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I Introduction

Given:

I random variable U with values in a measurable space U
I F : Rd × U → Rd measurable such that F (θ,U) is integrable ∀θ ∈ Rd

Aim: Find zeroes of f : Rd → Rd given by

f (θ) = E[F (θ,U)].

E.g.: Computation of quantiles

I F (θ,U) = α− 1l{U≤θ} for a α ∈ (0, 1) and a R-valued random variable U
⇒ zero of f (θ) = E[F (θ,U)] = α− P(U ≤ θ) is α-quantile

Computation of extremes

I F now is a mapping F : Rd × U → R and an extremal value of
f (θ) = E[F (θ,U)] corresponds to a zero of

g(θ) = ∇f (θ) = E[∇θF (θ,U)].
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I Examples

Focus: on the case where F (θ,U) is not simulatable.

Ex 1: SDE. F (θ,U) = f (θ,X
(θ,U)
T ), where U = (Ut) is a Brownian motion and

(X
(θ,U)
t )t≥0 solves an integral equation

X
(θ,U)
t = x

(θ)
0 +

∫ t

0

a(X (θ,U)
s , θ) dUs +

∫ t

0

b(X (θ,U)
s , θ)ds.

Ex 2: PDE with random coefficients. F (θ,U) value of a PDE with random
coefficients U at a certain point.
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I Introduction

Central concepts: (to be introduced on the next slides)

I Robbins-Monro algorithm (Robbins, Monro ’51)

I Polyak-Ruppert averaging (Ruppert ’91, Polyak, Juditsky ’92)

I Multilevel paradigm (Heinrich ’98, Giles ’08)

Aim: Multilevel stochastic approximation algorithms in the spirit of Giles ’08

Rel. research: N. Frikha ’13+, Multi-level stochastic approximation algorithms



II Robbins-Monro algorithms (L-attractors)

Def: We call a zero θ∗ of f L-attractor for an L > 0 if

f (θ) = H(θ − θ∗) + o(|θ − θ∗|), as θ → θ∗,

where H is in Rd×d with

max{Re(λ) : λ eigenvalue of H} ≤ −L.

Motivation: For an L-attractor θ∗ the solution u : [0,∞)→ Rd of the
differential equation

u̇(t) = f (u(t))

looks in the vicinity of θ∗ like
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II Robbins-Monro algorithms

The evolution equation “finds” attracting zeroes. To get from the evolution
equation

u̇(t) = f (u(t))

to stochastic approximation algorithms one does

I Euler steps with step width γ1, γ2, . . .

I with f replaced by a random variable having the “right” expectation.

Robbins-Monro system: Given a sequence (γn)n∈N of strictly positive reals
and a starting value θ0 we set

θn = θn−1 + γn F (θn−1,Un)

for n ∈ N, where U1,U2, . . . are independent copies of U.

Note: Natural assumptions on (γn) are

I γn → 0: randomness of Un should lose its impact

I
∑

n∈N γn =∞: the associated “Euler time” should tend to infinity.

Refs: Robbins, Monro ’51, . . . , Pelletier ’98, . . . , Duflo ’96, Kushner, Yin ’03



II Robbins-Monro algorithms

The evolution equation “finds” attracting zeroes. To get from the evolution
equation

u̇(t) = f (u(t))

to stochastic approximation algorithms one does

I Euler steps with step width γ1, γ2, . . .

I with f replaced by a random variable having the “right” expectation.

Robbins-Monro system: Given a sequence (γn)n∈N of strictly positive reals
and a starting value θ0 we set

θn = θn−1 + γn F (θn−1,Un)

for n ∈ N, where U1,U2, . . . are independent copies of U.

Note: Natural assumptions on (γn) are

I γn → 0: randomness of Un should lose its impact

I
∑

n∈N γn =∞: the associated “Euler time” should tend to infinity.

Refs: Robbins, Monro ’51, . . . , Pelletier ’98, . . . , Duflo ’96, Kushner, Yin ’03



II Robbins-Monro algorithms

The evolution equation “finds” attracting zeroes. To get from the evolution
equation

u̇(t) = f (u(t))

to stochastic approximation algorithms one does

I Euler steps with step width γ1, γ2, . . .

I with f replaced by a random variable having the “right” expectation.

Robbins-Monro system: Given a sequence (γn)n∈N of strictly positive reals
and a starting value θ0 we set

θn = θn−1 + γn F (θn−1,Un)

for n ∈ N, where U1,U2, . . . are independent copies of U.

Note: Natural assumptions on (γn) are

I γn → 0: randomness of Un should lose its impact

I
∑

n∈N γn =∞: the associated “Euler time” should tend to infinity.

Refs: Robbins, Monro ’51, . . . , Pelletier ’98, . . . , Duflo ’96, Kushner, Yin ’03



II Polyak-Ruppert averaging

Note: The fastest convergence of (θn) is obtained for (γn) of the form

γn =
γ0
n

with γ0 > (2L)−1

Then
|θn − θ∗| “ ≈ ” n−1/2.

Problem: The strength of attraction L is typically not known!

Remedy: Use γn = n−η with η ∈ (1/2, 1) instead and consider as
approximation

θ̄n =
1

n

n∑
k=1

θk .

I requires stronger assumptions on f

I same order of convergence

Refs: Ruppert ’91, Polyak, Juditsky ’92
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III Multilevel stochastic approximation

Aim: Compute zero of
f (θ) = E[F (θ,U)]

for a nonsimulatable F (θ,U)!

Use: Hierarchical scheme of approximations:

F1,F2, . . . : Rd × U → Rd

measurable functions. Further F0 ≡ 0.

I Establish stochastic approximation schemes that show the same rates of
convergence as one has in the computation of a single expectation.

I Employ similar assumptions as in Giles ’08.



III Assumptions

Assu A=A(α, β, θ∗, L, p): θ∗ is a L-attractor of f and there exist δ > 0 and
c ∈ (0,∞) such that for θ ∈ B(θ∗, δ)

I |E[F (θ,U)]− E[Fk(θ,U)]| ≤ c (Mk)−α

I E[|F (θ,U)− Fk(θ,U)|p]2/p ≤ c (Mk)−β

I one simulation of Fk(θ,U)− Fk−1(θ,U) is assigned the cost Ck = Mk

(with α, β, L ∈ (0,∞), θ∗ ∈ Rd and p ∈ [2,∞)).

Note:

I The assumptions only require an error control for fixed θ uniformly in a
neighbourhood of θ∗.

I In the SDE example one may for instance choose Euler approximations
with Mk steps.

I The error analysis done for classical multilevel algorithms can directly be
transferred.

I More elaborate multilevel algorithms such as antithetic Milstein can also
be combined with our approach.



III Assumptions

Assu A=A(α, β, θ∗, L, p): θ∗ is a L-attractor of f and there exist δ > 0 and
c ∈ (0,∞) such that for θ ∈ B(θ∗, δ)

I |E[F (θ,U)]− E[Fk(θ,U)]| ≤ c (Mk)−α

I E[|F (θ,U)− Fk(θ,U)|p]2/p ≤ c (Mk)−β

I one simulation of Fk(θ,U)− Fk−1(θ,U) is assigned the cost Ck = Mk

(with α, β, L ∈ (0,∞), θ∗ ∈ Rd and p ∈ [2,∞)).

Note:

I The assumptions only require an error control for fixed θ uniformly in a
neighbourhood of θ∗.

I In the SDE example one may for instance choose Euler approximations
with Mk steps.

I The error analysis done for classical multilevel algorithms can directly be
transferred.

I More elaborate multilevel algorithms such as antithetic Milstein can also
be combined with our approach.



III Scheme with deterministic choice of levels (A)

Algorithms are specified by an initial vector θ0 ∈ Rd ,

(i) (γn)n∈N ⊂ (0,∞): decreasing sequence determining step sizes

(ii) (mn)n∈N ⊂ N: increasing sequence determining maximal levels, and

(iii) (ak)k∈N ⊂ (0,∞): decreasing sequence determining iteration numbers

Nn,k = dak/amne, for k = 1, . . . ,mn and n ∈ N.

Innovation: Using iid copies (Un,k,`) of U we set

Zn(θ) =

mn∑
k=1

1

Nn,k

Nn,k∑
`=1

(
Fk(θ,Un,k,`)− Fk−1(θ,Un,k,`)

)
Robbins-Monro step: adapted dynamical system (θn)n∈N such that

θn = θn−1 + γn Zn(θn−1).

Cost:

costn =
n∑

j=1

mj∑
k=1

Nj,k Ck



III Local error analysis (Robbins-Monro)

Theorem: (D, Müller-Gronbach ’16+) Suppose that Assumption A is satisfied
and that 2α > β or β > 1. Let

σ = 2α
4α−β−min(1,β)

, γ0 ∈ (ρ/(2L),∞)

and

γn = γ0 n
−1, mn =

⌈
σ

α lnM
ln(n + 1)

⌉
, an = M−n

(β+1)
2 .

Then there exist δ, κ ∈ (0,∞) such that

lim sup
n→∞

1

εn
E[1l{(θn)n≥k0

⊂B(θ∗,δ)}|θn − θ∗|p]1/p ≤ κ

for every k0 ∈ N with

εn =

{
n−σ, if β 6= 1,

n−σ
√

ln(n + 1), if β = 1,
and costn ≤


κ n2σ, if β > 1,

κ n2σ ln(n + 1), if β = 1,

κ nσ
(
1+

1−β
α

)
, if β < 1.



III Local error analysis (Polyak-Ruppert averaging)

Polyak-Ruppert averaging: Let (bn)n∈N ⊂ (0,∞) be an increasing sequence
and consider

θ̄n =
1∑n

k=1 bk

n∑
k=1

1l{|θk−θn|≤C} bk θk .

Assu B=B(α, β, θ∗, L, p, λ): Assu A is satisfied and one has

f (θ) = Df (θ∗)(θ − θ∗) + o(|θ − θ∗|1+λ) as θ → θ∗.

Theorem: (D, Müller-Gronbach ’16+) Suppose Assu B is satisfied with general
p ≥ 2 and suppose that 2α > β or β > 1. Let σ, (mn) and (an) be as in the
previous theorem.

Take q ∈ [p/(1 + λ), p) and η ∈ ((1− 2σ(p − q)/p)+, 1) and set
γn = const n−η. Further take ξ ∈ [σ − 1/2,∞) and set bn = nξ.

Then there exist δ, κ ∈ (0,∞) such that

lim sup
n→∞

1

εn
E[1l{(θn)n≥k0

⊂B(θ∗,δ)}|θ̄n − θ∗|q]1/q ≤ κ

for every k0 ∈ N with (εn) as before.
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IV Comparison with related work

Frikha ’14+: CLT for multilevel stochastic approximation for SDEs

Approach: Denote
fn(θ) = E[Fn(θ,U)]

and let θ∗n denote the unique zero of fn (assumption). For m ∈ N one has

θ∗m = (θ∗m − θ∗m−1) + . . .+ θ∗1

and to estimate θ∗n − θ∗n−1 one performs coupled stochastic approximation
algorithms with Fn and Fn−1 using the same U’s.

Comments:

I algorithms utilise Polyak-Ruppert averaging

I analysis cumbersome since one needs to analyse coupled stochastic
approximation algorithms

I optimal results are obtained for (γn) of the form γn = γ0/n
⇒ estimate for L needed
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IV Pros and cons

Robbins-Monro Polyak-Ruppert averaging

estimates for L needed value of L irrelevant

except differentiablility in θ∗ no reg-
ularity assumptions on f

slightly stronger regularity assump-
tions on f in θ∗

original moment in error estimate reduced moment in error estimate

Fixed choice of levels Random choice of levels

general moments accessible loss of efficiency for moments larger
than 2

2α > β needed in slow regime 2α = β generally allowed
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IV Concluding remarks

I With multilevel stochastic approximation the computation of L-attractors
is as costly as the computation of a single expectation with multilevel.

I As for classical multilevel Monte Carlo one can replace the random
variables Fk(θ,U)− Fk−1(θ,U) by other random variables Pk(θ,U) having
the same expectation. In particular, the antithetic Milshtein idea is
applicable.

I The approach can easily be adapted to the computation of maxima.

I A combination with extrapolation methods is straight-forward.

I Central limit theorems can also be deduced by using standard theory

I In the fast regime (β > 1) one can replace in classical stochastic
approximation algorithms F (θ,U) by

FJ(θ,U)− FJ−1(θ,U)

aJ
.

with J being independent of U with appropriate prob. weights (ak) (in the
spirit of McLeish ’11, Glynn, Rhee ’12).



Main reference:

S. Dereich, T. Müller-Gronbach “General multilevel adaptations for
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This and further related articles can be found on my homepage:

http://wwwmath.uni-muenster.de/statistik/dereich/

Thank you for your attention!


