Rare event simulation related to financial risks: Efficient estimation and sensitivity analysis

Ankush Agarwal joint work with Stefano De Marco, Emmanuel Gobet, Gang Liu

Centre de Mathématiques Appliquées, Ecole Polytechnique

International Conference on Monte Carlo Techniques, July 5-8 2016

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

	Introduction •000	Our Method 0000000	Sensitivity Analysis 00	Numerical Examples	Conclusion OO
			Motivation		
Compu	te				

 $p = \mathbb{P}(X \in A), \quad \alpha = \mathbb{E}(\phi(X)\mathbf{1}_{X \in A}), \quad \text{when } p < 10^{-4}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ 三日 のへで

	Introduction ●○○○	Our Method 0000000	Sensitivity Analysis	Numerical Examples	Conclusion		
			Motivation				
Compute							

 $p = \mathbb{P}(X \in A), \quad \alpha = \mathbb{E}(\phi(X)\mathbf{1}_{X \in A}), \quad \text{when } p < 10^{-4}$

Goal: Compute p

▲□▶▲□▶▲□▶▲□▶ ▲□▲ 釣A@

Introduction •000	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion OO
		Motivation		

 $p = \mathbb{P}(X \in A), \quad \alpha = \mathbb{E}(\varphi(X)\mathbf{1}_{X \in A}), \quad \text{when } p < 10^{-4}$

Goal: Compute p

 \boxtimes Generate $(X_i)_{1 \leqslant i \leqslant N}$ i.i.d. copies of X & set $\overline{S}_N = (N)^{-1} \sum_{i=1}^N \mathbf{1}_{X_i \in A}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

Introduction •000	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion OO
		Motivation		

 $p = \mathbb{P}(X \in A), \quad \alpha = \mathbb{E}(\varphi(X)\mathbf{1}_{X \in A}), \quad \text{when } p < 10^{-4}$

Goal: Compute p

 $\ensuremath{\boxtimes}$ By the Central Limit Theorem (CLT)

$$\sqrt{N}(\overline{S}_N - \mathbb{P}(X \in A)) \to \mathbb{N}(0, p(1-p))$$

Introduction •000	Our Method 0000000	Sensitivity Analysis	Numerical Examples	Conclusion OO
		Motivation		

 $p = \mathbb{P}(X \in A), \quad \alpha = \mathbb{E}(\varphi(X)\mathbf{1}_{X \in A}), \quad \text{when } p < 10^{-4}$

Goal: Compute p

 \boxtimes Generate $(X_i)_{1 \leq i \leq N}$ i.i.d. copies of X & set $\overline{S}_N = (N)^{-1} \sum_{i=1}^N \mathbf{1}_{X_i \in A}$

 $\ensuremath{\boxtimes}$ By the Central Limit Theorem (CLT)

$$\sqrt{N}(\overline{S}_N - \mathbb{P}(X \in A)) \to \mathcal{N}(0, p(1-p))$$

95% confidence interval

$$\left(\overline{S}_N - 1.96\sqrt{\frac{p(1-p)}{N}}, \overline{S}_N + 1.96\sqrt{\frac{p(1-p)}{N}}\right)$$

Introduction •000	Our Method 0000000	Sensitivity Analysis	Numerical Examples	Conclusion OO
		Motivation		

 $p = \mathbb{P}(X \in A), \quad \alpha = \mathbb{E}(\varphi(X)\mathbf{1}_{X \in A}), \quad \text{when } p < 10^{-4}$

Goal: Compute p

 \square Generate $(X_i)_{1 \leq i \leq N}$ i.i.d. copies of X & set $\overline{S}_N = (N)^{-1} \sum_{i=1}^N \mathbf{1}_{X_i \in A}$

 $\ensuremath{\boxtimes}$ By the Central Limit Theorem (CLT)

$$\sqrt{N}(\overline{S}_N - \mathbb{P}(X \in A)) \to \mathcal{N}(0, p(1-p))$$

95% confidence interval

$$\left(\overline{S}_N - 1.96\sqrt{\frac{p(1-p)}{N}}, \overline{S}_N + 1.96\sqrt{\frac{p(1-p)}{N}}\right)$$

 \checkmark Relative error: $\sqrt{p(1-p)}/(p\sqrt{N}) \approx (\sqrt{Np})^{-1}$ is large for small p

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	0000000	00	000	00

Examples

☑ Estimation of default probabilities in pricing of Credit Default Spreads:

$$\mathbb{P}\left(\sum_{i=1}^{N_{0}} \mathbf{1}_{\{inf\left\{t:X_{i}(t) \leqslant B\right\} \leqslant T\}} > L\right), \quad 0 \leqslant L \leqslant N_{0} - 1$$

☑ Pricing Deep out-of-the-money options:

$$\mathbb{E}\left((K-N_0^{-1}\sum_{i=1}^{N_0}X_i(T))\mathbf{1}_{N_0^{-1}\sum_{i=1}^{N_0}X_i(T) 0$$

	Our Method 0000000	Sensitivity Analysis	Numerical Examples	Conclusion OO
		Motivation		
Sensitivity				

 $\Delta_{\boldsymbol{\theta}} = \partial \boldsymbol{\alpha} / \partial \boldsymbol{\theta} = \partial \mathbb{E}(\boldsymbol{\phi}(\boldsymbol{X}^{\boldsymbol{\theta}}) \boldsymbol{1}_{\boldsymbol{X}^{\boldsymbol{\theta}} \in \boldsymbol{\mathcal{A}}}) / \partial \boldsymbol{\theta}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ 三日 のへで

Intro	oduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
000	• O	0000000	00		00
		N	lotivation		

 $\Delta_{\boldsymbol{\theta}} = \partial \alpha / \partial \boldsymbol{\theta} = \partial \mathbb{E}(\boldsymbol{\phi}(\boldsymbol{X}^{\boldsymbol{\theta}}) \boldsymbol{1}_{\boldsymbol{X}^{\boldsymbol{\theta}} \in \boldsymbol{\mathcal{A}}}) / \partial \boldsymbol{\theta}$

\square Generate $(X_i^{\theta})_{1 \leq i \leq N}$ i.i.d. copies of X^{θ}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Introduction 0000	Our Method 0000000	Sensitivity Analysis	Numerical Examples	Conclusion OO
		Motivation		

 $\Delta_{\boldsymbol{\theta}} = \partial \alpha / \partial \boldsymbol{\theta} = \partial \mathbb{E}(\boldsymbol{\phi}(\boldsymbol{X}^{\boldsymbol{\theta}}) \boldsymbol{1}_{\boldsymbol{X}^{\boldsymbol{\theta}} \in \boldsymbol{\mathcal{A}}}) / \partial \boldsymbol{\theta}$

- \square Generate $(X_i^{\theta})_{1 \leq i \leq N}$ i.i.d. copies of X^{θ}
- \square Generate another set of *N* i.i.d. copies of $X^{\theta+\Delta\theta}$ where $\theta+\Delta\theta$ is perturbed value of the parameter

Introduction OOOO	Our Method 0000000	Sensitivity Analysis	Numerical Examples	Conclusion OO
		Motivation		

$$\Delta_{\theta} = \partial \alpha / \partial \theta = \partial \mathbb{E}(\varphi(X^{\theta}) \mathbf{1}_{X^{\theta} \in \mathcal{A}}) / \partial \theta$$

$$\square$$
 Generate $(X_i^{\theta})_{1 \leq i \leq N}$ i.i.d. copies of X^{θ}

- \square Generate another set of *N* i.i.d. copies of $X^{\theta+\Delta\theta}$ where $\theta+\Delta\theta$ is perturbed value of the parameter
- \square Use finite differences to estimate the sensitivity

$$\frac{1}{\Delta\theta} \left(N^{-1} \sum_{i=1}^{N} \varphi(X_{i}^{\theta+\Delta\theta}) \mathbf{1}_{X^{\theta+\Delta\theta} \in A} - N^{-1} \sum_{i=1}^{N} \varphi(X_{i}^{\theta}) \mathbf{1}_{X^{\theta} \in A} \right)$$

Introduction OOOO	Our Method 0000000	Sensitivity Analysis	Numerical Examples	Conclusion OO
		Motivation		

$$\Delta_{\theta} = \partial \alpha / \partial \theta = \partial \mathbb{E}(\varphi(X^{\theta}) \mathbf{1}_{X^{\theta} \in \mathcal{A}}) / \partial \theta$$

$$\square$$
 Generate $(X_i^{\theta})_{1 \leq i \leq N}$ i.i.d. copies of X^{θ}

- \square Generate another set of *N* i.i.d. copies of $X^{\theta+\Delta\theta}$ where $\theta+\Delta\theta$ is perturbed value of the parameter
- \checkmark Use finite differences to estimate the sensitivity

$$\frac{1}{\Delta\theta} \left(N^{-1} \sum_{i=1}^{N} \varphi(X_i^{\theta + \Delta\theta}) \mathbf{1}_{X^{\theta + \Delta\theta} \in A} - N^{-1} \sum_{i=1}^{N} \varphi(X_i^{\theta}) \mathbf{1}_{X^{\theta} \in A} \right)$$

 \checkmark Unstable estimates due to the presence of indicator function

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
000●	0000000	00	000	00

\square Reformulate *p* using conditional probabilities

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	0000000	00	000	00
6				

 \square Reformulate *p* using conditional probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

0000	0000000	00	000	00
Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion

 \square Reformulate *p* using conditional probabilities

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
000●	0000000	00	000	00
		<u> </u>		

 \square Reformulate *p* using conditional probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ·				
000●	0000000	00	000	00
Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion

 \square Reformulate *p* using conditional probabilities

 \square Reformulate *p* using conditional probabilities

 ${oxdot}$ Define a series of nested subsets on probability space §

$$\mathbf{S} := A_0 \supset \cdots \supset A_k \supset \cdots \supset A_n := A$$
$$\mathbb{P}(X \in A) = \prod_{k=1}^n \mathbb{P}(X \in A_k | X \in A_{k-1})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

 \square Reformulate *p* using conditional probabilities

 ${oxdot}$ Define a series of nested subsets on probability space §

$$\mathbb{S} := A_0 \supset \cdots \supset A_k \supset \cdots \supset A_n := A$$
$$\mathbb{P}(X \in A) = \prod_{k=1}^n \mathbb{P}(X \in A_k | X \in A_{k-1})$$

 \square How to estimate $\mathbb{P}(X \in A_k | X \in A_{k-1})$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

 \square Reformulate *p* using conditional probabilities

 ${\ensuremath{\boxtimes}}$ Define a series of nested subsets on probability space §

$$S := A_0 \supset \cdots \supset A_k \supset \cdots \supset A_n := A$$
$$\mathbb{P}(X \in A) = \prod_{k=1}^n \mathbb{P}(X \in A_k | X \in A_{k-1})$$

 \square How to estimate $\mathbb{P}(X \in A_k | X \in A_{k-1})$?

Z Existing methods: splitting/restart, Interacting Particles System (IPS)

Our Method Sensitivity Analysis OOOOOOO OO

Introduction

Numerical Examples

Conclusion 00

Shaking Transformation

New method (Parallel-One-Path) for rare event simulation using the ergodicity of Markov chain [Gobet and Liu, 2015]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sensitivity Analysis 00

Our Method

•••••

Introduction

Numerical Examples

Conclusion 00

Shaking Transformation

- ☑ New method (Parallel-One-Path) for rare event simulation using the ergodicity of Markov chain [Gobet and Liu, 2015]
- ${\ensuremath{\boxtimes}}$ Based on the idea of Shaking Transformation for random objects

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Shaking Transformation

New method (Parallel-One-Path) for rare event simulation using the ergodicity of Markov chain [Gobet and Liu, 2015]

 $\ensuremath{\boxtimes}$ Based on the idea of Shaking Transformation for random objects Given $X, \mathfrak{K}(\cdot)$ is a reversible shaking transformation for X if:

$$(X, \mathcal{K}(X)) \stackrel{\mathrm{d}}{=} (\mathcal{K}(X), X)$$

Also, $\mathcal{K}(X) := \mathcal{K}(X, Y)$ where K is deterministic and Y is independent of X

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Shaking Transformation

New method (Parallel-One-Path) for rare event simulation using the ergodicity of Markov chain [Gobet and Liu, 2015]

 $\ensuremath{\boxtimes}$ Based on the idea of Shaking Transformation for random objects Given $X, \mathcal{K}(\cdot)$ is a reversible shaking transformation for X if:

$$(X, \mathcal{K}(X)) \stackrel{\mathrm{d}}{=} (\mathcal{K}(X), X)$$

Also, $\mathcal{K}(X) := \mathcal{K}(X, Y)$ where \mathcal{K} is deterministic and Y is independent of X

 \square If X is a standard Brownian motion (SBM), X' independent SBM

$$K(X, X') = \left(\int_0^t \rho_s dX_s + \int_0^t \sqrt{1 - \rho_s^2} dX'_s\right)_{0 \leqslant t \leqslant T}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

Shaking Transformation

New method (Parallel-One-Path) for rare event simulation using the ergodicity of Markov chain [Gobet and Liu, 2015]

 $\ensuremath{\boxtimes}$ Based on the idea of Shaking Transformation for random objects Given $X, \mathcal{K}(\cdot)$ is a reversible shaking transformation for X if:

$$(X, \mathcal{K}(X)) \stackrel{\mathrm{d}}{=} (\mathcal{K}(X), X)$$

Also, $\mathcal{K}(X) := \mathcal{K}(X, Y)$ where \mathcal{K} is deterministic and Y is independent of X

 $\ensuremath{\boxtimes}$ If X is a standard Brownian motion (SBM), X' independent SBM

$$\mathcal{K}(X,X') = \left(\int_0^t \rho_s dX_s + \int_0^t \sqrt{1 - \rho_s^2} dX'_s\right)_{0 \leqslant t \leqslant T}$$

 $\[\square \]$ If X is a Poisson Process

$$K(X, [Bin(X, 1-p), Poisson(p\lambda)]) = Bin(X, 1-p) + Poisson(p\lambda)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

 Introduction
 Our Method
 Sensitivity Analysis
 Numerical Examples
 Conclusion

 0000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Shaking Normal Random Variable

 $\mathcal{K}(X, \mathcal{N}(0, 1)) = \rho X + \sqrt{1 - \rho^2} \mathcal{N}(0, 1), -1 \leqslant \rho \leqslant 1$

Figure: Plots of $(X, \mathcal{K}(X))$ with $\rho = 0.9$ and $\rho = 0.5$

<□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□> ▲□>

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	000000	00	000	00

Shaking with Rejection

Let $k \in \{0, 1, \cdots, n-1\}$, define

$$\mathfrak{M}_{k}^{\mathfrak{K}}(X) := \begin{cases} \mathfrak{K}(X) & \text{ if } \mathfrak{K}(X) \in A_{k} \\ X & \text{ if } \mathfrak{K}(X) \notin A_{k}. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	000000	00	000	00

Shaking with Rejection

Let $k \in \{0, 1, \cdots, n-1\}$, define

$$\mathfrak{M}_{k}^{\mathcal{K}}(X) := \begin{cases} \mathfrak{K}(X) & \text{ if } \mathfrak{K}(X) \in A_{k} \\ X & \text{ if } \mathfrak{K}(X) \notin A_{k}. \end{cases}$$

Proposition (Conditional Invariance (Gobet and Liu, '15))

Let $k \in \{0, 1, \dots, n-1\}$. The distribution of X conditionally on $\{X \in A_k\}$ is invariant w.r.t. the random transformation $\mathfrak{M}_k^{\mathcal{K}}$: i.e. for any bounded (random) measurable $\varphi : \mathbb{S} \to \mathbb{R}$, we have

$$\mathbb{E}\big(\varphi(\mathfrak{M}_{k}^{\mathcal{K}}(X))|X\in A_{k}\big)=\mathbb{E}\big(\varphi(X)|X\in A_{k}\big)$$

< 日 > < 同 > < 回 > < 回 > < 回 < 回 > < 回 < の

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	000000	00	000	00

Shaking with Rejection

Let $k \in \{0, 1, \cdots, n-1\}$, define

$$\mathfrak{M}_{k}^{\mathcal{K}}(X) := \begin{cases} \mathfrak{K}(X) & \text{ if } \mathfrak{K}(X) \in A_{k} \\ X & \text{ if } \mathfrak{K}(X) \notin A_{k}. \end{cases}$$

Proposition (Conditional Invariance (Gobet and Liu, '15))

Let $k \in \{0, 1, \dots, n-1\}$. The distribution of X conditionally on $\{X \in A_k\}$ is invariant w.r.t. the random transformation $\mathfrak{M}_k^{\mathcal{K}}$: i.e. for any bounded (random) measurable $\varphi : \mathfrak{S} \to \mathbb{R}$, we have

$$\mathbb{E}\big(\varphi(\mathcal{M}_{k}^{\mathcal{K}}(X))|X\in A_{k}\big)=\mathbb{E}\big(\varphi(X)|X\in A_{k}\big)$$

Proof.

$$\begin{split} \mathbb{E}\big(\varphi(\mathbb{M}_{k}^{\mathcal{K}}(X))\mathbf{1}_{X\in A_{k}}\big) &= \mathbb{E}\big(\varphi(K(X))\mathbf{1}_{X\in A_{k}}\mathbf{1}_{K(X)\in A_{k}}\big) + \mathbb{E}\big(\varphi(X)\mathbf{1}_{X\in A_{k}}\mathbf{1}_{K(X)\notin A_{k}}\big) \\ &= \mathbb{E}\big(\varphi(X)\mathbf{1}_{X\in A_{k}}\mathbf{1}_{K(X)\in A_{k}}\big) + \mathbb{E}\big(\varphi(X)\mathbf{1}_{X\in A_{k}}\mathbf{1}_{K(X)\notin A_{k}}\big) \end{split}$$

Introduction 0000 Our Method

Sensitivity Analysis

Numerical Examples

Conclusion 00

Parallel-One-Path (POP) Method

▲□▶▲□▶▲目▶▲目▶ ④④◎

Our Method

Introduction

Sensitivity Analysis

Numerical Examples

Conclusion 00

Parallel-One-Path (POP) Method

\square Recall: How to estimate $\mathbb{P}(X \in A_{k+1} | X \in A_k)$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our Method	Sensitivity Analysis
0000000	00

Parallel-One-Path (POP) Method

- \square Recall: How to estimate $\mathbb{P}(X \in A_{k+1} | X \in A_k)$?
- ☑ Key idea:

Introduction

- \star Use $\mathfrak{M}_k^{\mathcal{K}}$ (shaking with rejection) to create Markov chains directly in a path space
- ★ Conditional invariance of $\mathcal{M}_k^{\mathcal{K}}$ with respect to $X|X \in A_k$ enables to use the ergodic property of Markov chain

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Our Method Sensitivity Analysis

Numerical Examples

Conclusion 00

Parallel-One-Path (POP) Method

- \square Recall: How to estimate $\mathbb{P}(X \in A_{k+1} | X \in A_k)$?
- ☑ Key idea:

Introduction

- \star Use $\mathfrak{M}^{\mathcal{K}}_k$ (shaking with rejection) to create Markov chains directly in a path space
- ★ Conditional invariance of $\mathcal{M}_k^{\mathcal{K}}$ with respect to $X|X \in A_k$ enables to use the ergodic property of Markov chain

Birkhoff's Ergodic Theorem:

For ergodic Markov chain $(X_i)_{i \ge 0}$ with a unique invariant distribution π and measurable f:

$$\frac{1}{N}\sum_{i=0}^{N-1}f(X_i) \underset{N \to +\infty}{\longrightarrow} \int f \mathrm{d}\pi \qquad a.s.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Our Method Sensitivity Analysis

Numerical Examples

Conclusion 00

Parallel-One-Path (POP) Method

- \square Recall: How to estimate $\mathbb{P}(X \in A_{k+1} | X \in A_k)$?
- ☑ Key idea:

Introduction

- \star Use $\mathfrak{M}^{\mathcal{K}}_k$ (shaking with rejection) to create Markov chains directly in a path space
- ★ Conditional invariance of $\mathfrak{M}_k^{\mathfrak{K}}$ with respect to $X|X \in A_k$ enables to use the ergodic property of Markov chain

Birkhoff's Ergodic Theorem:

For ergodic Markov chain $(X_i)_{i \ge 0}$ with a unique invariant distribution π and measurable f:

$$\frac{1}{N}\sum_{i=0}^{N-1}f(X_i) \underset{N \to +\infty}{\longrightarrow} \int f \mathrm{d}\pi \qquad \text{a.s.}$$

Given an initial position $X_{k,0} \in A_k$, define $X_{k,i} := \mathcal{M}_k^{\mathcal{K}}(X_{k,i-1})$

$$\mathbb{E}(\varphi(X)|X \in A_k) \approx \frac{1}{N} \sum_{i=0}^{N-1} \varphi(X_{k,i})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

Parallel-One-Path (POP) Method

- \square Recall: How to estimate $\mathbb{P}(X \in A_{k+1} | X \in A_k)$?
- ☑ Key idea:

Introduction

- \star Use $\mathfrak{M}^{\mathcal{K}}_k$ (shaking with rejection) to create Markov chains directly in a path space
- ★ Conditional invariance of $\mathfrak{M}_k^{\mathfrak{K}}$ with respect to $X|X \in A_k$ enables to use the ergodic property of Markov chain

Birkhoff's Ergodic Theorem:

For ergodic Markov chain $(X_i)_{i \ge 0}$ with a unique invariant distribution π and measurable f:

$$\frac{1}{N}\sum_{i=0}^{N-1}f(X_i)\underset{N\to+\infty}{\longrightarrow}\int f\mathrm{d}\pi\qquad a.s.$$

Given an initial position $X_{k,0} \in A_k$, define $X_{k,i} := \mathcal{M}_k^{\mathcal{K}}(X_{k,i-1})$

$$\mathbb{E}(\varphi(X)|X \in A_k) \approx \frac{1}{N} \sum_{i=0}^{N-1} \varphi(X_{k,i})$$

Estimators for each $P(X \in A_{k+1} | X \in A_k)$ can be made independent!
Introduction
 Our Method
 Sensitivity Analysis
 Numerical Examples

 0000
 0000
 00
 000

Adaptive POP Method

 \square Number of levels in POP depend on order of p

・ロト (個) (目) (日) (日) (日) (日)

Conclusion

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	0000000	00	000	00

- $\ensuremath{\boxtimes}$ Number of levels in POP depend on order of p
- arnothing Create levels adaptively for fixed conditional probability $qpprox 10^{-1}$

troduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	0000000	00	000	00

- $\ensuremath{\boxtimes}$ Number of levels in POP depend on order of p
- ${\it {ec D}}$ Create levels adaptively for fixed conditional probability $q\approx 10^{-1}$
- $\ensuremath{{\ensuremath{\square}}}$ Shaking with rejection for each level depends on the previous levels

- $\ensuremath{\boxtimes}$ Number of levels in POP depend on order of p
- ${\it {ec D}}$ Create levels adaptively for fixed conditional probability $q\approx 10^{-1}$
- $\ensuremath{\ensuremath{\boxtimes}}$ Shaking with rejection for each level depends on the previous levels
- \square True value $p := r(Q_q^{L^*})q^{L^*}$, estimator given as $\hat{p}_N := \hat{r}_N(\hat{Q}_{N,q}^{L_N})q^{L_N}$ where Q_q' and $\hat{Q}_{N,q}'$ are the quantile levels and their estimators

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	0000000	00	000	00

- $\ensuremath{\boxtimes}$ Number of levels in POP depend on order of p
- ${\it {ec D}}$ Create levels adaptively for fixed conditional probability $q\approx 10^{-1}$
- $\ensuremath{\ensuremath{\boxtimes}}$ Shaking with rejection for each level depends on the previous levels
- \square True value $p := r(Q_q^{L^*})q^{L^*}$, estimator given as $\hat{p}_N := \hat{r}_N(\hat{Q}_{N,q}^{L_N})q^{L_N}$ where Q_q' and $\hat{Q}_{N,q}'$ are the quantile levels and their estimators
- $\ensuremath{\boxtimes}$ Use conditioning arguments and locally uniform probabilistic error bounds on quantile estimators

<ロト < 同ト < ヨト < ヨト ヨヨ の

 Introduction
 Our Method
 Sensitivity Analysis
 Numerical Examples
 Conclusion

 0000
 0000
 00
 000
 00
 00

Adaptive POP Method

- $\ensuremath{\boxtimes}$ Number of levels in POP depend on order of p
- ${\it {ec D}}$ Create levels adaptively for fixed conditional probability $q\approx 10^{-1}$
- $\ensuremath{\ensuremath{\boxtimes}}$ Shaking with rejection for each level depends on the previous levels
- \square True value $p := r(Q_q^{L^*})q^{L^*}$, estimator given as $\hat{p}_N := \hat{r}_N(\hat{Q}_{N,q}^{L_N})q^{L_N}$ where Q_q' and $\hat{Q}_{N,q}'$ are the quantile levels and their estimators
- $\ensuremath{\boxtimes}$ Use conditioning arguments and locally uniform probabilistic error bounds on quantile estimators

Theorem

Under some assumptions on conditional quantile estimator error bounds, for $N \rightarrow \infty$,

$$\hat{p}_N
ightarrow p$$
 a.s.

▲□▶▲□▶▲目▶▲目▶ ④④◎

$$A_0 =$$

▲□▶▲□▶▲目▶▲目▶ ④④◎

0

≪-----•

 $A_0 =$

▲□▶▲□▶▲目▶▲目▶ ④④◎

International Conference on Monte Carlo Techniques

 $A_0 =$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ 三 > ◆ ○ ◆ ○ ◆ ○ ◆

$$\frac{1}{0000} \underbrace{\text{Our Method}}_{00} \underbrace{\text{Sensitivity Analysis}}_{00} \underbrace{\text{Numerical Examples}}_{000} \underbrace{\text{Conclusion}}_{00}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Convergence of Adaptive POP Method

 $\ensuremath{\boxtimes}$ For any $l \in \{1, \dots, L^* + 1\}$ and any $\varepsilon > 0$, we have

$$\mathbb{P}\left(|\hat{Q}'_{N,q} - Q'_{q}| > \varepsilon\right) < b(q, N, \varepsilon)$$

such that locally uniformly $\sum_{N} b(q, N, \varepsilon) < \infty$ which allows to show

 $L_N
ightarrow L^*$ a.s. as $N
ightarrow \infty$

Convergence of Adaptive POP Method

 $\ensuremath{\boxtimes}$ For any $l \in \{1, \dots, L^* + 1\}$ and any $\varepsilon > 0$, we have

$$\mathbb{P}\left(|\hat{Q}_{N,q}^{\prime}-Q_{q}^{\prime}|>\varepsilon\right) < b(q, N, \varepsilon)$$

such that locally uniformly $\sum_N b(q, N, \varepsilon) < \infty$ which allows to show $L_N \to L^*$ a.s. as $N \to \infty$

 \checkmark For any $l \in \{L^* - 1, L^*\}$ and any $\varepsilon > 0$, we have

$$\mathbb{P}\left(|\hat{r}_N(Q'_q) - r(Q'_q)| > \varepsilon\right) < c(q, N, \varepsilon)$$

such that locally uniformly $\sum_{N} c(q, N, \varepsilon) < \infty$ which allows to show

$$\hat{r}_{\mathcal{N}}(\hat{Q}_{\mathcal{N},q}^{\mathcal{L}_{\mathcal{N}}})
ightarrow r(Q_{q}^{\mathcal{L}^{*}})$$
 a.s. as $\mathcal{N}
ightarrow \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��

 ${\ensuremath{\boxtimes}}$ Need to be careful in the tails. For instance, if ${\ensuremath{G_\sigma}} \stackrel{\rm d}{=} \ensuremath{\mathbb{N}}(0,\sigma^2)$ then

$$\lim_{x \to +\infty} \frac{\mathbb{P}(G_{\sigma} \ge x)}{\mathbb{P}(G_{\sigma'} \ge x)} = \begin{cases} 0 & \text{if } 0 < \sigma < \sigma' \\ +\infty & \text{if } \sigma > \sigma' > 0 \end{cases},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��

 \checkmark Need to be careful in the tails. For instance, if $G_{\sigma} \stackrel{d}{=} \mathcal{N}(0, \sigma^2)$ then

$$\lim_{x \to +\infty} \frac{\mathbb{P}(G_{\sigma} \ge x)}{\mathbb{P}(G_{\sigma'} \ge x)} = \begin{cases} 0 & \text{if } 0 < \sigma < \sigma' \\ +\infty & \text{if } \sigma > \sigma' > 0 \end{cases},$$

Embed the computation of rare event statistic in the isonormal Gaussian process framework

 $\ensuremath{\boxtimes}$ Need to be careful in the tails. For instance, if $G_{\sigma} \stackrel{\mathrm{d}}{=} \mathcal{N}(0, \sigma^2)$ then

$$\lim_{x \to +\infty} \frac{\mathbb{P}(G_{\sigma} \ge x)}{\mathbb{P}(G_{\sigma'} \ge x)} = \begin{cases} 0 & \text{if } 0 < \sigma < \sigma' \\ +\infty & \text{if } \sigma > \sigma' > 0 \end{cases},$$

- Embed the computation of rare event statistic in the isonormal Gaussian process framework
- $\label{eq:assume} \ensuremath{\ensuremath{\square}}\xspace{-1mu} Assume \ensuremath{(IBP):} \vartheta_\theta \mathbb{E}\left[\Phi^\theta \mathbf{1}_{X^\theta \in A}\right] = \mathbb{E}\left[\mathbb{I}(X^\theta, \Phi^\theta) \mathbf{1}_{X^\theta \in A}\right]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

 ${\ensuremath{\boxtimes}}$ Need to be careful in the tails. For instance, if ${\ensuremath{G_\sigma}} \stackrel{\rm d}{=} \ensuremath{\mathbb{N}}(0,\sigma^2)$ then

$$\lim_{x \to +\infty} \frac{\mathbb{P}(G_{\sigma} \ge x)}{\mathbb{P}(G_{\sigma'} \ge x)} = \begin{cases} 0 & \text{if } 0 < \sigma < \sigma' \\ +\infty & \text{if } \sigma > \sigma' > 0 \end{cases},$$

- Embed the computation of rare event statistic in the isonormal Gaussian process framework
- $\label{eq:assume} \ensuremath{\ensuremath{\square}}\xspace{-1mu} Assume \left(\textbf{IBP} \right) \!\!: \vartheta_{\theta} \mathbb{E} \left[\Phi^{\theta} \mathbf{1}_{X^{\theta} \in A} \right] = \mathbb{E} \left[\mathbb{I}(X^{\theta}, \Phi^{\theta}) \mathbf{1}_{X^{\theta} \in A} \right]$
- ${\ensuremath{\boxtimes}}$ Makes more sense to calculate relative sensitivity in rare event settings

$$\frac{\partial_{\theta} \mathbb{E} \left[\Phi^{\theta} \mathbf{1}_{X^{\theta} \in A} \right]}{\mathbb{E} \left[\Phi^{\theta} \mathbf{1}_{X^{\theta} \in A} \right]} = \frac{\mathbb{E} \left[\mathbb{I}(X^{\theta}, \Phi^{\theta}) | X^{\theta} \in A \right]}{\mathbb{E} \left[\Phi^{\theta} | X^{\theta} \in A \right]}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

 ${\ensuremath{\boxtimes}}$ Need to be careful in the tails. For instance, if ${\ensuremath{G_\sigma}} \stackrel{\rm d}{=} \ensuremath{\mathbb{N}}(0,\sigma^2)$ then

$$\lim_{x \to +\infty} \frac{\mathbb{P}(G_{\sigma} \ge x)}{\mathbb{P}(G_{\sigma'} \ge x)} = \begin{cases} 0 & \text{if } 0 < \sigma < \sigma' \\ +\infty & \text{if } \sigma > \sigma' > 0 \end{cases},$$

- Embed the computation of rare event statistic in the isonormal Gaussian process framework
- $\label{eq:assume} \ensuremath{\ensuremath{\square}}\xspace{-1mu} Assume \left(\textbf{IBP} \right) \!\!: \vartheta_{\theta} \mathbb{E} \left[\Phi^{\theta} \mathbf{1}_{X^{\theta} \in A} \right] = \mathbb{E} \left[\mathbb{I}(X^{\theta}, \Phi^{\theta}) \mathbf{1}_{X^{\theta} \in A} \right]$
- ${\ensuremath{\boxtimes}}$ Makes more sense to calculate relative sensitivity in rare event settings

$$\frac{\partial_{\theta} \mathbb{E} \left[\Phi^{\theta} \mathbf{1}_{X^{\theta} \in A} \right]}{\mathbb{E} \left[\Phi^{\theta} \mathbf{1}_{X^{\theta} \in A} \right]} = \frac{\mathbb{E} \left[\mathbb{I}(X^{\theta}, \Phi^{\theta}) | X^{\theta} \in A \right]}{\mathbb{E} \left[\Phi^{\theta} | X^{\theta} \in A \right]}$$

 ${\ensuremath{\boxtimes}}$ Only need to create Markov chain at the last level

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

Sketch of proof for Integration by Parts (IBP) result in \mathbb{R}^d :

 ${\ensuremath{\boxtimes}}$ Procedure inspired by the work of Fournié et al. '99 which helps to provide formula for $\Im(X^\theta,\Phi^\theta)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のへで

Sketch of proof for Integration by Parts (IBP) result in \mathbb{R}^d :

- ${\ensuremath{\boxtimes}}$ Procedure inspired by the work of Fournié et al. '99 which helps to provide formula for $\Im(X^\theta,\Phi^\theta)$
- ${\ensuremath{\boxtimes}}$ Careful analysis to properly mollify $1_{X^\theta\in {\ensuremath{\mathcal{A}}}}$

Sketch of proof for Integration by Parts (IBP) result in \mathbb{R}^d :

- ${\ensuremath{\boxtimes}}$ Procedure inspired by the work of Fournié et al. '99 which helps to provide formula for $\Im(X^\theta,\Phi^\theta)$
- $\ensuremath{\boxtimes}$ Careful analysis to properly mollify $\mathbf{1}_{X^\theta\in\mathcal{A}}$
- ${\ensuremath{\boxtimes}}$ Choose a finite measure $ar{\mu}({\rm d} x)=(1+|x|)^{-q}{\rm d} z$ on ${\ensuremath{\mathbb{R}}}^d$ with q>d

 $\square \mathbf{1}_{X^{\theta} \in A} \in L^{4}(\bar{\mu})$ which gives a limiting sequence of smooth functions with compact support $(\xi_{k})_{k \ge 1}$

$$\begin{split} u(\theta) &:= \mathbb{E}[\Phi^{\theta} \mathbf{1}_{X^{\theta} \in A}], \qquad \qquad u_{k}(\theta) := \mathbb{E}[\Phi^{\theta} \xi_{k}(X^{\theta})], \\ v(\theta) &:= \mathbb{E}[\mathfrak{I}(X^{\theta}, \Phi^{\theta}) \mathbf{1}_{X^{\theta} \in A}], \qquad \qquad v_{k}(\theta) := \mathbb{E}[\mathfrak{I}(X^{\theta}, \Phi^{\theta}) \xi_{k}(X^{\theta})], \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Sketch of proof for Integration by Parts (IBP) result in \mathbb{R}^d :

- ${\ensuremath{\boxtimes}}$ Procedure inspired by the work of Fournié et al. '99 which helps to provide formula for $\Im(X^\theta,\Phi^\theta)$
- ${\ensuremath{\boxtimes}}$ Careful analysis to properly mollify $1_{X^\theta\in {\ensuremath{\mathcal{A}}}}$
- ${\ensuremath{\boxtimes}}$ Choose a finite measure $ar{\mu}({\rm d} x)=(1+|x|)^{-q}{\rm d} z$ on ${\ensuremath{\mathbb{R}}}^d$ with q>d

 $\square \mathbf{1}_{X^{\theta} \in A} \in L^{4}(\bar{\mu})$ which gives a limiting sequence of smooth functions with compact support $(\xi_{k})_{k \ge 1}$

$$\begin{split} u(\theta) &:= \mathbb{E}[\Phi^{\theta} \mathbf{1}_{X^{\theta} \in \mathcal{A}}], \qquad \qquad u_{k}(\theta) := \mathbb{E}[\Phi^{\theta} \xi_{k}(X^{\theta})], \\ v(\theta) &:= \mathbb{E}[\mathcal{I}(X^{\theta}, \Phi^{\theta}) \mathbf{1}_{X^{\theta} \in \mathcal{A}}], \qquad \qquad v_{k}(\theta) := \mathbb{E}[\mathcal{I}(X^{\theta}, \Phi^{\theta}) \xi_{k}(X^{\theta})], \end{split}$$

Conclude by showing

(i)
$$u'_k(\theta) = v_k(\theta)$$
 (ii) $u_k(\theta) \xrightarrow[k \to \infty]{} u(\theta)$ (iii) $v_k(\theta) \xrightarrow[k \to \infty]{} v(\theta)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	0000000	00	•00	00

☑ Dynamics of asset values:

$$\begin{split} dS_i(t) &= rS_i(t)dt + \sigma(t)S_i(t)dW_i(t), \quad i = 1, \dots, N_0 \\ d\sigma(t) &= \kappa \big(\bar{\sigma} - \sigma(t)\big)dt + \gamma \sqrt{\sigma(t)}dW_t, \\ d\langle W_i, W_j \rangle &= \rho_0 dt, i \neq j, \quad d\langle W_i, W \rangle = \rho_\sigma dt \end{split}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ●

☑ Dynamics of asset values:

$$dS_{i}(t) = rS_{i}(t)dt + \sigma(t)S_{i}(t)dW_{i}(t), \quad i = 1, ..., N_{0}$$
$$d\sigma(t) = \kappa(\bar{\sigma} - \sigma(t))dt + \gamma \sqrt{\sigma(t)}dW_{t},$$
$$d\langle W_{i}, W_{j} \rangle = \rho_{0}dt, i \neq j, \quad d\langle W_{i}, W \rangle = \rho_{\sigma}dt$$
$$\boxtimes \text{ Compute } \mathbb{P}(\sum_{i=1}^{N_{0}} \mathbf{1}_{\{\inf\{t:S_{i}(t) \leqslant B\} \leqslant T\}} > L), \quad 0 < L < N_{0}$$

☑ Dynamics of asset values:

$$dS_{i}(t) = rS_{i}(t)dt + \sigma(t)S_{i}(t)dW_{i}(t), \quad i = 1, ..., N_{0},$$

$$d\sigma(t) = \kappa(\bar{\sigma} - \sigma(t))dt + \gamma\sqrt{\sigma(t)}dW_{t},$$

$$d\langle W_{i}, W_{j} \rangle = \rho_{0}dt, i \neq j, \quad d\langle W_{i}, W \rangle = \rho_{\sigma}dt$$

$$\boxtimes \text{ Compute } \mathbb{P}(\sum_{i=1}^{N_{0}} \mathbf{1}_{\{\inf\{t:S_{i}(t) \leqslant B\} \leqslant T\}} > L), \quad 0 < L < N_{0}$$

$$\boxtimes A_{k} := \left\{\sum_{i=1}^{N_{0}} \mathbf{1}_{\inf S_{i}(t) \leqslant S_{i}(0) - \frac{k}{n}(S_{i}(0) - B)} > L\right\}, \left\{\sum_{i=1}^{N_{0}} \mathbf{1}_{\inf S_{i}(t) \leqslant B} > \frac{k}{n}L\right\}$$

☑ Dynamics of asset values:

$$dS_{i}(t) = rS_{i}(t)dt + \sigma(t)S_{i}(t)dW_{i}(t), \quad i = 1, ..., N_{0},$$

$$d\sigma(t) = \kappa(\bar{\sigma} - \sigma(t))dt + \gamma\sqrt{\sigma(t)}dW_{t},$$

$$d\langle W_{i}, W_{j} \rangle = \rho_{0}dt, i \neq j, \quad d\langle W_{i}, W \rangle = \rho_{\sigma}dt$$

$$\boxtimes \text{ Compute } \mathbb{P}(\sum_{i=1}^{N_{0}} \mathbf{1}_{\{\inf\{t:S_{i}(t) \leqslant B\} \leqslant T\}} > L), \quad 0 < L < N_{0}$$

$$\boxtimes A_{k} := \left\{\sum_{i=1}^{N_{0}} \mathbf{1}_{\inf S_{i}(t) \leqslant S_{i}(0) - \frac{k}{n}(S_{i}(0) - B)} > L\right\}, \left\{\sum_{i=1}^{N_{0}} \mathbf{1}_{\inf S_{i}(t) \leqslant B} > \frac{k}{n}L\right\}$$

$$\boxtimes MC \text{ artimeter with } 2 \ge 10^{9} \text{ areaches arthes } [4.02, 5, 12] \ge 10^{-6}$$

 \checkmark MC estimator with 3 \times 10⁹ sample paths: [4.92, 5.13] \times 10⁻⁶

Measuring Default Probabilities in Credit Portfolios

☑ Dynamics of asset values:

$$dS_{i}(t) = rS_{i}(t)dt + \sigma(t)S_{i}(t)dW_{i}(t), \quad i = 1, ..., N_{0},$$

$$d\sigma(t) = \kappa(\bar{\sigma} - \sigma(t))dt + \gamma \sqrt{\sigma(t)}dW_{t},$$

$$d\langle W_{i}, W_{j} \rangle = \rho_{0}dt, \quad i \neq j, \quad d\langle W_{i}, W \rangle = \rho_{\sigma}dt$$

$$\boxtimes \text{ Compute } \mathbb{P}(\sum_{i=1}^{N_{0}} \mathbf{1}_{\{\inf\{t:S_{i}(t) \leqslant B\} \leqslant T\}} > L), \quad 0 < L < N_{0}$$

$$\boxtimes A_{k} := \left\{\sum_{i=1}^{N_{0}} \mathbf{1}_{\inf S_{i}(t) \leqslant S_{i}(0) - \frac{k}{n}(S_{i}(0) - B)} > L\right\}, \left\{\sum_{i=1}^{N_{0}} \mathbf{1}_{\inf S_{i}(t) \leqslant B} > \frac{k}{n}L\right\}$$

✓ MC estimator with 3×10^9 sample paths: $[4.92, 5.13] \times 10^{-6}$ ✓ POP and IPS with $M = N = 10^4$

	IP5				PUP		
	mean	std.	std./mean	mean	std.	std./mean	
	$(\times 10^{-6})$	$(\times 10^{-6})$		$(\times 10^{-6})$	$(\times 10^{-6})$		
$\rho = 0.9$	5.82	4.37	0.75	5.01	0.80	0.16	
$\rho = 0.7$	4.92	1.56	0.32	4.99	1.02	0.20	
$\rho = 0.5$	4.79	3.80	0.79	5.02	1.94	0.39	
					< < >> < <	- * E > * E >	

Introduction	Our Method	Sensitivity Analysis	Numerical Examples	Conclusion
0000	0000000	00	000	00

Adaptive POP & Other Aspects

 $\[equation]$ Consider *d*-dimensional Black-Scholes model $\frac{dS_t^i}{S_t^i} = \mu^i dt + \sigma^i d(LW_t)^i$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \square Consider *d*-dimensional Black-Scholes model $\frac{dS_t^i}{S_t^i} = \mu^i dt + \sigma^i d(LW_t)^i$

 \square $LL^* = C$. Assume C (therefore L) is invertible

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

 \square Consider *d*-dimensional Black-Scholes model $\frac{dS_t^i}{S_t^i} = \mu^i dt + \sigma^i d(LW_t)^i$

 \square $LL^* = C$. Assume C (therefore L) is invertible

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

 \checkmark Consider *d*-dimensional Black-Scholes model $\frac{dS_t^i}{S_t^i} = \mu^i dt + \sigma^i d(LW_t)^i$

 $\checkmark LL^* = C$. Assume C (therefore L) is invertible

- ${oxtimes}$ Consider basket option-style payoff ${\mathfrak P}:={\mathbb E}\left[\max\left(-\phi(Z_{\mathcal T},{ar a}),0
 ight)
 ight]$ where

$$\varphi(z,\bar{a}) := \sum_{i=1}^{d} \varepsilon_i p_i e^{z^i} - \bar{a}, \quad p_i > 0, \, \varepsilon_i \in \{-1,1\}, \, \bar{a} \in \mathbb{R}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

 \Box Consider *d*-dimensional Black-Scholes model $\frac{dS_t^i}{S_t^i} = \mu^i dt + \sigma^i d(LW_t)^i$

 $\checkmark LL^* = C$. Assume C (therefore L) is invertible

 $\square \text{ Log price } Z_T^i = Z_0^i + \left(\mu^i - \frac{1}{2}(\sigma^i)^2\right) T + \sigma^i (LW_T)^i$

 ${oxtimes}$ Consider basket option-style payoff ${\mathfrak P}:={\mathbb E}\left[\max\left(-\phi(Z_{\mathcal T},{ar a}),0
ight)
ight]$ where

$$\varphi(z,\bar{a}) := \sum_{i=1}^{d} \varepsilon_i p_i e^{z^i} - \bar{a}, \quad p_i > 0, \, \varepsilon_i \in \{-1,1\}, \, \bar{a} \in \mathbb{R}$$

 \checkmark For d = 2, take $\sigma^2 = C_{1,2}\sigma^1$ (Motivated by the singular case in **Gulisashvili** & **Tankov**, **Bernoulli** '16)

Sensitivity $(d = 2)$ w.r.t.	p_1	σ^1	C _{1,2}
POP method (10 ⁶) (mean/std)	-0.7155 (0.0046)	24.0078 (0.1760)	3.1058 (0.0253)
Finite difference (10 ⁶) (mean/std)	-0.7120 (0.0157)	23.9252 (0.4838)	3.0866 (0.1128)
Finite difference (10 ⁹) (99% conf. interval)	(-0.7155, -0.7129)	(23.9285, 24.0108)	(3.0801, 3.0990)

Conclusion & Remarks

- $\ensuremath{\boxtimes}$ Adaptive version of POP method and its convergence
- \checkmark Sensitivity estimation for rare event statistics
- ☑ Applicable to wide class of rare event problems due to path space Markov chains
- $\ensuremath{\boxtimes}$ Convergence of reversible shaking with rejection transformation in infinite dimension
- $\ensuremath{\ensuremath{\boxtimes}}$ Central Limit Theorem for POP method and adaptive level estimator

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQの

Thank you for your attention!

◆□ > < 個 > < E > < E > E = 9000

$$\mathfrak{I}(Z^{\theta}, \Phi^{\theta}) := \dot{\Phi}^{\theta} + \delta \left(\Phi^{\theta} \sum_{j=1}^{d} (\gamma_{Z^{\theta}}^{-1} \dot{Z}^{\theta})_{j} D. Z_{j}^{\theta} \right) .$$
$$\gamma_{Z^{\theta}} := (\langle D. Z_{i}^{\theta}, D. Z_{j}^{\theta} \rangle_{\mathfrak{H}})_{1 \leqslant i, j \leqslant d}$$