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Stochastic differential equations

- We consider equations of the form

Xt = X0 +
m∑

j=1

∫ t

0
σj (Xs)dW j

s +

∫ t

0
b(Xs)ds, t ∈ [0,T ].

- W is an m-dimensional Wiener process
- σj ,b : Rd → Rd are such that there exists a weak solution.
- The methods in this talk applies to any dimension.
- We only discuss dimension 1.
- The Euler-scheme {Xπ

ti ; i = 0, ...,N + 1} is, given a time partition
π : 0 = t0 < t1... < tN < tN+1 = T ,

Xπ
0 = X0,

Xπ
ti+1

= Xπ
ti + σj (Xπ

ti )(Wti+1 −Wti ) + b(Xti )(ti+1 − ti ), i = 0, ...,N.

- We want E [f (XT )].
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A first unbiased method

- Let X n
T denote an approximation of XT using an Euler method with

uniform time steps of length 2−nT , n ≥ 0.
- We may then write

E [f (XT )] ≈ E
[
f (X n̄

T )
]

= E
[
f (X 0

T )
]

+
n̄∑

n=1

E
[
f (X n

T )− f (X n−1
T )

]
,

- Letting n̄→∞ we will get equality.
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A first unbiased method

- If N is a random variable with distribution pn > 0, n ≥ 0,

E [f (XT )] = E
[
f (X 0

T )
]

+
∞∑

n=1

E
[
f (X n

T )− f (X n−1
T )

]

=
p0E

[
f (X 0

T )
]

p0
+
∞∑

n=1

pn

E
[
f (X n

T )− f (X n−1
T )

]
pn

=
1
p0

E
[
1(N = 0)f (X 0

T )
]

+ E

[
1(N ≥ 1)

f (X N
T )− f (X N−1

T )

pN

]
,
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Variance/Complexity

- The second moment is

E

(1(N ≥ 1)
f (X N

T )− f (X N−1
T )

pN

)2
 =

∞∑
n=1

rn

pn
,

where rn := E
[(

f (X n
T )− f (X n−1

T )
)2
]
.

- Typically rn = O(2−n).
- If we choose pn ∼ 2−nn2, the second moment will be finite.
- But the complexity

∑∞
n=1 2npn =∞

- We can get an unbiased method by doing a infinite order expansion. The
price is high variance or high complexity.

- In Rhee and Glynn (2015) it is shown that by using higher order
approximations, finite variance can be achieved.
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Parametrix method

- Let π : 0 = t0 < t1 < . . . < tN < tN+1 = T and define the following discrete
time process

Xπ
0 is random variable with density ν(x),

Xπ
ti+1

= Xπ
ti + µ(Xπ

ti )(ti+1 − ti ) + σ(Xπ
ti )
√

ti+1 − tiZi+1, i = 0,1, . . . ,N,

Zi , i = 1, ...,N are independent N(0,1) random variables,

θt (x , y) =
1
2

d∑
i,j=1

κi,j
t (x , y)−

d∑
i=1

ρi
t (x , y).

- The parametrix method is then (Bally and Kohatsu-Higa, 2015)

E [f (XT )] =
∞∑

n=0

∫
Sn

E

Φ(Xπ
T )

n−1∏
j=0

θsj+1−sj (X
π
sj
,Xπ

sj+1
)

ds,

Sn = {s = (s1, ..., sn) ∈ Rn|0 < s1 < s2 < . . . < sn < T}.
- θs(x , y) is an explicit function, involving derivatives of b and σ.
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Forward method

- The forward method is

ν(x) = δX0 (x),

Φ(x) = f (x),

µ(x) = b(x),

θt (x , y) =
1
2

[
a′′(y) + 2a′(y)H1

ta(x)(y − x − b(x)t)

+ (a(y)− a(x))H2
ta(x)(y − x − b(x)t)

]
,

− b′(y)− (b(y)− b(x))H1
ta(x)(y − x − b(x)t).

- With the assumptions

a ∈ C2
b (R),

b ∈ C1
b (R),

there exist a,a ∈ R such that 0 < a ≤ a(x) ≤ a,
f ∈ C∞c (R).
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Backward method

- The backward method is

ν(x) = f (x),

Φ(x) = δX0 (x),

µ(x) = −b(x),

θt (x , y) =
1
2

(a(y)− a(x))H2
ta(x)(y − x + b(x)t)

− (b(x)− b(y))H1
ta(x)(y − x + b(x)t).

- With the assumptions

a,b ∈ Cα
b (R),

there exist a,a ∈ R such that 0 < a ≤ a(x) ≤ a,
f ∈ C∞c (R).
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Forward parametrix method

E [f (XT )] =
∞∑

n=0

∫
Sn

E

f (Xπ
T )

n−1∏
j=0

θsj+1−sj (X
π
sj
,Xπ

sj+1
)

ds.

- In writing the time integral as an expectation, we have the freedom to
choose the distribution of the time steps.

- Perhaps the most obvious choice is exponential time steps.
- Let N(t) be a Poisson process with intensity parameter λ > 0 and define

N ≡ N(T ). Let τ1, . . . , τN be the event times of the Poisson-process and
set τ0 = 0, τN+1 = T .

- P(N = n, τ1 ∈ dt1, . . . , τn ∈ dtn) = (λT )n

n! e−λT n!
T n I(0 ≤ t1 ≤ · · · ≤ tn ≤ T ).

-
∑∞

n=0

∫
Sn λ

ne−λT ds = 1 .
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Exponential time sampling

- We rewrite the time integral as an expectation:

E [f (XT )] =
∞∑

n=0

∫
Sn

E

f (Xπ
T )

n−1∏
j=0

θsj+1−sj (X
π
sj
,Xπ

sj+1
)

ds

=
∞∑

n=0

∫
Sn

E

f (Xπ
T )

n−1∏
j=0

θsj+1−sj (X
π
sj
,Xπ

sj+1
)

 1
λne−λT λ

ne−λT ds

= eλT E

[
f (Xπ

T )
N−1∏
i=0

λ−1θτi+1−τi (X
π
τi
,Xπ

τi+1
)

]

- The random variable inside the expectation can be sampled by first
generating the time discretization and then doing the Euler scheme as
usual.
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Variance analysis

Results that can be found for the exponential time sampling are

- If a(x) ≡ a > 0 the variance is finite.
- For the backward method, variance is only finite in dimension 1.
- For general a(x), variance is not finite.

Backward method problem

- Need to evaluate qEuler
T−τi

(Xπ
τi
,X0).

- As the dimension gets higher, it gets less likely that the path hits X0.

Solution

- Change the direction of simulation.
- This will introduce likelihood ratios between the transition densities in the

two directions.
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General a(x)

General a(x) gives infinite variance because for small t

θt (x , y)2qt (x , y) ∼ 1
t
ϕ4āt (y − x).

- Here qt (x , y) is the transition density from x to y and
ϕa(x) = 1

(2π)d/2
√

det a
exp

{
− 1

2 xT a−1x
}
.

- Consider the case N = 1, λ = 1, f (x) ≡ 1,

e2T E
[
θτi (x0,Xπ

τ1
)2] = eT

∫ T

0
E
[
θt (x0,Xπ

t )2]dt

=eT
∫ T

0

∫
θt (x0, y)2qt (x0, y)dydt ∼ eT

∫ T

0

∫
1
t
ϕ4āt (y − x0)dydt
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Importance sampling - Toy example

- A simplified version of our problem is to calculate, using MC methods,∫ 1

0
tρdt = E [Xρ] ,X ∼ U(0,1),

which can be calculated using simulation of n i.i.d. copies of Xρ with
X ∼ U(0,1).

- However, if ρ ∈ (−1,−1/2], the second moment of the random variable
Xρ is

E
[
X 2ρ] =

∫ 1

0
t2ρdt =∞,

and thus our simulation will have an exploding variance.
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Importance sampling - Toy example II

- The solution is to move some of the singularity of tρ from the random
variable to the density.

- That is, let p > 1 and Y be a random variable with density function
t−γ(1− γ), for 0 < t < 1 and − pρ+1

p−1 < γ < 1. We then have∫ 1

0
tρdt =

∫ 1

0

tρ+γ

(1− γ)

(1− γ)

tγ
dt =

1
1− γ

E
[
Y ρ+γ

]
.

And furthermore, the p-moment of the above random variable is always
finite as

1
(1− γ)p E

[
Y p(ρ+γ)

]
=

1
(1− γ)p

∫ 1

0
tp(ρ+γ) (1− γ)

tγ
dt

=
1

(1− γ)p−1(pρ+ (p − 1)γ + 1)
.
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Importance sampling of discretization time points

- We should sample where the integrand is large.
- The problem is that θt is large for small t , but we are not sampling enough

small time steps.
- Instead of using exponential time steps, we use for example, beta,

gamma or weibull distributed time steps.
- All of these have density ∼ t−γ , for small t .
- Thus we sample {ξj ; j ∈ N} i.i.d. beta (or gamma, weibull).

- Set τ0 = 0 , τi ≡
∑i

j=1 ξj , i ≥ 1 and let N := inf{n; τn < T ≤ τn+1}.
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Beta sampling

Proposition

Let {ξj ; j ∈ N} be i.i.d. r.v. with density fξ(x) = (1−γ)
xγ τ̄1−γ , 0 < x < τ̄ , τ̄ > T ,

γ ∈ (0,1). Then, under the usual assumptions the following holds

E [f (XT )] = E

 f (Xπ
T )

pN(τ1, . . . , τN)

N−1∏
j=0

θτj+1−τj (X
π
τj
,Xπ

τj+1
)

 ,
with

pn(s1, . . . , sn) =

(
1−

(
T − sn

τ̄

)1−γ
)(

1− γ
τ̄1−γ

)n n−1∏
i=0

1
(si+1 − si )γ

,n ≥ 0.

If 0 < γ < 1 then the variance is finite.
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Interpretation of time step importance sampling

- The above ξj
d
= τ̄B where B is distributed as Beta(1− γ,1).

- The critical point of the Beta density is that is behaves like x−γ close to 0.
Other distributions that will give similar results are Gamma and Weibull,
and we can get similar results for these.

- Another possibility is to first sample N, from some distribution. Then
sample the time steps from a Dirichlet distribution.

- A large value of γ means that the algorithm will take more, smaller time
steps on average.
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Optimal simulation parameters

- In choosing the sampling distribution of the time steps we introduce
simulation parameters that should be chosen in a good way.

- One needs to consider that the choice of parameters will affect the
complexity of the method.

- If N is the random number of time steps, let the complexity be E [N]
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Optimization problem

- The efficiency of the algorithm is

1
complexity× variance

- Let V (p) denote the variance of a single sample from our simulation
method, where p is the simulation parameter to be chosen optimally.

- The optimization problem is

min
p

E [N] V (p).

- We can find bounds on V (p) and find optimum numerically.
- The main heuristic conclusion is that a non-regular sde requires smaller

time steps.
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Numerical experiments - Choosing simulation
parameters

- We consider
dXt = σ (sin(ωXt ) + 2) dWt ,

- We simulate P(X0 − I < XT < X0 + I), where I is such that the probability
is approximately 0.5

- Our metric is standard deviation for a 1 second run time.
- We use three different parameter sets, σ = ω = 0.2, 0.3 and 0.4.
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Varying γ, when sampling time steps from Beta

0 0.2 0.4 0.6 0.8 1
𝛾

0.1

1

10

100

1000

W
or

k 
×

 V
ar

ia
nc

e

Backward 𝜎=0.2
Backward 𝜎=0.3
Backward 𝜎=0.4
Forward 𝜎=0.2
Forward 𝜎=0.3
Forward 𝜎=0.4

P. Andersson (Uppsala U) Unbiased simulation of sde using parametrix Int. Conf. on MC techniques 22 / 31



Varying τ̄ , when sampling time steps from Beta
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Using optimal simulation parameters and varying
σ = ω
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Numerical experiments - Convergence rate

Now, consider

dXt = k(X0 − Xt )dt + σ
√
|X0 − Xt |1/4 + 1dWt ,

where k = 1.5, X0 = 1, σ = 0.01.

- Simulate P(X0 − I < XT < X0 + I).
- Diffusion not differentiable.
- Drift and diffusion not bounded.
- Parameters chosen so that path is close to non differentiable point.
- Choosing γ large enough should give finite variance.
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Numerical experiments - Convergence rate
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Numerical experiments - Conclusion

- Larger σ gives higer variance and requires smaller time steps.
- The performance gets worse fast as σ increases.
- At least for larger σ, Beta outperforms Exp.
- Choosing γ large enough will give close to optimal convergence rate.
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Sampling the space integral

There are various methods for sampling the space integral to reduce the
variance.

- Use that if f (x) ≡ 1,

1 = E [f (XT )] = E

 1
pN(τ1, . . . , τN)

N−1∏
j=0

θτj+1−τj (X
π
τj
,Xπ

τj+1
)

 ,
which can be used as a control variate.

- Sequential resampling on
∣∣∣θτj+1−τj (X

π
τj
,Xπ

τj+1
)
∣∣∣.

- Analysis of θt (x , y) can suggest importance sampling distributions.

P. Andersson (Uppsala U) Unbiased simulation of sde using parametrix Int. Conf. on MC techniques 28 / 31



Conclusions

- We studied the performance of the parametrix method
- Exponential sampling may work well in certain situations, for example if

the diffusion coeffiecient is constant. In general it may give infinite
variance.

- Choosing a sampling distribution that gives smaller time steps can
produce a method with finite variance and faster convergence.

- When parameters get large, variance increases fast.
- Simulations seem to agree with general heuristics.
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Thanks for listening.
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