
Sequential Quasi Monte Carlo

N. Chopin (CREST-ENSAE)

nicolas.chopin@ensae.fr

joint work with Mathieu Gerber (Harvard)

1 / 45



Outline

Particle �ltering (a.k.a. Sequential Monte Carlo) is a set of Monte
Carlo techniques for sequential inference in state-space models.
The error rate of PF is therefore OP(N−1/2).

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo
(MC), which typically converges at the faster rate O(N−1+ε).
However, standard QMC is usually de�ned for IID problems.

The purpose of this work is to derive a QMC version of PF, which
we call SQMC (Sequential Quasi Monte Carlo).
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QMC basics

Consider the standard MC approximation

1

N

N∑
n=1

ϕ(un) ≈
ˆ
[0,1]d

ϕ(u)du

where the N vectors un are IID variables simulated from U
(
[0, 1]d

)
.

QMC replaces u1:N by a set of N points that are more evenly
distributed on the hyper-cube [0, 1]d . This idea is formalised
through the notion of discrepancy.
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QMC vs MC in one plot
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QMC versus MC: N = 256 points sampled independently and
uniformly in [0, 1]2 (left); QMC sequence (Sobol) in [0, 1]2 of the
same length (right)
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Discrepancy

Koksma�Hlawka inequality:∣∣∣∣∣ 1N
N∑
n=1

ϕ(un)−
ˆ
[0,1]d

ϕ(u) du

∣∣∣∣∣ ≤ V (ϕ)D?(u1:N)

where V (ϕ) depends only on ϕ, and the star discrepancy is de�ned
as:

D?(u1:N) = sup
[0,b]

∣∣∣∣∣ 1N
N∑
n=1

1 (un ∈ [0,b])−
d∏
i=1

bi

∣∣∣∣∣ .

There are various ways to construct point sets PN =
{
u1:N

}
so

that D?(u1:N) = O(N−1+ε).
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Examples: Van der Corput, Halton

As a simple example of a low-discrepancy sequence in dimension
one, d = 1, consider

1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
. . .

or more generally,
1

p
, . . . ,

p − 1

p
,
1

p2
, · · · .

In dimension d > 1, a Halton sequence consists of a Van der
Corput sequence for each component, with a di�erent p for each
component (the �rst d prime numbers).
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RQMC (randomised QMC)

RQMC randomises QMC so that each un ∼ U
(
[0, 1]d

)
marginally.

In this way

E

{
1

N

N∑
n=1

ϕ(un)

}
=

ˆ
[0,1]d

ϕ(u) du

and one may evaluate the MSE through independent runs.

A simple way to generate a RQMC sequence is to take
un = w + vn ≡ 1, where w ∼ U([0, 1]d ) and v1:N is a QMC point
set.

Owen (1995, 1997a, 1997b, 1998) developed RQMC strategies
such that (for a certain class of smooth functions ϕ):

Var

{
1

N

N∑
n=1

ϕ(un)

}
= O(N−3+ε)
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QMC take-home message

To use QMC:

1 rewrite your MC algorithm as a deterministic function of
uniform variables;

2 replace these uniform variables by a QMC or RQMC sequence
(RQMC is better);

3 pray for increased performance.
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Feynmann-Kac models: de�nition

A Feynman-Kac model is made of:

• A Markov chain in X : initial law is m0(dx), Markov kernel at
iteration t is mt(xt−1, dxt)

• A sequence of potential functions G0 : X → R+,
Gt : X × X → R+

Aim is to compute sequentially quantities such as

Qt(ϕ) =
1

Zt
E

[
ϕ(xt)G0(x0)

t∏
s=1

Gs(xs−1, xs)

]
,

with Zt = E

[
G0(x0)

t∏
s=1

Gs(xs−1, xs)

]
.

⇒ change of measure.
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Feynmann-Kac models: application to rare events

Take for instance
Gt(xt−1, xt) = 1At (xt)

then Zt is the probability that the xt ∈ At for all t, and so on.

10 / 45



Feynmann-Kac models: application to �ltering

Imagine a model for a Markov chain (xt) that is not observed
directly, but through

yt = h(xt) + noise

and let g(yt |xt) be the density of yt conditional on xt . Then,
taking

Gt(xt−1, xt) = g(yt |xt)

turns Qt into the �ltering distribution of Markov chain (xt),
conditional on data y0:t .

Applications: target tracking, Ecology, neurosciences...
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Particle Filtering: why?

For a given Feynman-Kac model, a possible approach to
approximate Qt sequentially would be (sequential) importance
sampling:

1 At time t, simulate N copies xnt of Markov chain (xt)

2 reweight according to function Gt

Problem: variance of cumulative weigts:

w(xn0:t) =
t∏

s=0

Gs(x
n
s−1, x

n
s )

increases over time (at exponential rate).
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Particle Filtering: Basic idea

At time 0, use importance sampling, to go from m0(dx0) to
Q0(dx0) ∝ m0(dx0)G0(x0). We thus obtain the following
approximation of Q0:

QN
0 (dx0) =

1∑N
n=1 G0(xn0 )

N∑
n=1

G0(xn0 )δxn0(x0)

To progress to time 1:

1 Choose one `ancestor' xn0 with probability ∝ G0(xn0); call An0
the index of the selected ancestor.

2 Simulate xn1 ∼ m1(x
An0
0 , dx1)

3 Reweight, with weight G1(x
An0
0 , xn1)

13 / 45



Particle �ltering: the algorithm

Operations must be be performed for all n ∈ 1 : N.
At time 0,

(a) Generate xn0 ∼ m0(dx0).

(b) Compute W n
0 = G0(xn0)/

∑N
m=1 G0(xm0 ) and

ZN
0 = N−1

∑N
n=1 G0(xn0).

Recursively, for time t = 1 : T ,

(a) Generate ant−1 ∼M(W 1:N
t−1).

(b) Generate xnt ∼ mt(x
an
t−1
t−1 , dxt).

(c) Compute W n
t = Gt(x

an
t−1
t−1 , x

n
t )/
∑N

m=1 Gt(x
am
t−1
t−1 , x

m
t )

and ZN
t = ZN

t−1

{
N−1

∑N
n=1 Gt(x

an
t−1
t−1 , x

n
t )
}
.
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Cartoon representation

Source for image: some dark corner of the Internet.
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PF output

At iteration t, compute

QN
t (ϕ) =

N∑
n=1

W n
t ϕ(xnt )

to approximate Qt(ϕ) (the �ltering expectation of ϕ). In addition,
compute

ZN
t

as an approximation of Zt (the likelihood of the data).

16 / 45



Formalisation

We can formalise the succession of Steps (a), (b) and (c) at
iteration t as an importance sampling step from random probability
measure

N∑
n=1

W n
t−1δxnt−1(dx̃t−1)mt(x̃t−1, dxt) (1)

to
{same thing} × Gt(x̃t−1, xt).

Idea: use QMC instead of MC to sample N points from (1); i.e.
rewrite sampling from (1) this as a function of uniform variables,
and use low-discrepancy sequences instead.
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Intermediate step

More precisely, we are going to write the simulation from

N∑
n=1

W n
t−1δxnt−1(dx̃t−1)mt(x̃t−1, dxt)

as a function of unt = (unt , v
n
t ), unt ∈ [0, 1], vnt ∈ [0, 1]d , such that:

1 We will use the scalar unt to choose the ancestor x̃t−1.

2 We will use vnt to generate xnt as

xnt = Γt(x̃t−1, v
n
t )

where Γt is a deterministic function such that, for
vnt ∼ U [0, 1]d , Γt(x̃t−1, v

n
t ) ∼ mt(x̃t−1, dxt).

The main problem is point 1.
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Case d = 1

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

x(1)

u1

x(2)

u2

x(3)

u3

Simply use the inverse transform method: x̃nt−1 = F̂−1(unt ), where

F̂ is the empirical cdf of

N∑
n=1

W n
t−1δxnt−1(dx̃t−1).
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From d = 1 to d > 1

When d > 1, we cannot use the inverse CDF method to sample
from the empirical distribution

N∑
n=1

W n
t−1δxnt−1(dx̃t−1).

Idea: we �project� the xnt−1's into [0, 1] through the (generalised)
inverse of the Hilbert curve, which is a fractal, space-�lling curve
H : [0, 1]→ [0, 1]d .

More precisely, we transform X into [0, 1]d through some function
ψ, then we transform [0, 1]d into [0, 1] through h = H−1.
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Hilbert curve

n = 1 n = 2 n = 3 n = 4 n = 5

The Hilbert curve is the limit of this sequence. Note the locality
property of the Hilbert curve: if two points are close in [0, 1], then
the the corresponding transformed points remains close in [0, 1]d .
(Source for the plot: Wikipedia)
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SQMC Algorithm
At time 0,

(a) Generate a QMC point set u1:N
0 in [0, 1]d , and

compute xn0 = Γ0(un0). (e.g. Γ0 = F−1m0
)

(b) Compute W n
0 = G0(xn0)/

∑N
m=1 G0(xm0 ).

Recursively, for time t = 1 : T ,

(a) Generate a QMC point set u1:N
t in [0, 1]d+1; let

unt = (unt , v
n
t ).

(b) Hilbert sort: �nd permutation σ such that

h ◦ ψ(x
σ(1)
t−1 ) ≤ . . . ≤ h ◦ ψ(x

σ(N)
t−1 ).

(c) Generate a1:Nt−1 using inverse CDF Algorithm, with

inputs sort(u1:Nt ) and W
σ(1:N)
t−1 , and compute

xnt = Γt(x
σ(an

t−1)

t−1 , v
σ(n)
t ). (e.g. Γt = F−1mt

)

(e) Compute

W n
t = Gt(x

σ(an
t−1)

t−1 , xnt )/
∑N

m=1 Gt(x
σ(am

t−1)

t−1 , xmt ).
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Some remarks

• Because two sort operations are performed, the complexity of
SQMC is O(N logN). (Compare with O(N) for SMC.)

• The main requirement to implement SQMC is that one may
simulate from Markov kernel mt(xt−1, dxt) by computing
xt = Γt(xt−1,ut), where ut ∼ U [0, 1]d , for some deterministic
function Γt (e.g. multivariate inverse CDF).

• The dimension of the point sets u1:N
t is 1 + d : �rst component

is for selecting the parent particle, the d remaining

components is for sampling xnt given x
an
t−1
t−1 .
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Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal
likelihood Zt .

• This means we can use SQMC within the PMCMC framework.
(More precisely, we can run e.g. a PMMH algorithm, where the
likelihood of the data is computed via SQMC instead of SMC.)

• We can also adapt quite easily the di�erent particle smoothing
algorithms: forward smoothing, backward smoothing, two-�lter
smoothing.
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Main results

We were able to establish the following types of results: consistency

QN
t (ϕ)−Qt(ϕ)→ 0, as N → +∞

for certain functions ϕ, and rate of convergence

MSE

[
QN
t (ϕ)

]
= O(N−1)

(under technical conditions, and for certain types of RQMC point
sets).
Theory is non-standard and borrows heavily from QMC concepts.
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Some concepts used in the proofs

Let X = [0, 1]d . Consistency results are expressed in terms of the
star norm

‖QN
t −Qt‖? = sup

[0,b]⊂[0,1)d

∣∣∣(QN
t −Qt

)
(B)
∣∣∣→ 0.

This implies consistency for bounded functions ϕ,
QN
t (ϕ)−Qt(ϕ)→ 0.

The Hilbert curve conserves discrepancy:

‖πN − π‖? → 0 ⇒ ‖πNh − πh‖? → 0

where π ∈ P([0, 1]d ), h : [0, 1]d → [0, 1] is the (pseudo-)inverse of
the Hilbert curve, and πh is the image of π through π.
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Examples: Kitagawa (d = 1)

Well known toy example (Kitagawa, 1998):yt = x2t
a

+ εt

xt = b1xt−1 + b2
xt−1

1+x2
t−1

+ b3 cos(b4t) + σνt

No paramater estimation (parameters are set to their true value).
We compare SQMC with SMC (based on systematic resampling)
both in terms of N, and in terms of CPU time.
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Examples: Kitagawa (d = 1)
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Log-likelihood evaluation (based on T = 100 data point and 500
independent SMC and SQMC runs).
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Examples: Kitagawa (d = 1)
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Filtering: computing E(xt |y0:t) at each iteration t. Gain factor is
MSE(SMC)/MSE(SQMC).
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Application: autonomous positioning

Vehicle moves in 2D space, acquires its speeds every Ts seconds,
and receives dy radio signals. Model is:

yti = 10 log10

(
Pi0

‖ri − xt‖αi

)
+ νit , i = 1, . . . , dy

xt = xt−1 + Tsv t + Tsεt

and noise terms εt , νt are Laplace-distributed.
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Application: simulated data

Ts = 1s, dy = 5 (5 emiters), αi = 0.95.
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Figure : Simulated trajectory (15 min)
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Application: results
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Figure : Left: Gain factor vs time (PF MSE/SQMC MSE); Right:
number of time steps such that MSE(x̂t1) > 0.01Var(xt1|y0:t), as a
function of CPU time
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Examples: Multivariate Stochastic Volatility

Model is {
yt = S

1
2
t εt

xt = µ + Φ(xt−1 − µ) + Ψ
1
2νt

with possibly correlated noise terms: (εt ,νt) ∼ N2d (0,C ).
We shall focus on d = 2 and d = 4.
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Examples: Multivariate Stochastic Volatility (d = 2)
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independent runs).

34 / 45



Examples: Multivariate Stochastic Volatility (d = 2)
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Examples: Multivariate Stochastic Volatility (d = 4)

100.4

100.6

100.8

101

102 103 104 105

Number of particles ( log10 scale)

G
ai

n 
fa

ct
or

 (
 lo

g 1
0 s

ca
le

)

10−2

100

102

104

10−1 100 101 102

CPU time in second ( log10 scale)
M

S
E

 (
 lo

g 1
0 s

ca
le

)

Log-likelihood estimation (based on T = 400 data points and 200
independent runs)

36 / 45



Example: Di�usion driven SV model (e.g. Shephard, 2004)

{
dYt = {µP + βeXt}dt + eXt/2dBt

dXt = µ(Xt)dt + ω(Xt)dWt

where (Bt)t≥0 and (Wt)t≥0 are Brownian motions with correlation
coe�cient ρ ∈ (−1, 1) and

µ(x) = κ(µ− ex)e−x − 0.5ω2e−x

ω(x) = ωe−x/2

The Yt are observed for t = 0, 1, . . . ,T .
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Discretized version

For M ≥ 1 (with δ = M−1),
Yt+1|Yt , X̃ t+1 ∼ N1

(
Yt + µP + βσ̃2

t+1 + ρZ̃t+1, (1− ρ2)σ̃2
t+1

)
X̃t+δ = X̃t + δµ(X̃t) + ω(X̃t)(Wt+δ −Wt)
...

X̃t+1 = X̃t+1−δ + δµ(X̃t+1−δ) + ω(X̃t+1−δ)(Wt+1 −Wt+1−δ)

where X̃ t+1 = (X̃t+δ, . . . , X̃t+1) ∈ RM and

σ̃2
t+1 =

1

M

M∑
m=1

eX̃t+mδ , Z̃t+1 =
M∑

m=1

eX̃t+mδ/2
(
Wt+mδ−Wt+(m−1)δ

)
.

For this model, M = 10 is a reasonable choice (Chib et al., 2004).
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Resampling step of SQMC

A naive application of SQMC would imply working in dimension
M = 10, in particular for Hilbert ordering.

However, since Xt is Markov, we can reduce this particular step to
dimension 1.
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Mutation step of SQMC: Choice of Γt

We consider the following two approaches to generate x̃nt+1 at
iteration t + 1 of SQMC:

• First approach (forward approach): Set (with vn ∈ [0, 1)M)

W n
t+mδ −W n

t+(m−1)δ =
√
δΦ−1(vnm), m = 1, . . . ,M.

• Second approach: Use vn and a dimension reduction approach
to simulate the values {W̃ n

mδ}Mm=1 of a standard Brownian

motion (W̃ n
s )s∈[0,1], and set

W n
t+mδ −W n

t+(m−1)δ = W̃ n
t+mδ − W̃ n

t+(m−1)δ, m = 1, . . . ,M.

For the second approach, we will use the Brownian Bridge
construction (Ca�isch et al., 1997).
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Di�usion driven SV model: Simulation set-up

The parameters of the model are set to their estimated values for
the daily return data on the closing price of the S&P 500 index
from 5/5/1995 to 4/14/2003 (Chib et al., 2004).
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Di�usion driven SV model: Simulation Results
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.
Estimation of E[Xt |Y0:T ] for t ∈ {1, . . . ,T} and for di�erent values of N (and

based 100 independent SMC and SQMC runs). SQMC is implemented with the

forward method (left) and with the Brownian Bridge method (right).
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Di�usion driven SV model: Simulation Results
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Estimation of the log-likelihood for di�erent values of N (and based 100

independent SMC and SQMC runs). SQMC is implemented with the forward

method (left) and with the Brownian Bridge method (right).
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Conclusion

• Only requirement to replace SMC with SQMC is that the
simulation of xnt |xnt−1 may be written as a xnt = Γt(x

n
t−1,u

n
t )

where unt ∼ U[0, 1]d .

• We observe very impressive gains in performance (even for
small N and not to small d).

• Supporting theory.
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