Stochastic Kriging for Bermudan Option Pricing

International Conference on Monte Carlo Techniques, Paris

Mike Ludkovski

Dept of Statistics & Applied Probability UC Santa Barbara

July 6 2016
Work supported by NSF DMS-1222262
Optimal Stopping via Monte Carlo

- \((X_t)\): Markov state process, \(t = 0, 1, 2, \ldots\)
- Dynamics \(X_{t+1} = F(X_t, \varepsilon_t)\), smooth transition density \(p(t, y|0, x)\)
- Wish to maximize expected reward \(V(t, x) = \sup_{\tau \leq T} \mathbb{E}[h(\tau, X_\tau)]\)
- from stopping at \(\tau\)
- Optimization is over hitting times \(\tau = \min\{s : X_s \in \mathcal{S}_s\} \land T\)
- Timing Value \(T(t, x) := \mathbb{E}_{t,x} [V(t+1, X_{t+1})] - h(t, x)\)
- Stopping set \(\mathcal{S}_t = \{x : T(t, x) < 0\}\)
Simulation Approach

- Stochastic grid x^n, $n = 1, \ldots, N \Rightarrow$ Trajectories/scenarios $x_{t:T}^{1:N}$
- Evaluate future pathwise payoff $h(\tau_{t+1}, x_{\tau_{t+1}}^n)$ where
 $\tau_{t+1}^n := \min\{ s > t : x_s^n \in \hat{S}_s \}$
- Compare to immediate payoff: $y^n := h(\tau_{t+1}, x_{\tau_{t+1}}^n) - h(t, x_t^n)$
- Then $\mathbb{E}[Y(x)] = \mathbb{E}_{t,x}[h(\tau_{t+1}, X_{\tau_{t+1}})] - h(t, x) = T(t, x)$
- Rank expected future payoff vs present reward
- Policy search vs Value-function-approximation
Abstract Statistical Problem

- Have a stochastic simulator $Y(x) = f(x) + \varepsilon$, $\mathbb{E}[\varepsilon] = 0$
- Input space $x \in \mathcal{X} \subset \mathbb{R}^d$ (continuous, multi-dimensional)
- Goal: learn $\mathcal{G} := \{x : f(x) \leq 0\}$
- Discriminate between positive and negative values of the latent function
- Precise loss function:

$$L(\hat{\mathcal{G}}) = \mathbb{E} \left[f(x) 1_{\mathcal{G} \Delta \hat{\mathcal{G}}}(x)\right]$$

where the expectation is over a given measure \mathbb{P}
- The responses Y are pathwise costs-to-go (aka q-value); has intrinsic noise ε due to the particular trajectory of X
What are the Challenges?

- How to approximate \hat{f}?
- How to measure goodness-of-fit?
- How to handle non-standard statistical context?
- How to generate simulations?
- How to prove/guarantee convergence?
- How to speed-up convergence?
- How to achieve scalability?
What are the Challenges?

- How to approximate \hat{f}?
 Approximation architecture \mathcal{H}
- How to measure goodness-of-fit?
 Loss function $\inf_{\mathcal{H}} \mathbb{E}[L(\hat{f}, f)]$
- How to handle non-standard statistical context?
- How to generate simulations?
- How to prove/guarantee convergence?
- How to speed-up convergence?
- How to achieve scalability?
What are the Challenges?

- How to approximate \(\hat{f} \)? Approximation architecture \(\mathcal{H} \)
- How to measure goodness-of-fit? Loss function \(\inf_{\mathcal{H}} \mathbb{E}[L(\hat{f}, f)] \)
- How to handle non-standard statistical context? Properties of \(\varepsilon \)
- How to generate simulations? Experimental design
- How to prove/guarantee convergence?
- How to speed-up convergence?
- How to achieve scalability?
What are the Challenges?

- How to approximate \hat{f}? Approximation architecture \mathcal{H}
- How to measure goodness-of-fit? Loss function $\inf_{\mathcal{H}} \mathbb{E}[L(\hat{f}, f)]$
- How to handle non-standard statistical context? Properties of ε
- How to generate simulations? Experimental design
- How to prove/guarantee convergence? Behavior as $n \to \infty$
- How to speed-up convergence? Non-asymptotics for a given N
- How to achieve scalability?

Minimize dependence on specific dimension, payoff $h(\cdot)$, dynamics F
What are the Challenges?

- How to approximate \hat{f}? Approximation architecture \mathcal{H}
- How to measure goodness-of-fit? Loss function $\inf_{\mathcal{H}} \mathbb{E}[L(\hat{f}, f)]$
- How to handle non-standard statistical context? Properties of ε
- How to generate simulations? Experimental design
- How to prove/guarantee convergence? Behavior as $n \to \infty$
- How to speed-up convergence? Non-asymptotics for a given N
- How to achieve scalability?
 Minimize dependence on specific dim d, payoff $h(\cdot)$, dynamics F
Statistical Learning

- Step I: experimental design – generate $x^{1:N}$
- Step II: sample $y^{1:N} = Y(x^{1:N})$ and estimate \hat{S}

- Low signal-to-noise ratio
- Strong heteroscedasticity
- Non-standard noise distribution

$(x, y)^{1:N}$ with $N = 10^4$, $X = [28, 40]$
Existing State-of-the-Art

- Approximation architectures: basis expansions; nonparametric regression; hierarchical methods; ...
- Goodness-of-fit: least squares; penalized least-squares; opportunity cost
- Heteroscedasticity, non-Gaussian noise: regularization, batching
- Experimental design: space-filling; sequential adaptive; importance sampling
Existing State-of-the-Art (cont)

- **Convergence proofs**: Belomestny, Bouchard, Clement, Gobet, Lamberton, Lapeyre, Pagès, Stentoft, Warin, ...
 Intuitively: policy-iteration is better...

- To **Speed-up** convergence: ASK the RIGHT questions to identify opportunities for improvement

- **Scalability**: used in a wide variety of contexts, often as a sub-procedure. Would like to have a smart algorithm that doesn’t require too much fine-tuning (e.g adaptive dictionary selection)
Contributions

1. A *nice* modeling framework is available in GP/kriging. One of the new tools emerging from machine learning. Arguably “smarter” and more flexible than working with basis functions.

2. Experimental design is arguably *more important* than the regression model. Default “density-based” sampling is highly inefficient. Investigate space-filling and adaptive designs. Replicated design.

3. The loss function resembles *classification*. Build a classification model by converting observations into 0/1 labels. Modifies the statistical behavior of the simulator. Promising in combination with adaptive design.
Formalize Statistical Learning

- Capture the idea that f is learned from the data: $\mathcal{Z}^{(n)} \equiv (x, y)_1^n$ induces $\hat{F}^{(n)} = \mathbb{E}[f|\mathcal{Z}^{(n)}]$ posterior distribution (measure on \mathcal{H})
- Treat the true map $f \in \mathcal{H}$ as a random function
- Specify prior distribution and then use Bayesian updating
- $\hat{F}_x^{(n)} = \mathbb{E}[f(x)|\mathcal{Z}^{(n)}]$ posterior at x (measure on \mathcal{X})

$\hat{f}^{(n)}$ and its 95% CI for 3 different n, L. (2016)
Stochastic Kriging

- f is a realization of a **Gaussian random field** with a covariance structure defined by K, function space $\mathcal{H}_K = \text{span}(K(\cdot, x) : x \in \mathcal{X})$
- $K(x, x') := \mathbb{E}[f(x)f(x')]$ controls the spatial smoothness
- e.g. Gaussian kernel $K(x, x') = \tau^2 \exp(-\|x - x'\|^2/\theta^2)$ – elements of \mathcal{H}_K are C^∞, with lengthscale θ and fluctuation scale τ.
- The **posterior conditional** on $Z \equiv (x, y)^{1:N}$ is also **Gaussian** $f(x)|Z \sim N(m(x), v^2(x))$

$$m(x) = \tilde{k}(x)^T(K + \Sigma)^{-1}\tilde{y}$$
$$v(x, x') = K(x, x') - \tilde{k}(x)^T(K + \Sigma)^{-1}\tilde{k}(x')$$

- $K_{ij} = K(x^i, x^j)$, $\Sigma = \text{diag}(\sigma^2(x^i))$, $k_i = K(x, x^i)$
GP Modeling

- Given the kernel, the posterior is in closed-form
- Lengthscale θ controls correlation decay = spatial smoothness of f
- Can incorporate a non-zero mean/trend
- Global consistency – converge to the truth as $N \to \infty$
- Fitted Matern-5/2 kernel
 \[K(x, x'; \tau, \theta) = \tau^2 \left(1 + \sqrt{5}\|x - x'\|_\theta + \frac{5}{3}\|x - x'\|^2_\theta \right) \cdot e^{-\sqrt{5}\|x - x'\|_\theta} \]
Fitting a GP

- Need to pick the kernel family
- Need to know the kernel hyperparameters – τ, θ’s, et cetera.
- **Solution I:** Use MLE (nonlinear optimization problem) or cross-validation
- **Solution II:** Specify priors and use a fully Bayesian method (requires MCMC)
- Need the sampling noise $\sigma^2(x)$ – use batching/replications to estimate
- GP is expensive compared to e.g LM; complexity is $O(N^3)$ for a design of size N
- We used DiceKriging package in R – off-the-shelf use
Batched Designs

- **Re-use** same site x for multiple paths – like a MC forest
- *(pre)-Average* the pathwise payoffs: $\bar{y}(x) = \frac{1}{M} \sum_{i=1}^{M} y^{(i)}(x)$ where $y^{(1)}(x), \ldots, y^{(M)}(x)$ are M independent replicates
- Sample variance estimator: $\tilde{\sigma}^2(x) := \frac{1}{M-1} \sum_{i=1}^{M} (y^{(i)}(x) - \bar{y}(x))^2$
- *(More proper is to train another metamodel for $\sigma(\cdot)$)*
- *(M can be chosen adaptively)*
- Plug-in $\tilde{\sigma}^2(x)/M$ for variance of $\bar{Y}(x)$. Only need to regress (x, \bar{y})’s
- When M is big, can just *interpolate* averaged payoffs
Batched Kriging Metamodel for $T(t, \cdot)$

LHS design \mathcal{Z} of size $N = 3000$ with $M = 100$ replications. The vertical “error” bars indicate the 95% quantiles of the simulation batch at x, while the dotted lines indicate the 95% credibility interval (CI) of the kriging metamodel fit.
Advantages of GP

- Adapts to the structure of the problem. Need to pick the kernel family but the rest is automatic
- Has an extensive “ecosystem”: local GP, treed GP, t-noise GP, et cetera
- Works well with sequential design by providing online local goodness-of-fit metrics; also is updateable
- Implemented in multiple R packages
- Clarifies the twin requirements of smoothing and interpolation
- Smooth \(\hat{f} \), can also set/get gradient estimates
- **Disadvantage**: slow; less analytically understood
Experimental Design

- Global design: \(\inf_{\mathcal{Z}: |\mathcal{Z}|=N} \mathbb{E}_{0,\mathcal{X}_0} \left[\mathcal{L}(\hat{f}(\mathcal{Z}^{(N)}), f) \right] \)
- Above is NP-hard, so need heuristics
- **Idea 1:** need to learn \(f(x) \) over the input space \(\mathcal{X} \)
 - Space-filling designs – grid-based, low-discrepancy (Sobol), **LHS**
 - Loss is weighted according to \(\mathbb{P} \) – sample \(x_t^{1:N} \sim X_t \) from \(\mathbb{P} \)
 - (“empirical” design as originally proposed by Longstaff-Schwartz)
Experimental Design

Global design: \(\inf_{\mathcal{Z} : |\mathcal{Z}| = n} \mathbb{E}_{0, x_0} \left[\mathcal{L}(\hat{f}(\mathcal{Z}^{(N)}), f) \right] \)

Above is NP-hard, so need heuristics

Idea 1: need to learn \(f(x) \) over the input space \(\mathcal{X} \)

Space-filling designs – grid-based, low-discrepancy (Sobol), LHS

Loss is weighted according to \(\mathbb{P} \) – sample \(x^1_t, \ldots, x^n_t \sim X_t \) from \(\mathbb{P} \) ("empirical" design as originally proposed by Longstaff-Schwartz)

Idea 2: The geometry of the design affects the local accuracy of the response surfaces

Denser design – smaller local error

Goal is to learn the sign of \(f(x) \)

\(\Rightarrow \) preferentially target regions where \(f(\cdot) \) changes signs

Adaptive designs
Proposed Designs

Based on $S_t | S_0$

Monte Carlo forest

Uniform in [30, 40]

Adaptive Grid
Space-Filling Designs

LHS $M = 20, N' = 150$
LHS $M = 100, N' = 30$
Emp $M = 100, N' = 30$

Three different designs for fitting a kriging metamodel of the continuation value for the 1-D Bermudan Put ($t = 0.6, T = 1$). Top panels show the fitted $\hat{T}(t, \cdot)$ and sites $x^{1:N'}$. Middle panels plot the corresponding surrogate standard deviation $\nu(x)$. Bottom panels display the loss metric $\ell(x; \mathcal{Z})$.

Ludkovski
RMC Kriging
Adaptive Design for Optimal Stopping

- Recall that aim to learn the sign of \(T(t, \cdot) \)
- Gradually grow \(\mathcal{Z}(k) \), \(k = N_0, \ldots, N \)
- Add new locations greedily according to acquisition function
 \[x^{k+1} = \arg \max EI_k(x) \]
- Favor points where \(m^{(k)}(x) \approx 0 \) (close to zero-contour) or \(v^{(k)}(x) \)
 is large (reduce uncertainty)
- Loss from making the wrong stopping decision at \((t, x)\) is
 \[
 \ell(x; \mathcal{Z}) := \int_{\mathbb{R}} |y - h(t, x)| 1\{m(x) < h(t, x) < y \cup y < h(t, x) < m(x)\} \mathcal{M}_x(dy)
 \]
- Analytic integral if assume the posterior distribution is Gaussian
 \(\mathcal{M}_x \sim N(m(x), v^2(x)) \).
ZC-SUR Strategy

- **ZC-SUR (zero-contour stepwise uncertainty reduction):** Maximize stepwise expected reduction in local loss.

- **Analytic expression for**
 \[EI_k(x) := \mathbb{E}[\ell^{(k)}(x) - \ell^{(k+1)}(x) | Z^{(k)}, x^{k+1} = x] \]

- (Approximately) maximize \(EI_k(x) \); see Gramacy-L. (SIFIN 2015)

- Related ideas in machine learning/simulation optimization:
 - AL (Cohn et al ’96, MacKay ’92): Minimizing integrated posterior variance
 - EGO (Jones et al ’98): Learning \(\inf_x f(x) \)
 - Exploration/Exploitation trade-off (Auer et al ’02): UCB policies
 - Contour-finding: Ranjan et al ’08
 - SUR (Picheny et al ’10): Myopically maximizing loss reduction
Adaptive Designs

1-D Put

2-D Max Put

Adaptive designs. **Color-coded** according to $T(t, x)$; **red** contour indicates the stopping boundary.
Adaptive and LHS designs. Bermudan Put $e^{-rt}(100 - X_1)_+$ with a Heston stochastic volatility model. Both designs used $N = 10000$ simulations. Color-coded according to $T(t, x)$; red contour indicates the stopping boundary.
Effect of Design

- Probabilistic design: $x^n \sim p(\cdot, t|x_0, 0)$ (Classical approach)
- Highly sensitive to initial condition, often mis-aligned with \mathcal{G}
- Adaptive design gains are modest

<table>
<thead>
<tr>
<th>Design/Batch Size</th>
<th>$M = 4$</th>
<th>$M = 20$</th>
<th>$M = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic</td>
<td>1.458 (0.002)</td>
<td>1.448 (0.003)</td>
<td>1.443 (0.006)</td>
</tr>
<tr>
<td>LHS</td>
<td>1.453 (0.002)</td>
<td>1.446 (0.004)</td>
<td>1.416 (0.033)</td>
</tr>
<tr>
<td>Sobol QMC</td>
<td>1.454 (0.002)</td>
<td>1.448 (0.002)</td>
<td>1.454 (0.002)</td>
</tr>
<tr>
<td>Sequential ZC-SUR</td>
<td>N/A</td>
<td>1.428 (0.004)</td>
<td>1.439 (0.005)</td>
</tr>
</tbody>
</table>

Performance of different DoE approaches to RMC for the 2-D Bermudan Put. The table reports $\hat{V}(0, X_0)$ and its Monte Carlo (StDev). All methods utilize $|Z_t| = 3000$. Results are based on averaging 100 runs of each method, and evaluating $\hat{V}(0, X_0)$ on a fixed out-of-sample database of $N_{out} = 100,000$ scenarios. For comparison, LSMC-BW11 algorithm yielded estimates of $\hat{V}^{BW11}(0, X_0) = 1.431$ with $N = 10,000$ and $\hat{V}^{BW11}(0, X_0) = 1.452$ with $N = 50,000$.
Simulation Savings

<table>
<thead>
<tr>
<th>Method</th>
<th>(\hat{V}(0, X_0)) (StDev.)</th>
<th>#Sims</th>
<th>Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Max call</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSMC BW11</td>
<td>7.89 (0.023)</td>
<td>360 \cdot 10^3</td>
<td>4.0</td>
</tr>
<tr>
<td>LSMC BW11</td>
<td>7.95 (0.015)</td>
<td>1125 \cdot 10^3</td>
<td>7.7</td>
</tr>
<tr>
<td>Krig + LHS</td>
<td>7.85 (0.073)</td>
<td>59 \cdot 10^3</td>
<td>1.2</td>
</tr>
<tr>
<td>Krig + LHS</td>
<td>7.90 (0.037)</td>
<td>117 \cdot 10^3</td>
<td>5.2</td>
</tr>
<tr>
<td>Krig + SUR</td>
<td>7.91 (0.024)</td>
<td>102 \cdot 10^3</td>
<td>15.6</td>
</tr>
<tr>
<td>Krig + SUR</td>
<td>7.95 (0.05)</td>
<td>246 \cdot 10^3</td>
<td>28.7</td>
</tr>
<tr>
<td>3D Max Call</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSMC BW11</td>
<td>11.07 (0.01)</td>
<td>2.7 \cdot 10^6</td>
<td>22</td>
</tr>
<tr>
<td>Krig + LHS</td>
<td>11.09 (0.02)</td>
<td>0.48 \cdot 10^6</td>
<td>27</td>
</tr>
<tr>
<td>Krig + SUR</td>
<td>11.05 (0.02)</td>
<td>0.51 \cdot 10^6</td>
<td>161</td>
</tr>
<tr>
<td>5D Max Call</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSMC BW11</td>
<td>16.32 (0.02)</td>
<td>5.76 \cdot 10^6</td>
<td>87</td>
</tr>
<tr>
<td>Krig + LHS</td>
<td>16.32 (0.03)</td>
<td>0.81 \cdot 10^6</td>
<td>317</td>
</tr>
<tr>
<td>Krig + SUR</td>
<td>16.33 (0.02)</td>
<td>0.85 \cdot 10^6</td>
<td>952</td>
</tr>
</tbody>
</table>

Comparison of RMC methods for different max-Call models. Results are averages across 100 runs of each algorithm, with third column reporting the corresponding standard deviations of \(\hat{V}(0, X_0) \). Time is based on running the R code on a 1.9 MHz laptop with 8Gb of RAM. The BW11 method used \(10^2 \) partitions for \(d = 2 \), \(5^3 \) partitions for \(d = 3 \) and \(4^5 \) partitions for \(d = 5 \).
Adaptive Design: Is It Worth It?

- Significant **memory savings**, increased computation time
- Kriging metamodel is an **updateable** representation of \mathbb{S} – can be used “**anytime**” or with adaptive termination
- Outputs empirical self-assessment to monitor performance
- New connections to **statistics/machine learning**
- Sequential design is intermediate step – can sacrifice accuracy (e.g. use one regression method during seq design and another for final metamodel)
- Or can use other **importance sampling** ideas (build a rough fit, then refine)
Sign Classification

- Convert pathwise rewards into 0/1 labels:
 \[z_t^n = I(h(\tau_{t+1}, x_{\tau_{t+1}}^n) > h(t, x_t^n)) \]
- Let \(p(x) = P(Z(x) = 1) \). Then \(S_t \sim \{ p(x) > 0.5 \} \).
- Build a statistical model for \(p(x) \) and hence approximate \(S \).
 (Picazo 2002)
- Tools: Logistic regression; support vector machines.
- Probit GP model: \(p(x) = \Phi(\tilde{f}(x)) \) where \(\tilde{f} \sim GP(m(x), v^2(x)) \)
- Likelihood log \(\log p(\tilde{f}|x, z) \propto \frac{1}{2} \tilde{f}^T K^{-1} \tilde{f} + \sum_i \log \Phi((2Z_i - 1)\tilde{f}_i) \)
GP Classification

Classification Pros/Cons

- Classification modifies the statistical “noise”; smoothes non-Gaussian ε and heteroskedasticity.
- Note that $p(x) = 0.5$ is when the median of Y is zero. When Y is skewed, median \neq mean. Significant concern in financial applications where skew is very severe (ATM: usually pathwise payoff is less than immediate one, but sometimes it’s MUCH bigger).
- There is necessarily loss of information in discarding the magnitude of Y when switching to Z.
- Better targets the loss function.
- Directly models the stopping boundary (eg SVM: adaptive representation of $\partial\mathcal{G}$ as a collection of hyperplanes).
- Natural approach for sequential design construction?
Next Steps

- Structured regression (with X. Lyu)
- Root-finding (with S. Rodriguez)
- Multiple responses (with R. Hu)
- Related control problems
- Common library of examples for benchmarking
Next Steps

- Structured regression (with X. Lyu)
- Root-finding (with S. Rodriguez)
- Multiple responses (with R. Hu)
- Related control problems
- Common library of examples for benchmarking

THANK YOU!
References I

References II

