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| Introduction

Given:
» random variable U with values in a measurable space U/
> F:R? x U — R? measurable such that F(6, U) is integrable Vg € R?

Aim: Find zeroes of f : R? — RY given by

f(0) = E[F(0, U)].



| Introduction

Given:
» random variable U with values in a measurable space U/
> F:R? x U — R? measurable such that F(6, U) is integrable Vg € R?

Aim: Find zeroes of f : R? — RY given by

f(0) = E[F(0, U)].

E.g.: Computation of quantiles

> F(0,U) =a—1;y<gy for a o € (0,1) and a R-valued random variable U
= zero of f(0) = E[F(0, U)] = a — P(U < 0) is a-quantile

Computation of extremes

> F now is a mapping F : RY x &/ — R and an extremal value of
f(8) = E[F(0, U)] corresponds to a zero of

g(0) = Vf(0) =E[VeF(0, U)].



Examples

Focus: on the case where F(0, U) is not simulatable.

Ex 1: SDE. F(6,U) = f(@,X(TG’U)), where U = (U;) is a Brownian motion and
(Xt(e,u))tzo solves an integral equation

t t
x}evw:xgm/ a(XS(G’U)ﬁ)dUS—i—/ b(x"V, 0)ds.
0 0



| Examples

Focus: on the case where F(0, U) is not simulatable.

Ex 1: SDE. F(6,U) = f(@,X(TG’U)), where U = (U;) is a Brownian motion and
(Xt(e,u))tzo solves an integral equation

t t
xngxgm/ a(XS(g’U)ﬁ)dUs—i—/ b(xY,0) ds.
0 0

Ex 2: PDE with random coefficients. F(6, U) value of a PDE with random
coefficients U at a certain point.



| Introduction

Central concepts: (to be introduced on the next slides)
» Robbins-Monro algorithm (Robbins, Monro '51)
> Polyak-Ruppert averaging (Ruppert '91, Polyak, Juditsky '92)
> Multilevel paradigm (Heinrich 98, Giles '08)

Aim: Multilevel stochastic approximation algorithms in the spirit of Giles '08

Rel. research: N. Frikha '134, Multi-level stochastic approximation algorithms



Il Robbins-Monro algorithms (L-attractors)

Def: We call a zero 0" of f L-attractor for an L > 0 if
f(0)=H(O—0")+o(]0 —07]), asO — 07,
where H is in RY*? with

max{Re(X) : X eigenvalue of H} < —L.



Il Robbins-Monro algorithms (L-attractors)

Def: We call a zero 0" of f L-attractor for an L > 0 if

F(0) = H(O — 0") + o(|0 — 07]), as 0 — 0",

where H is in RY*? with

max{Re(X) : X eigenvalue of H} < —L.

Motivation: For an L-attractor ™ the solution v : [0, 00) — RY of the
differential equation

looks in the vicinity of 6 like



Robbins-Monro algorithms

The evolution equation “finds” attracting zeroes. To get from the evolution
equation

u(t) = f(u(t))
to stochastic approximation algorithms one does

> Euler steps with step width v1,72,...

» with f replaced by a random variable having the “right” expectation.
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On =0p—1+ Yn F(enfly Un)

for n € N, where Ui, Us, ... are independent copies of U.



Robbins-Monro algorithms

The evolution equation “finds” attracting zeroes. To get from the evolution
equation

i(t) = F(u(t))
to stochastic approximation algorithms one does
> Euler steps with step width v1,72,...
> with f replaced by a random variable having the “right” expectation.

Robbins-Monro system: Given a sequence (yn)nen of strictly positive reals
and a starting value 6y we set

0n=0n-1+ Yn F(anly Un)
for n € N, where Ui, Us, ... are independent copies of U.
Note: Natural assumptions on (7,) are

» ~, — 0: randomness of U, should lose its impact

> > .cnn = 00: the associated “Euler time” should tend to infinity.

Refs: Robbins, Monro '51, ..., Pelletier '98, ..., Duflo '96, Kushner, Yin '03



Polyak-Ruppert averaging

Note: The fastest convergence of (0,) is obtained for () of the form

Yo

- with 5 > (2L)7!

n =

Then

|9n_9*| “og n—1/2.

Problem: The strength of attraction L is typically not known!



Polyak-Ruppert averaging

Note: The fastest convergence of (0,) is obtained for () of the form

il

0
Yn =
n

with ~o > (2L) "

Then
|9n_9*| “og n—1/2.

Problem: The strength of attraction L is typically not known!

Remedy: Use v, = n~" with n € (1/2,1) instead and consider as

approximation
_ 1<
0, == Ok.

> requires stronger assumptions on f

> same order of convergence

Refs: Ruppert '91, Polyak, Juditsky '92



I1l  Multilevel stochastic approximation

Aim: Compute zero of
f(0) = E[F (6, U)]

for a nonsimulatable F (6, U)!
Use: Hierarchical scheme of approximations:

Fi,Fo,...:RYxU —R?

measurable functions. Further Fp = 0.

» Establish stochastic approximation schemes that show the same rates of
convergence as one has in the computation of a single expectation.

» Employ similar assumptions as in Giles '08.



I1l  Assumptions

Assu A=A(q, 8,07, L, p): 0" is a L-attractor of f and there exist § > 0 and
c € (0,00) such that for § € B(6*, )

> [E[F(6, U)] - E[F(6, UV)]| < c (M)~

> E[|F(0,U) - F(0, V)PP < ¢ (M*)~F

> one simulation of Fi(6, U) — Fr—1(0, U) is assigned the cost Cx = Mk
(with o, 8, L € (0,00), 8* € R? and p € [2,0)).
Note:

» The assumptions only require an error control for fixed € uniformly in a
neighbourhood of 6*.



I1l  Assumptions

Assu A=A(q, 8,07, L, p): 0" is a L-attractor of f and there exist § > 0 and
c € (0,00) such that for § € B(6*, )

> [E[F(6, U)] - E[F(6, UV)]| < c (M)~

> E[|F(0,U) - F(0, V)PP < ¢ (M*)~F

> one simulation of Fi(6, U) — Fr—1(0, U) is assigned the cost Cx = Mk
(with o, 8, L € (0,00), 8* € R? and p € [2,0)).
Note:

» The assumptions only require an error control for fixed € uniformly in a
neighbourhood of 6*.

» In the SDE example one may for instance choose Euler approximations
with M* steps.

» The error analysis done for classical multilevel algorithms can directly be
transferred.

» More elaborate multilevel algorithms such as antithetic Milstein can also
be combined with our approach.



IIl' Scheme with deterministic choice of levels (A)

Algorithms are specified by an initial vector 6 € R,

(i) (7n)nen C (0, 00): decreasing sequence determining step sizes

(ii) (mn)nen C N: increasing sequence determining maximal levels, and
(iii) (akx)ken C (0,00): decreasing sequence determining iteration numbers

Npx = [ak/am,], for k=1,...,m,and n€N.

Innovation: Using iid copies (U k) of U we set

mp Nn,k
Z,(0)="> . > (Fi(0, Unke) = Fie1(6, Uni0))
k=1 " p=1

Robbins-Monro step: adapted dynamical system (0,)nen such that
en = enfl + Yn Zn(enfl)-

Cost:

cost, = i Z/ N; « Ci

j=1 k=1



IIl Local error analysis (Robbins-Monro)

Theorem: (D, Miiller-Gronbach '16+) Suppose that Assumption A is satisfied

and that 2o > S or B > 1. Let

0= 4a—ﬂ—2:1in(1,5)’ Y € (p/(2L), 00)

and

=yn " =[5 | 1 —
Tn="0n -, m"_’ValnM n(n+ )—" an = :

Then there exist §, k € (0, 00) such that

. 1 N
lim sup = E[l{(gn)nZkocg(g*ﬁ)}wn — 0" PP < &

n—o0

for every ko € N with

- f/@# . KLI'I2U,
n 07 | ) 20
En = and cost, < { kKn~ In(n+
{n_"\/ln(n—kl), if =1, B U(H(l;ﬁ
Kn «



lIl Local error analysis (Polyak-Ruppert averaging)

Polyak-Ruppert averaging: Let (b,)sen C (0, 00) be an increasing sequence
and consider

0, = Zl{wk onl<Cy br Ok.
Zk 1 k=1
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Polyak-Ruppert averaging: Let (b,)sen C (0, 00) be an increasing sequence
and consider

0, = Zl{wk onl<Cy br Ok.
Zk 1 k=1

Assu B=B(«a, 3,0, L, p,\): Assu A is satisfied and one has

£(6) = DF(O")(O — 0") + o(|0 — 0" ") as 0 — 6™,



lIl Local error analysis (Polyak-Ruppert averaging)

Polyak-Ruppert averaging: Let (b,)sen C (0, 00) be an increasing sequence
and consider

0, = ST b 1b Zl{wk onl<Cy br Ok.

k=1

Assu B=B(«a, 3,0, L, p,\): Assu A is satisfied and one has

£(6) = DF(O")(O — 0") + o(|0 — 0" ") as 0 — 6™,

Theorem: (D, Miiller-Gronbach '16+) Suppose Assu B is satisfied with general
p > 2 and suppose that 2a >  or § > 1. Let o, (m,) and (a,) be as in the
previous theorem.

Take g € [p/(1+ A),p) and n € (1 —20(p— q)/p)+,1) and set
yn = const n~". Further take £ € [0 — 1/2,00) and set b, = n°.

Then there exist §, k € (0, 00) such that

||msup— E[1;, n)n> ko CB(0% .6 1316, — 6" 1<k

n— oo n

for every ko € N with (g,) as before.



IV Comparison with related work

Frikha '144: CLT for multilevel stochastic approximation for SDEs
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and let 0}, denote the unique zero of f, (assumption). For m € N one has
O = (Om—0p_1)+...+067

and to estimate 0; — 6,,_; one performs coupled stochastic approximation
algorithms with F, and F,_1 using the same U's.



IV Comparison with related work

Frikha '144: CLT for multilevel stochastic approximation for SDEs

Approach: Denote
fa(6) = E[Fn(6, U)]

and let 0}, denote the unique zero of f, (assumption). For m € N one has
Om = (O — Om_1) + ...+ 01

and to estimate 0; — 6,,_; one performs coupled stochastic approximation
algorithms with F, and F,_1 using the same U's.
Comments:

» algorithms utilise Polyak-Ruppert averaging

» analysis cumbersome since one needs to analyse coupled stochastic
approximation algorithms

> optimal results are obtained for (v,) of the form v, = vo/n
= estimate for L needed



IV Pros and cons

Robbins-Monro

Polyak-Ruppert averaging

estimates for L needed

value of L irrelevant

except differentiablility in 6 no reg-
ularity assumptions on f

slightly stronger regularity assump-
tions on f in 0*

original moment in error estimate

reduced moment in error estimate




IV Pros and cons

Robbins-Monro

Polyak-Ruppert averaging

estimates for L needed

value of L irrelevant

except differentiablility in 6 no reg-
ularity assumptions on f

slightly stronger regularity assump-
tions on f in 6*

original moment in error estimate

reduced moment in error estimate

Fixed choice of levels

Random choice of levels

general moments accessible

loss of efficiency for moments larger
than 2

2a > 8 needed in slow regime

2a = (3 generally allowed




IV Concluding remarks

» With multilevel stochastic approximation the computation of L-attractors
is as costly as the computation of a single expectation with multilevel.

» As for classical multilevel Monte Carlo one can replace the random
variables Fx(0, U) — Fxk_1(0, U) by other random variables P, (0, U) having
the same expectation. In particular, the antithetic Milshtein idea is
applicable.

The approach can easily be adapted to the computation of maxima.
A combination with extrapolation methods is straight-forward.

Central limit theorems can also be deduced by using standard theory

vV v v v

In the fast regime (8 > 1) one can replace in classical stochastic
approximation algorithms F(6, U) by

F;(0,U) — F;—1(0, U)

aj

with J being independent of U with appropriate prob. weights (ax) (in the
spirit of McLeish '11, Glynn, Rhee '12).



Main reference:

S. Dereich, T. Miiller-Gronbach “General multilevel adaptations for
stochastic approximation algorithms”, arXiv:1506.05482

This and further related articles can be found on my homepage:

http://wwwmath.uni-muenster.de/statistik/dereich/

Thank you for your attention!



