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Introduction

Categories of uncertainties
Different types of uncertainties [Thunnissen, 2003]:

Aleatory uncertainty: intrinsic variability of the system and/or its environment (probability
formalism), noted U

Epistemic uncertainty: lack of knowledge or modeling hypotheses (interval formalism)
I hyperparameters of the probability distributions of the aleatory variables, noted θ

I parameters of the used simulation code, noted e
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Introduction

Problem statement

U ∈ Rd

aleatory,
distributed
according to
φθ

Y = g(U,e),
scalar and
aleatory

Goal: estimation of a failure probability: P(g(U,e) > S)

Hypotheses:

g(·, ·): simulation code,
computationally expensive

P: rare event probability, P<< 1/M
with M the simulation budget
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Introduction

Classical simulation approaches in the presence of aleatory
uncertainties (θ ,e frozen)

Crude Monte Carlo [Silverman, 1986]:

Estimation of the system state for
each CMC sample (faulty or safe),

PCMC = 1
M ∑

M
i=11g(u(i),,e)>S

Limitations:

Computationally expensive,

Weak accuracy of the probability
estimate with reasonable simulation
budget.
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Introduction

Two examples of alternative simulation approaches
Importance Sampling [Glynn, 1996]:

Modification of the initial pdf φ in order to increase the occurrence of the failure,

PIS = 1
M

M

∑
i=1

1g(ui [φ̃ ])>S)

φ(ui [φ̃ ])

φ̃(ui [φ̃ ])

Optimization of the auxiliary pdf parameters of φ̃ , e.g. using Cross-Entropy.

−5 0 5
−4

−2

0

2

4

6

U
1

U
2

Limit state
Input uncertainty

Safe domain

Failure domain

M. Balesdent, L. Brevault et al. Rare event probability estimation July 5-8th 2016 7 / 35



Introduction

Two examples of alternative simulation approaches
Subset simulation [Au and Beck, 2001]:

PSS = P(U ∈Ωf ) = ∏
m
i=1 P

[
U ∈Ωfi

|U ∈Ωfi−1

]
,

Definition of a sequence of nested failure domains Ωf0
≡Ω⊃Ωf1

⊃ ·· · ⊃Ωfm ≡Ωf ,

Intermediary failure domains: ∀i = {1, . . . ,m}Ωfi
= {u|g(u) > Si },

At each step, drawing of new samples with respect to past ones using MCMC methods.
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Introduction

Approximation of the limit state function
Existing approaches [Matheron, 1963, Balesdent et al., 2013a, Dubourg et al., 2013]:

Approximation of the simulation code ĝ(·) (Kriging, Support Vector Machine, etc.),

Refinement of the surrogate model in the vicinity of the limit state, and in zones with high
probability content: P [ĝ(U) > S].
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Introduction

Reliability analysis in the presence of epistemic uncertainty

Part I: Epistemic uncertainties on
the input variable pdf distribution

Rare Event Probability Estimation in the Presence of Epistemic
Uncertainty on Input Probability Distribution Parameters. M.
Balesdent, J. Morio, L. Brevault. Methodology and Computing
in Applied Probability (2014) Springer.
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Part II: Model uncertainty con-
cerning the simulation code

Reliability analysis in the presence of aleatory and epistemic un-
certainties, application to the prediction of a launch vehicle fallout
zone, L. Brevault, S. Lacaze, M. Balesdent, S. Missoum. Journal
of Mechanical Design, publication pending, ASME.
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Uncertainty on input variable distribution hyperparameters Problem statement

Propagation of epistemic uncertainty on input variable pdf
parameters (e frozen)

U is distributed according to a joint pdf φθ (·) with uncertain parameters
known in an interval:

θ ∈Θ =
{

θ ∈ RK |∀i = 1, . . . ,K , θ
i ∈
[
θ

i
min,θ

i
max

]}
Characterization of the uncertainty of P by:

Pmin = min
θ∈Θ

Pθ (g(U) > S)

Pmax = max
θ∈Θ

Pθ (g(U) > S)
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Uncertainty on input variable distribution hyperparameters Problem statement

Aim of the study

Proposition of a methodology allowing at propagating the pdf parameter
uncertainties on the estimated failure probability:

Difficulties:
1 Combination of optimization

and reliability analysis
algorithms

2 Rare event probability to
estimate

3 Mapping g(·) known only
through a finite number of
data points (black-box),
computationally expensive

Propositions:
1 Coupling of CMA-ES and

Importance Sampling (Cross
Entropy)

2 Adaptation of Cross-Entropy
method to reduce the
computational cost of the
failure probability estimation

3 Use and refinement of
surrogate model of g(·)
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Uncertainty on input variable distribution hyperparameters Proposed approach

Proposed approach[Balesdent et al., 2016]
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Uncertainty on input variable distribution hyperparameters Proposed approach

Basics on Importance Sampling by Cross-Entropy
Estimation of the probability by Cross-Entropy:

P̂IS
θ0

=
1

M

M

∑
i=1

1g(Ui [φ̃θ0
])>S

φθ0
(Ui [φ̃θ 0 ])

φ̃θ 0(Ui [φ̃θ 0 ])
.

Determination of the optimal auxiliary pdf by canceling the estimator
variance:

V

(
1g(U[φ̃θ0

])>S

φθ0
(U[φ̃θ 0 ])

φ̃θ 0(U[φ̃θ 0 ])

)
= 0

The optimal pdf is given by:

φopt(U) =
1g(U)>S φθ0

(U)

Pθ 0(g(U) > S)

with Pθ 0(g(U) > S) unknown and has to be estimated.

→ Parametrization of the auxiliary density (φ̃θ0
(·)→ φ λ

θ0
(·)) and use of

Cross-Entropy to determine λ opt .
M. Balesdent, L. Brevault et al. Rare event probability estimation July 5-8th 2016 15 / 35



Uncertainty on input variable distribution hyperparameters Proposed approach

Basics on Importance Sampling by Cross-Entropy
[Glynn, 1996, Rubinstein and Kroese, 2004]

Estimation of λ by minimizing the Kullback-Leibler divergence between
φopt(·) and φ λ

θ0
(·):

D(φopt ,φ
λ
θ 0

) =
∫
Rd

φopt(u) ln

(
φopt(u)

φ λ
θ 0

(u)

)
du

λ opt is given by:

λopt =arg max
λ

{
E
[
1g(U[φ λ

θ0
])>S ln

(
φ

λ
θ 0

(U[φ λ
θ 0

])
)]}

Difficult to find directly λopt → definition of a
threshold family S0 < S1 < · · ·< SN = S easier
to compute and optimization of λ step y step.
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Uncertainty on input variable distribution hyperparameters Proposed approach

Combination of Importance Sampling and Kriging
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Uncertainty on input variable distribution hyperparameters Proposed approach

Combination of Importance Sampling and Kriging

Proposed strategy [Balesdent et al., 2013b]:

Generation of samples by IS,

Use of a Kriging-based surrogate model,

Use of the prediction error of the Kriging to determine the samples for which there
is an uncertainty about the threshold exceedance,

Refinement of the model on these points.

S

confidence interval

uncertain points

true fonction

surrogate model

bound of confidence interval

evaluated points Z

predicted point

Z

+-g g g

U

s   U
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Uncertainty on input variable distribution hyperparameters Proposed approach

Estimation of Pθ (g(U) > S) from Pθ0
(g(U) > S)(1/2)
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Uncertainty on input variable distribution hyperparameters Proposed approach

Estimation of Pθ (g(U) > S) knowing Pθ0
(g(U) > S) (2/2)

Let assume Pθ0
(g(U) > S) estimated by CE for a nominal value of θ = θ0

Problem:
How to estimate at reasonable computational cost Pθ1

(g(U) > S) for θ = θ1 i .e.
without repeating CE process from scratch? (i .e. for all the intermediary thresholds)

Remark:

Independence of {U|g(U) > S} with respect to θ : the samples drawn according to φ
λ opt

θ0

are useful for the estimation of Pθ (g(U) > S)

Idea:

Use of φ
λ opt

θ0
(·) as initial auxiliary pdf for θ = θ1, and perform a classical CE process with

this pdf using Kullback-Leibler divergence minimization.
→ Advantage: Avoiding a complete CE process for the intermediary thresholds (x3 in
convergence velocity on average).
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Uncertainty on input variable distribution hyperparameters Proposed approach

Determination of the probability bounds (1/2)
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Uncertainty on input variable distribution hyperparameters Proposed approach

Determination of the probability bounds (2/2)

Determination of Pmin and Pmax: non linear multimodal optimization
problems. The objective function is a probability estimator (noisy).

Use of Covariance Matrix Adaptation - Evolutionary Strategy
[Kruisselbrink et al., 2011] which deals efficiently with noisy function.

θ
(k+1) = m(k) + σ

(k)N (0,C(k))
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Uncertainty on input variable distribution hyperparameters Application

Launch vehicle fallout zone estimation (1/2)
Gaussian inputs U:

Weather conditions (2 variables Mc1 and Mc2)

Launch vehicle mass (1 variable: m)

Flight path angle (1 variable: γ)

Output of the code Y :

Distance between prediction and estimated impact
points

Probability of interest: Pθ [g(U) > 0.65km]

Parameters Variation domains

E(Mc1) [−1.1,−0.9]

E(Mc2) [0.9,1.1]

E(m) [0.45,0.55]

E(γ) [−2.2,−1.8]
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Uncertainty on input variable distribution hyperparameters Application

Launch vehicle fallout zone estimation (2/2)

Proposed method MC-MC MC-IS
Number of samples required by
CE for estimating the probability 2.80×104 106 2.80×104

with reference θ0
Number of samples evaluated on
φ3 for estimating the probability 1196 / /
with reference θ0 using Kriging

Estimation of Pθ0
(g(U) > S) 1.96×10−5 1.95×10−5 1.98×10−5

Std deviation of the probability 4.91% 22.6% 4.80%
estimate for reference θ0

Pmax 7.47×10−5 6.50×10−5 6.22×10−5

Number of points evaluated on g 7089 108 2.8.106

to find Pmax

Std deviation of Pmax 5.00% 12.4% 5.03%

CMC IS (CE)
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Uncertainty on limit state model Problem statement

Problem statement

The simulation code g suffers from epistemic uncertainties e which are
known in an interval:

e ∈Υ = {e ∈ Rw |∀i = 1, . . . ,w , e i ∈
[
e i

min,e
i
max

]}
Propagation of the uncertainty on P by determination of the min / max
bounds:  Pmin = min

e∈Υ
P [g(U,e) > S ]

Pmax = max
e∈Υ

P [g(U,e) > S ]

Computing the bounds of P [·] requires:

Solving of an optimization problem to characterize the failure
probability bounds,

Estimation of (rare) failure probability.
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Uncertainty on limit state model Proposed approach

Proposed approach

Sequential approach:

Estimation of the failure probability: Subset Sampling allowing at characterizing the non
linear and multimodal failure states,

Surrogate model: Kriging built in the joint space of the aleatory / epistemic variables,

Kriging model refinement strategy in the zones:
I With high probability content,
I In the vicinity of the estimated limit state,
I Around the epistemic values leading to Pmax or Pmin,
I Determination of the refinement points by an auxiliary optimization problem.

Initial DoE

Kriging model
 construction

Interval Analysis Kriging adaptive
refinement
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Uncertainty on limit state model Proposed approach

Proposed Kriging model refinement strategy (for Pmax)
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s.t. ĝ(u,e,Y ) = 0
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[
e∗(t)

]
emin ≤ e≤ emax

u ∈Ω
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Uncertainty on limit state model Application

Application to launch vehicle fallout zone estimation
Evaluation of Pmax = max

e∈Υ
P [g(U,e) > 20km]

Uncertain variables Types Definitions

Error on altitude at separation (m) Aleatory N (0,001)
Error on velocity at separation (km/s) Aleatory N (0,001)
Error on flight path angle at separation
(rad)

Aleatory N (0,003)

Error on azimuth at separation (rad) Aleatory N (0,0.00175)
Dry mass of the stage (kg) Aleatory N (0,70)
Parameter of thrust model 1st stage Epistemic [0,1]
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Uncertainty on limit state model Application

Results

x
Launch

Impact
points

zoom

Second stage impact point PDF

Nominal
 impact point

x x

Crude Monte Carlo Subset Simulation

Threshold

Proposed method FORM - UUA
[Du et al., 2005]

Nominal value
(MC)

Pmax (e∗) 2.91×10−4(5.6%) 6.41×10−5 2.93×10−4

Ng−calls 60+72=132 1114 25.2×106
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Conclusion and future works

Conclusion and future works

Conclusion:

Propagation of uncertainties on model parameters (input pdf and
simulation code) for rare event estimation,

Proposed approach: coupling of optimization - Importance Sampling
/ Subset sampling - Kriging model with dedicated refinement strategy.

Future works:
Apply this method to a reliability-based design optimization (RBDO)
process,

Extend the algorithm to uncertain variables described with other
formalisms (fuzzy logic, etc .).
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Conclusion and future works

Thank you
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