degree 50 and \(\frac{(a-b)^2}{2(a+b)} = 2 \).

Random matrix theory predicts $\lambda_1 = 51$, $\lambda_2 = 15$ and noise at $|\lambda_3| < 14.14$
Decreasing the average degree

SBM with $n = 2000$, average degree 10 and $\frac{(a-b)^2}{2(a+b)} = 2$.

Random matrix theory predicts $\lambda_1 = 11$, $\lambda_2 = 6.7$ and noise at $|\lambda_3| < 6.3$
Problems when the average degree is small

SBM with $n = 2000$, average degree 3 and $\frac{(a-b)^2}{2(a+b)} = 2$. Random matrix theory predicts $\lambda_1 = 4$, $\lambda_2 = 3.67$ and noise at $|\lambda_3| < 3.46$
Problems when the average degree is finite

- **High degree nodes:** a star with degree d has eigenvalues $\{-\sqrt{d}, 0, \sqrt{d}\}$. In the regime where a and b are finite, the degrees are asymptotically Poisson with mean $\frac{a+b}{2}$. The adjacency matrix has $\Omega(\sqrt{\ln n \ln \ln n})$ eigenvalues.

- **Low degree nodes:** instead of the adjacency matrix, take the (normalized) Laplacian but then isolated edges produce spurious eigenvalues.
Problems when the average degree is finite

- **High degree nodes**: a star with degree d has eigenvalues $\{-\sqrt{d}, 0, \sqrt{d}\}$. In the regime where a and b are finite, the degrees are asymptotically Poisson with mean $\frac{a+b}{2}$. The adjacency matrix has $\Omega\left(\sqrt{\frac{\ln n}{\ln \ln n}}\right)$ eigenvalues.

- **Low degree nodes**: instead of the adjacency matrix, take the (normalized) Laplacian but then isolated edges produce spurious eigenvalues.
Problems when the average degree is small

Same graph after trimming.
Phase transition for $a, b = O(1)$

Theorem

$$\tau = \frac{(a - b)^2}{2(a + b)}$$

If $\tau > 1$, then positively correlated reconstruction is possible.

If $\tau < 1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova ’11 based on statistical physics arguments.

- Non-reconstruction proved by Mossel, Neeman, Sly ’12.
- Reconstruction proved by Massoulié ’13 and Mossel, Neeman, Sly ’13.
Phase transition for $a, b = O(1)$

Theorem

$$\tau = \frac{(a - b)^2}{2(a + b)}$$

If $\tau > 1$, then positively correlated reconstruction is possible.

If $\tau < 1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova ’11 based on statistical physics arguments.

- Non-reconstruction proved by Mossel, Neeman, Sly ’12.
- Reconstruction proved by Massoulié ’13 and Mossel, Neeman, Sly ’13.
Phase transition for $a, b = O(1)$

Theorem

$$\tau = \frac{(a - b)^2}{2(a + b)}$$

If $\tau > 1$, then positively correlated reconstruction is possible.

If $\tau < 1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova ’11 based on statistical physics arguments.

- Non-reconstruction proved by Mossel, Neeman, Sly ’12.
- Reconstruction proved by Massoulié ’13 and Mossel, Neeman, Sly ’13.
Regularization through the non-backtracking matrix

Let $\tilde{E} = \{ u \to v; \{u, v\} \in E \}$ be the set of oriented edges. $m = |\tilde{E}|$ is twice the number of unoriented edges. The **non-backtracking matrix** is an $m \times m$ matrix defined by

$$B_{u\to v, v\to w} = 1(\{u, v\} \in E)1(\{v, w\} \in E)1(u \neq w)$$

B is NOT symmetric: $B^T \neq B$. We denote its eigenvalues by $\lambda_1, \lambda_2, \ldots$ with $\lambda_1 \geq \cdots \geq |\lambda_m|$. Proposed by Krzakala et al. ’13.
Simulation for Erdős-Rényi Graph

Eigenvalues of B for an Erdős-Rényi graph $G(n, \lambda/n)$ with $n = 500$ and $\lambda = 4$.
Erdős-Rényi Graph

Eigenvalues of B: $\lambda_1 \geq |\lambda_2| \geq \ldots$

Theorem

Let $\lambda > 1$ and G with distribution $G(n, \lambda/n)$. With high probability,

\[
\lambda_1 = \lambda + o(1) \quad \text{and} \quad |\lambda_2| \leq \sqrt{\lambda} + o(1).
\]

Bordenave, Lelarge, Massoulié ’15
Simulation for Stochastic Block Model

Eigenvalues of B for a Stochastic Block Model with $n = 2000$, mean degree $\frac{a+b}{2} = 3$ and $\frac{a-b}{2} = 2.45$
Stochastic Block Model

Eigenvalues of B: $\lambda_1 \geq |\lambda_2| \geq \ldots$

Theorem

Let G be a Stochastic Block Model with parameters a, b. If $(a - b)^2 > 2(a + b)$, then with high probability,

$$\lambda_1 = \frac{a + b}{2} + o(1)$$

$$\lambda_2 = \frac{a - b}{2} + o(1)$$

$$|\lambda_3| \leq \sqrt{\frac{a + b}{2}} + o(1).$$

Bordenave, Lelarge, Massoulié ’15
Test with real benchmarks

If you can't get it right on this network, then go home.
Test with real benchmarks

The Power Law Shop
The non-backtracking matrix on real data

from Krzakala, Moore, Mossel, Neeman, Sly, Zdeborovà ’13
Back to political blogging network data
Non-backtracking vs adjacency

On the **sparse stochastic block model** with probability of intra-edge a/n and inter-edge b/n.

The problem: if $a, b \to \infty$, then Wigner’s semi-circle law + BBP phase transition but if $a, b < \infty$ as $n \to \infty$, then Lifshitz tails.

The solution: the non-backtracking matrix on directed edges of the graph: $B_{u \to v, v \to w} = 1(\{u, v\} \in E)1(\{v, w\} \in E)1(u \neq w)$ achieves optimal detection on the SBM.
For the labeled stochastic block model, we also conjecture a phase transition. We have partial results and an optimal spectral algorithm.

J. Xu, M. Lelarge, L. Massoulié, ITW ’13, COLT ’14
A. Saade, F. Krzakala, M. Lelarge, L. Zdeborovà, ISIT’15-16
For the labeled stochastic block model, we also conjecture a phase transition. We have partial results and an optimal spectral algorithm.

J. Xu, M. Lelarge, L. Massoulié, ITW ’13, COLT ’14
A. Saade, F. Krzakala, M. Lelarge, L. Zdeborová, ISIT’15-16

THANK YOU!
For the labeled stochastic block model, we also conjecture a phase transition. We have partial results and an optimal spectral algorithm.

J. Xu, M. Lelarge, L. Massoulié, ITW ’13, COLT ’14
A. Saade, F. Krzakala, M. Lelarge, L. Zdeborovà, ISIT’15-16