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Goal

We are interested in the computation, by Monte Carlo methods, of
the expectation Y = E [f (XT )], where X = (Xt)0≤t≤T is the solution
to a multidimensional stochastic differential equation (SDE) and

f : Rn 7→ R a given function such that E
[
f (XT )2

]
< +∞.

We will focus on minimizing the computational complexity subject to
a given target error ε ∈ R∗+.

To measure the accuracy of an estimator Ŷ , we will consider the root
mean squared error:

RMSE
(
Ŷ ;Y

)
= E

1
2

[∣∣∣Y − Ŷ
∣∣∣2] .



Itô-type SDE

We consider a general Itô-type SDE of the form dXt = b(Xt)dt +
d∑

j=1
σj(Xt)dW

j
t

X0 = x

where:

x ∈ Rn,

(Xt)0≤t≤T is a n−dimensional stochastic process,

W =
(
W 1, . . . ,W d

)
is a d−dimensional standard Brownian motion,

b, σ1, . . . , σd : Rn → Rn are Lipschitz continuous.



Stratonovich form

Assuming C1 regularity for diffusion coefficients σ1, . . . , σd , the Itô-type
SDE can be written in Stratonovich form: dXt = σ0(Xt)dt +

d∑
j=1

σj(Xt) ◦ dW j
t

X0 = x

where σ0 = b − 1
2

d∑
j=1

∂σjσj and ∂σj is the Jacobian matrix of σj defined

as follows
∂σj =

(
∂xkσ

ij
)

1≤i ,k≤n .



The Ninomiya-Victoir scheme

Notations(
tk = k T

N

)
0≤k≤N is the subdivision of [0,T ],

η = (η1, . . . , ηN) is a sequence of independent, identically distributed Rademacher
random variables independent of W ,
for all j ∈ {1, . . . , d} ,∆W j

tk+1
= W j

tk+1
−W j

tk ,

for j ∈ {0, . . . , d} and x0 ∈ Rd , let (exp(tσj)x0)t∈R solve the ODE{
dx(t)
dt = σj (x (t))

x (0) = x0.

Scheme

If ηk+1 = 1

XNV ,N,η
tk+1

= exp

(
T

2N
σ0

)
exp

(
∆W d

tk+1
σd
)
. . . exp

(
∆W 1

tk+1
σ1
)

exp

(
T

2N
σ0

)
XNV ,N,η
tk ,

and if ηk+1 = −1

XNV ,N,η
tk+1

= exp

(
T

2N
σ0

)
exp

(
∆W 1

tk+1
σ1
)
. . . exp

(
∆W d

tk+1
σd
)

exp

(
T

2N
σ0

)
XNV ,N,η
tk .



Link between ODEs and SDEs

Link between ODEs and SDEs

for j ∈ {1, . . . , d} and y ∈ Rn, the dynamics of Yt = exp
(
W j

t σ
j
)
y is given by

dYt = σj (Yt) ◦ dW j
t =

1

2
∂σjσj (Yt) + σj (Yt) dW

j
t .

Splitting of the infinitesimal generator

The infinitesimal generator

L = b.∇x +
1

2
Tr
[
(σ1, . . . , σd)(σ1, . . . , σd)∗∇2

x

]
is then split into

L = L0 +
1

2

d∑
j=1

L2
j ,

where
L0u (t, x) = σ0 (x) . ∇xu (t, x) ,

and
Lju (t, x) = σj (x) . ∇xu (t, x) .



Order 2 of weak convergence

Denoting by (X x
t )t≥0 the solution to the SDE starting from X x

0 = x ∈ Rn,
for f : Rn → Rn smooth, u(t, x) = E [f (X x

t )] solves the Feynman-Kac
PDE {

∂u
∂t (t, x) = Lu(t, x), (t, x) ∈ [0,∞)× Rn

u(0, x) = f (x), x ∈ Rn

∂2u

∂t2
=

∂

∂t
Lu = L ∂

∂t
u = L2u

and u(t1, x) = f (x) + t1Lf (x) +
t2
1

2
L2f (x) +O(t3

1 ).

Ninomiya and Victoir have designed their scheme so that

E[f (XNV ,η
t1

)] = f (x) + t1Lf (x) +
t2
1

2
L2f (x) +O(t3

1 ).

One step error O( 1
N3 )

Nsteps−→ O( 1
N2 ) global error.



Order 1/2 of strong convergence

Theorem (Strong convergence)

Assume that the vector fields, σ0, σj and ∂σjσj , for all j ∈ {1, . . . , d} , are
Lipschitz continuous. Then, for all p ≥ 1, there exists a constant
CNV ∈ R∗+ such that for all N ∈ N∗,

E

[
max

0≤k≤N

∥∥∥Xtk − XNV ,η
tk

∥∥∥2p
∣∣∣∣∣η
]
≤ CNV

Np
.



Stable convergence of the normalized error

Theorem (Stable convergence)

Assume that

σ0 ∈ C2 (Rn,Rn) and is a Lipschitz continuous function with polynomially growing
second order derivatives,
for all j ∈ {1, . . . , d} , σj ∈ C2 (Rn,Rn) and is Lipschitz continuous and its first order
derivative is locally Lipschitz with polynomially growing Lipschitz constant,
for all j ,m ∈ {1, . . . , d} , ∂σjσm is Lipschitz continuous,
for all j ∈ {1, . . . , d} , ∂σjσj ∈ C2 (Rn,Rn) with polynomially growing second order
derivatives.

Then
VN :=

√
N
(
X − XNV ,η

)
stably
=⇒

N→+∞
V ,

where V is the unique solution of the following affine equation

Vt =

√
T

2

d∑
j=1

j−1∑
m=1

∫ t

0

[
σj , σm

]
(Xs) dB j ,m

s +

∫ t

0
∂b (Xs)Vsds +

d∑
j=1

∫ t

0
∂σj (Xs)VsdW

j
s ,

with
[
σj , σm

]
= ∂σmσj − ∂σjσm, and (Bt)0≤t≤T is a standard d(d − 1)/2-dimensional

Brownian motion independent of W .



Stable convergence

Remark

The limit does not depend on η,

the strong convergence rate is actually 1/2 when at least two
Brownian vector fields do not commute,

if the Brownian vector fields commute, i.e.

for all j ,m ∈ {1, . . . , d}, ∂σjσm = ∂σmσj ,

then the limit is 0.



Commutation of the Brownian vector fields

Theorem (Strong convergence)

Assume that
for all j ,m ∈ {1, . . . , d}, ∂σjσm = ∂σmσj ,

(the order of integration of these Brownian vector fields no longer matters and η is useless)
and that

for all j ∈ {1, . . . , d} , σj ∈ C1 (Rn,Rn) with bounded first order derivatives,
σ0 ∈ C2 (Rn,Rn) with bounded first order derivatives and polynomially growing second
order derivatives,
d∑

j=1
∂σjσj is a Lipschitz continuous function,

Then, there exists a constant C ′NV ∈ R∗+ such that for all N ∈ N∗,

E

[
sup
t≤T

∥∥∥Xt − XNV
t

∥∥∥2p
]
≤

C ′NV
N2p

.

Under the commutativity of the Brownian vector fields, it is possible to implement the
Milstein scheme which also exhibits order one of strong convergence.



Stable convergence of the normalized error

Theorem (Stable convergence)

Assume that

for all j ∈ {0, . . . , d} , σj ∈ C2 (Rn,Rn) with bounded first order derivatives, ∂σj and
∂2σj are locally Lipschitz with polynomially growing Lipschitz constant,
for all j ∈ {1, . . . , d} , ∂σjσj is a Lipschitz continuous function,

and that the commutativity condition holds. Then:

UN = N
(
X − XNV

)
stably
=⇒

N→+∞
U,

where U is the unique solution of the following affine equation:

Ut =
T

2
√

3

d∑
j=1

∫ t

0

[
σ0, σj

]
(Xs) dB̃ j

s +

∫ t

0
∂b (Xs)Usds +

d∑
j=1

∫ t

0
∂σj (Xs)UsdW

j
s ,

and
(
B̃t

)
0≤t≤T

is a standard d-dimensional Brownian motion independent of W .
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The Multilevel Monte Carlo

The main idea of this technique is to use the following telescopic
summation to control the bias:

E
[
f
(
X 2L

T

)]
= E

[
f
(
X 1
T

)]
+

L∑
l=1

E
[
f
(
X 2l

T

)
− f

(
X 2l−1

T

)]
.

Then, a generalized multilevel Monte Carlo estimator is built as follows:

ŶMLMC =
L∑

l=0

1

Ml

Ml∑
k=1

Z l
k

where
(
Z l
k

)
0≤l≤L,1≤k≤Ml

are independent random variables such that:

E
[
Z 0
]

= E
[
f
(
X 1
T

)]
and for all l ∈ {1, . . . , L} ,

E
[
Z l
]

= E
[
f
(
X 2l

T

)
− f

(
X 2l−1

T

)]
.



Cost and canonical exemple

Cost

For a given discretization level l ∈ {0, . . . , L}, the computational cost of
simulating one sample Z l is Cλl2

l , where:

C ∈ R+ is a constant, depending only on the discretization scheme,

for all l ∈ {0, . . . , L} , λl ∈ Q∗+ is a weight, depending only on l ,

CMLMC = C
L∑

l=0

Mlλl2
l .

Natural choice for Z l , l ∈ {0, . . . , L}

Z 0 = f
(
X 1
T

)
for all l ∈ {1, . . . , L} ,Z l = f

(
X 2l

T

)
− f

(
X 2l−1

T

)
.

For this canonical choice, it is natural to take λ0 = 1 and λl = 3
2 .



Complexity analysis

Bias

B
(
ŶMLMC ;Y

)
= E

[
ŶMLMC

]
− Y = E

[
f
(
X 2L

T

)]
− E [f (XT )] .

The bias is related to the weak error of the scheme:

E
[
f
(
X 2L

T

)
− f (XT )

]
=

c1

2αL
+ o

(
1

2αL

)
.

Variance

V
[
ŶMLMC

]
=

L∑
l=0

1

Ml
V
[
Z l
]
.

If the simulation of X 2l and X 2l−1
comes from the same Brownian path,

then V
[
Z l
]

converges to 0 as l goes to infinity. The rate β of convergence
to zero of V

[
Z l
]

is related to the strong convergence order γ of the
scheme (β ≥ 2γ).



Optimal complexity

Theorem (Complexity theorem (Giles))

Assume that there exist (α, c1) ∈ R∗+ × R∗ and (β, c2) ∈
(
R∗+
)2

such that
for all l ∈ N:

E
[
f
(
X 2l

T

)]
− Y =

c1

2αl
+ o

(
1

2αl

)
and

V
[
Z l
]

=
c2

2βl
+ o

(
1

2βl

)
.

Then, the optimal complexity is given by:

C∗MLMC = O
(
ε−2
)

if β > 1,

C∗MLMC = O

(
ε−2

(
log

(
1

ε

))2
)

if β = 1,

C∗MLMC = O
(
ε−2+β−1

α

)
if β < 1.



Optimal parameters

Optimal parameters

L∗ =


log2

(√
2|c1|
ε

)
α


M∗0 =

 2

ε2

√
V [Z 0]

λ0

(√
λ0V [Z 0] +

L∗∑
l=1

√
c2λl2l(1−β)

)
and for all l ∈ {1, . . . , L∗}

M∗l =

⌈
2

ε2

√
c2

λl2l(β+1)

(√
λ0V [Z 0] +

L∗∑
l=1

√
c2λl2l(1−β)

)⌉
.

Regression

One can estimate (α, β, c1, c2) by using a regression:

V
[
Z l
]
∼ c2

2βl

E
[
Z l
]
∼ c1 (1− 2α)

2αl
.



Theoretical computing time

Denoting by τ l the theoretical computing time of level l ∈ {0, . . . , L∗},
one ha

τ l ∝ M∗l 2l .

Replacing M∗l , one can write

τ l ∝ 2−l(
β+1

2 )2l = 2−l(
β−1

2 ).

When β = 1, for the Euler scheme for example, τ l is constant.



Acceleration of the multilevel Monte Carlo

Debrabant and Rössler consider

Ŷ DR
MLMC =

1

M0

M0∑
k=1

f
(
X 1,0,k
T

)
+

L−1∑
l=1

1

Ml

Ml∑
k=1

(
f
(
X 2l ,l ,k
T

)
− f

(
X 2l−1,l ,k
T

))

+
1

ML

ML∑
k=1

(
f
(
X̂ 2L,L,k
T

)
− f

(
X 2L−1,L,k
T

))
,

where X̂ is a scheme with high order of weak convergence and such that

V
[
f
(
X̂ 2l

T

)
− f

(
X 2l−1

T

)]
=

c ′2
2βl

+ o

(
1

2βl

)
.



Outline

1 Introduction

2 The Ninomiya-Victoir Scheme

3 Monte Carlo Methods
The Multilevel Monte Carlo
The Multilevel Richardson-Romberg Extrapolation

4 Antithetic Schemes
The Giles-Szpruch Scheme
Coupling between the Ninomiya-Victoir scheme and the
Giles-Szpruch scheme

5 Numerical experiments
The Clark-Cameron SDE
The Heston Model



The Multilevel Richardson-Romberg Extrapolation

Adapting the notation of Pagès and Lemaire, the multilevel
Richardson-Romberg extrapolation estimator is built as follows:

ŶML2R =
L∑

l=0

Wl

Ml

Ml∑
k=0

Z l
k ,

where
(
Z l
kl

)
0≤l≤L,1≤k≤Ml

are independent random variables satisfying

E
[
Z 0
]

= E
[
f
(
X 1
T

)]
,

and for all l ∈ {1, . . . , L} ,

E
[
Z l
]

= E
[
f
(
X 2l

T

)
− f

(
X 2l−1

T

)]
.

Actually, the multilevel Richardson-Romberg extrapolation can be seen as
a weighted version of the Multilevel Monte Carlo estimator.



Optimal complexity

Theorem (Complexity theorem (Pagès, Lemaire))

Assume that there exist R ∈ N∗, α ∈ R∗+, c ′1, . . . , c ′R ∈ R∗ and

(β, c2) ∈
(
R∗+
)2

such that for all l ∈ N:

E
[
f
(
X 2l

T

)]
− Y =

R∑
j=1

c ′j
2αlj

+ o

(
1

2αlR

)
,

and

V
[
Z l
]

=
c2

2βl
+ o

(
1

2βl

)
.

Then, the optimal complexity is given by:

C∗ML2R = O
(
ε−2
)

if β > 1,

C∗ML2R = O
(
ε−2 log

(
1
ε

))
if β = 1,

C∗ML2R = O
(
ε−2 exp

(
−β−1√

α

√
2 log (2) log

(
1
ε

)))
if β < 1.



Optimal parameters

L∗ =

√(1

2
+ log2 (T )

)2

+
2

α
log2

(√
1 + 4α

ε

)
+ log2 (T )− 1

2


Wl =

L∗∑
j=l

wj

M∗l = dq∗l N∗e

where:

wj = (−1)L
∗−j 2−

α
2

(L∗−j)(L∗−j+1)

j∏
k=1

(1− 2−kα)
L∗−j∏
k=1

(1− 2−kα)
q∗0 ∝ (1 + θ)

q∗l ∝ θ |Wl | 2−
β
2 l+2−

β
2 (l−1)√

2l+2l−1
∀l ∈ {1, . . . , L∗}

L∗∑
l=0

q∗l = 1

N∗ =

(
1 +

1

2α (L∗ + 1)

) V [f (XT )]

(
1 + θ

(
1 +

L∗∑
l=1

|Wl |
(

2−
β
2
l + 2−

β
2

(l−1)
)√

2l + 2l−1

))2

ε2

(
q∗0 +

L∗∑
l=1

q∗l (2l + 2l−1)

)
and

θ = T−
β
2

√
c2

V [f (XT )]
.
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The Giles-Szpruch scheme

The Giles-Szpruch scheme is a modified Milstein scheme. The terms

involving the Lévy areas

∫ tk+1

tk

∆W j
s dW

m
s −

∫ tk+1

tk

∆Wm
s dW j

s have been

removed:

XGS
tk+1

= XGS
tk

+ b
(
XGS
tk

)
(tk+1 − tk) +

d∑
j=1

σj
(
XGS
tk

)
∆W j

tk+1

+
1

2

d∑
j ,m=1

∂σjσm
(
XGS
tk

)(
∆W j

tk+1
∆Wm

tk+1
− 1{j=m} (tk+1 − tk)

)
XGS
t0

= x .



The Giles-Szpruch scheme: antithetic version

We consider two grids: a coarse grid with time step hl−1 = T
2l−1 , a fine

grid with time step hl = T
2l

and we introduce some notations:

∀k ∈
{

0, . . . , 2l−1
}
, tk = khl−1,

∀k ∈
{

0, . . . , 2l−1 − 1
}
, tk+ 1

2
=
(
k + 1

2

)
hl−1,

∆W c
tk+1

= Wtk+1
−Wtk , ∆W f

t
k+ 1

2

= Wt
k+ 1

2

−Wtk and

∆W f
tk+1

= Wtk+1
−Wt

k+ 1
2

.

On the coarsest grid, XGS ,2l−1
is defined inductively by:

XGS ,2l−1

tk+1
= XGS ,2l−1

tk + b
(
XGS ,2l−1

tk

)
hl−1 +

d∑
j=1

σj
(
XGS ,2l−1

tk

)
∆W j ,c

tk+1

+
1

2

d∑
j ,m=1

∂σjσm
(
XGS ,2l−1

tk

)(
∆W j ,c

tk+1
∆Wm,c

tk+1
− 1{m=j}hl−1

)
.



The Giles-Szpruch scheme: antithetic version

Similarly, on the finest grid:

XGS ,2l

t
k+ 1

2

= XGS ,2l

tk + b
(
XGS ,2l

tk

)
hl +

d∑
j=1

σj
(
XGS ,2l

tk

)
∆W j ,f

t
k+ 1

2

+ 1
2

d∑
j ,m=1

∂σjσm
(
XGS ,2l

tk

)(
∆W j ,f

t
k+ 1

2

∆Wm,f
t
k+ 1

2

− 1{m=j}hl

)
XGS ,2l

tk+1
= XGS ,2l

t
k+ 1

2

+ b

(
XGS ,2l

t
k+ 1

2

)
hl +

d∑
j=1

σj
(
XGS ,2l

t
k+ 1

2

)
∆W j ,f

tk+1

+ 1
2

d∑
j ,m=1

∂σjσm
(
XGS ,2l

t
k+ 1

2

)(
∆W j ,f

tk+1
∆Wm,f

tk+1
− 1{m=j}hl

)
.

The antithetic scheme X̃GS ,2l is defined by the same discretization, except
that the Brownian increment ∆W f

t
k+ 1

2

and ∆W f
tk+1

are swapped.



Strong coupling with order one between successive levels

Considering, for all l ∈ {1, . . . , L} ,

Z l
GS =

1

2

(
f
(
X̃GS ,2l

T

)
+ f

(
XGS ,2l

T

))
− f

(
XGS ,2l−1

T

)
,

Giles and Szpruch obtain a first order of convergence.

Theorem (Giles-Szpruch)

Assume that f ∈ C2 (Rn,R) and b,∀j ∈ {1, . . . , d} , σj ∈ C2 (Rn,Rn) with
bounded first and second order derivatives. Then:

∀p ≥ 1, ∃c ∈ R∗+,∀l ∈ N∗, E
[∣∣∣Z l

GS

∣∣∣2p] ≤ c

22pl
.
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Coupling between the Ninomiya-Victoir scheme and the
Giles-Szpruch scheme

Theorem (Strong convergence)

Assume that b ∈ C2 (Rn;Rn) with bounded first and second order
derivatives, and, ∀j ∈ {1, . . . , d} , σj ∈ C3 (Rn;Rn) with bounded first and
second order derivatives and with polynomially growing third order
derivatives, and that, ∀j ,m ∈ {1, . . . , d}, ∂σjσm has bounded first order
derivatives. Then:

∃CGS ∈ R∗+,∀N ∈ N∗, E

[
max

0≤k≤N

∥∥∥X̄NV ,η
tk − XGS

tk

∥∥∥2p
∣∣∣∣∣η
]
≤ CGS

N2p
,

where

X̄NV ,η =
1

2

(
XNV ,η + XNV ,−η

)
.



Strong coupling with order one between successive levels

Considering:

Z l
GS−NV =

1

4
f
(
X̃NV ,2l ,η
T

)
+

1

4
f
(
X̃NV ,2l ,−η
T

)
+

1

4
f
(
XNV ,2l ,η
T

)
+

1

4
f
(
XNV ,2l ,−η
T

)
− f

(
XGS ,2l−1

T

)
,

we have a first order of convergence.

Corollary

Assume that f ∈ C2 (Rn,R) and b ∈ C2 (Rn,Rn) with bounded first and
second order derivatives, and, ∀j ∈ {1, . . . , d} , σj ∈ C3 (Rn,Rn) with
bounded first and second order derivatives and with polynomially growing
third order derivatives. Then:

∀p ≥ 1, ∃c ∈ R∗+,∀l ∈ N∗, E
[∣∣∣Z l

GS−NV

∣∣∣2p] ≤ c

22pl
.



Strong coupling with order one between successive levels

Considering:

Z l
NV =

1

4

(
f
(
X̃NV ,2l ,η
T

)
+ f

(
X̃NV ,2l ,−η
T

)
+ f

(
XNV ,2l ,η
T

)
+ f

(
XNV ,2l ,−η
T

))
− 1

2

(
f
(
XNV ,2l−1,η
T

)
+ f

(
XNV ,2l−1,−η
T

))
, ∀l ∈ {1, . . . , L} ,

we have a first order of convergence.

Corollary

Assume that f ∈ C2 (Rn,R) and b ∈ C2 (Rn,Rn) with bounded first and
second order derivatives, and, ∀j ∈ {1, . . . , d} , σj ∈ C3 (Rn,Rn) with
bounded first and second order derivatives and with polynomially growing
third order derivatives. Then:

∀p ≥ 1,∃c ∈ R∗+, ∀l ∈ N∗, E
[∣∣∣Z l

NV

∣∣∣2p] ≤ c

22pl
.



Derived MLMC estimators

Ŷ GS
MLMC is the MLMC estimator with the Giles-Szpruch scheme:

Ŷ GS
MLMC =

L∗∑
l=0

1

M∗l

M∗
l∑

k=1

Z l ,k
GS

where Z 0
GS = f

(
XGS ,1
T

)
.

Ŷ NV
MLMC is the MLMC estimator with the Ninomiya-Victoir scheme:

Ŷ NV
MLMC =

L∗∑
l=0

1

M∗l

M∗
l∑

k=1

Z l ,k
NV

where Z 0
NV = f

(
XNV ,1,η
T

)
or Z 0

NV = 1
2

(
f
(
XNV ,1,η
T

)
+ f

(
XNV ,1,−η
T

))
.

Ŷ GS−NV
MLMC is the MLMC estimator with the Giles-Szpruch scheme from level 0

to level L∗ − 1, and the coupling between the Ninomiya-Victoir and the
Giles-Szpruch scheme at the last level L∗:

Ŷ GS−NV
MLMC =

L∗−1∑
l=0

1

M∗l

M∗
l∑

k=1

Z l ,k
GS +

1

M∗L∗

M∗
L∗∑

k=1

ZL∗,k
GS−NV .



Derived ML2R estimators

Ŷ GS
ML2R is the ML2R estimator with the Giles-Szpruch scheme:

Ŷ GS
ML2R =

L∗∑
l=0

Wl

M∗l

M∗
l∑

k=1

Z l ,k
GS .

Ŷ NV
ML2R is the ML2R estimator with the Ninomiya-Victoir scheme:

Ŷ NV
ML2R =

L∗∑
l=0

Wl

M∗l

M∗
l∑

k=1

Z l ,k
NV .
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The Clark-Cameron SDE

ClarkCameron SDE {
dX 1

t = µdt + dW 1
t

dX 2 = X 1
t dW

2
t .

Parameters and Payoff

X 1
0 = X 2

0 = 0 and T = 1.
µ = 1.
f (x1, x2) = cos (x2) and f (x1, x2) = (x2)+.

CPU-time ratios

To measure the efficiency of Ŷ GS−NV
MLMC with respect to other estimators, we plot the following

CPU-time ratios:

R =
CPU − time

(
Ŷ
)

CPU − time
(
Ŷ GS−NV
MLMC

) .



Numerical results: f (x1, x2) = cos (x2)
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Ŷ
GS

MLMC

Ŷ
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Numerical results f (x1, x2) = cos (x2)
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Numerical results f (x1, x2) = (x2)+
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The Heston model

The Heston model
dUt = (r − δ − 1

2
Vt)dt +

√
VtdW

1
t

dVt = κ(θ − Vt)dt + σ
√

Vt

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
,

where the asset price S is given by St = exp(Ut) and

θ ∈ R∗+ is the long implied variance, or long run average price
variance; as t tends to infinity, the expected value of Vt tends to θ,

κ ∈ R∗+ is the rate at which Vt reverts to θ,

σ ∈ R∗+ is the volatility of the implied volatility and determines the
variance of Vt ,

r ∈ R the annualized risk-free interest rate, continuously compounded,

δ ∈ R∗+ is the annualized continuous yield dividend,

ρ ∈]− 1, 1[ is the correlation between the two Brownian motion (ie
stock price and implied volatility).



The Heston model

We assume that 2κθ ≥ σ2 to ensure that the zero boundary is not
attainable for the volatility process.

Parameters and Payoff

X0 = 0, V0 = 1 and T = 1.

r = 0.05, κ = 0.5, θ = 0.9, σ = 0.05 and δ = ρ = 0.

f (x , v) = exp (−rT ) (exp (x)− 1)+.

Remark

The Ninomiya-Victoir scheme is well defined when 4κθ ≥ σ2.



Numerical results
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Thank you for your attention!
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