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I Introduction

Given:

I random variable U with values in a measurable space U
I F : Rd × U → Rd measurable such that F (θ,U) is integrable ∀θ ∈ Rd

Aim: Find zeroes of f : Rd → Rd given by

f (θ) = E[F (θ,U)].

E.g.: Computation of quantiles

I F (θ,U) = α− 1l{U≤θ} for a α ∈ (0, 1) and a R-valued random variable U
⇒ zero of f (θ) = E[F (θ,U)] = α− P(U ≤ θ) is α-quantile

Computation of extremes

I F now is a mapping F : Rd × U → R and an extremal value of
f (θ) = E[F (θ,U)] corresponds to a zero of

g(θ) = ∇f (θ) = E[∇θF (θ,U)].
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I Examples

Focus: on the case where F (θ,U) is not simulatable.

Ex 1: SDE. F (θ,U) = f (θ,X
(θ,U)
T ), where U = (Ut) is a Brownian motion and

(X
(θ,U)
t )t≥0 solves an integral equation

X
(θ,U)
t = x

(θ)
0 +

∫ t

0

a(X (θ,U)
s , θ) dUs +

∫ t

0

b(X (θ,U)
s , θ)ds.

Ex 2: PDE with random coefficients. F (θ,U) value of a PDE with random
coefficients U at a certain point.
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I Introduction

Central concepts: (to be introduced on the next slides)

I Robbins-Monro algorithm (Robbins, Monro ’51)

I Polyak-Ruppert averaging (Ruppert ’91, Polyak, Juditsky ’92)

I Multilevel paradigm (Heinrich ’98, Giles ’08)

Aim: Multilevel stochastic approximation algorithms in the spirit of Giles ’08

Rel. research: N. Frikha ’13+, Multi-level stochastic approximation algorithms



II Robbins-Monro algorithms (L-attractors)

Def: We call a zero θ∗ of f L-attractor for an L > 0 if

f (θ) = H(θ − θ∗) + o(|θ − θ∗|), as θ → θ∗,

where H is in Rd×d with

max{Re(λ) : λ eigenvalue of H} ≤ −L.

Motivation: For an L-attractor θ∗ the solution u : [0,∞)→ Rd of the
differential equation

u̇(t) = f (u(t))

looks in the vicinity of θ∗ like
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II Robbins-Monro algorithms

The evolution equation “finds” attracting zeroes. To get from the evolution
equation

u̇(t) = f (u(t))

to stochastic approximation algorithms one does

I Euler steps with step width γ1, γ2, . . .

I with f replaced by a random variable having the “right” expectation.

Robbins-Monro system: Given a sequence (γn)n∈N of strictly positive reals
and a starting value θ0 we set

θn = θn−1 + γn F (θn−1,Un)

for n ∈ N, where U1,U2, . . . are independent copies of U.

Note: Natural assumptions on (γn) are

I γn → 0: randomness of Un should lose its impact

I
∑

n∈N γn =∞: the associated “Euler time” should tend to infinity.

Refs: Robbins, Monro ’51, . . . , Pelletier ’98, . . . , Duflo ’96, Kushner, Yin ’03
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II Polyak-Ruppert averaging

Note: The fastest convergence of (θn) is obtained for (γn) of the form

γn =
γ0
n

with γ0 > (2L)−1

Then
|θn − θ∗| “ ≈ ” n−1/2.

Problem: The strength of attraction L is typically not known!

Remedy: Use γn = n−η with η ∈ (1/2, 1) instead and consider as
approximation

θ̄n =
1

n

n∑
k=1

θk .

I requires stronger assumptions on f

I same order of convergence

Refs: Ruppert ’91, Polyak, Juditsky ’92
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III Multilevel stochastic approximation

Aim: Compute zero of
f (θ) = E[F (θ,U)]

for a nonsimulatable F (θ,U)!

Use: Hierarchical scheme of approximations:

F1,F2, . . . : Rd × U → Rd

measurable functions. Further F0 ≡ 0.

I Establish stochastic approximation schemes that show the same rates of
convergence as one has in the computation of a single expectation.

I Employ similar assumptions as in Giles ’08.



III Assumptions

Assu A=A(α, β, θ∗, L, p): θ∗ is a L-attractor of f and there exist δ > 0 and
c ∈ (0,∞) such that for θ ∈ B(θ∗, δ)

I |E[F (θ,U)]− E[Fk(θ,U)]| ≤ c (Mk)−α

I E[|F (θ,U)− Fk(θ,U)|p]2/p ≤ c (Mk)−β

I one simulation of Fk(θ,U)− Fk−1(θ,U) is assigned the cost Ck = Mk

(with α, β, L ∈ (0,∞), θ∗ ∈ Rd and p ∈ [2,∞)).

Note:

I The assumptions only require an error control for fixed θ uniformly in a
neighbourhood of θ∗.

I In the SDE example one may for instance choose Euler approximations
with Mk steps.

I The error analysis done for classical multilevel algorithms can directly be
transferred.

I More elaborate multilevel algorithms such as antithetic Milstein can also
be combined with our approach.
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III Scheme with deterministic choice of levels (A)

Algorithms are specified by an initial vector θ0 ∈ Rd ,

(i) (γn)n∈N ⊂ (0,∞): decreasing sequence determining step sizes

(ii) (mn)n∈N ⊂ N: increasing sequence determining maximal levels, and

(iii) (ak)k∈N ⊂ (0,∞): decreasing sequence determining iteration numbers

Nn,k = dak/amne, for k = 1, . . . ,mn and n ∈ N.

Innovation: Using iid copies (Un,k,`) of U we set

Zn(θ) =

mn∑
k=1

1

Nn,k

Nn,k∑
`=1

(
Fk(θ,Un,k,`)− Fk−1(θ,Un,k,`)

)
Robbins-Monro step: adapted dynamical system (θn)n∈N such that

θn = θn−1 + γn Zn(θn−1).

Cost:

costn =
n∑

j=1

mj∑
k=1

Nj,k Ck



III Local error analysis (Robbins-Monro)

Theorem: (D, Müller-Gronbach ’16+) Suppose that Assumption A is satisfied
and that 2α > β or β > 1. Let

σ = 2α
4α−β−min(1,β)

, γ0 ∈ (ρ/(2L),∞)

and

γn = γ0 n
−1, mn =

⌈
σ

α lnM
ln(n + 1)

⌉
, an = M−n

(β+1)
2 .

Then there exist δ, κ ∈ (0,∞) such that

lim sup
n→∞

1

εn
E[1l{(θn)n≥k0

⊂B(θ∗,δ)}|θn − θ∗|p]1/p ≤ κ

for every k0 ∈ N with

εn =

{
n−σ, if β 6= 1,

n−σ
√

ln(n + 1), if β = 1,
and costn ≤


κ n2σ, if β > 1,

κ n2σ ln(n + 1), if β = 1,

κ nσ
(
1+

1−β
α

)
, if β < 1.



III Local error analysis (Polyak-Ruppert averaging)

Polyak-Ruppert averaging: Let (bn)n∈N ⊂ (0,∞) be an increasing sequence
and consider

θ̄n =
1∑n

k=1 bk

n∑
k=1

1l{|θk−θn|≤C} bk θk .

Assu B=B(α, β, θ∗, L, p, λ): Assu A is satisfied and one has

f (θ) = Df (θ∗)(θ − θ∗) + o(|θ − θ∗|1+λ) as θ → θ∗.

Theorem: (D, Müller-Gronbach ’16+) Suppose Assu B is satisfied with general
p ≥ 2 and suppose that 2α > β or β > 1. Let σ, (mn) and (an) be as in the
previous theorem.

Take q ∈ [p/(1 + λ), p) and η ∈ ((1− 2σ(p − q)/p)+, 1) and set
γn = const n−η. Further take ξ ∈ [σ − 1/2,∞) and set bn = nξ.

Then there exist δ, κ ∈ (0,∞) such that

lim sup
n→∞

1

εn
E[1l{(θn)n≥k0

⊂B(θ∗,δ)}|θ̄n − θ∗|q]1/q ≤ κ

for every k0 ∈ N with (εn) as before.
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IV Comparison with related work

Frikha ’14+: CLT for multilevel stochastic approximation for SDEs

Approach: Denote
fn(θ) = E[Fn(θ,U)]

and let θ∗n denote the unique zero of fn (assumption). For m ∈ N one has

θ∗m = (θ∗m − θ∗m−1) + . . .+ θ∗1

and to estimate θ∗n − θ∗n−1 one performs coupled stochastic approximation
algorithms with Fn and Fn−1 using the same U’s.

Comments:

I algorithms utilise Polyak-Ruppert averaging

I analysis cumbersome since one needs to analyse coupled stochastic
approximation algorithms

I optimal results are obtained for (γn) of the form γn = γ0/n
⇒ estimate for L needed
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IV Pros and cons

Robbins-Monro Polyak-Ruppert averaging

estimates for L needed value of L irrelevant

except differentiablility in θ∗ no reg-
ularity assumptions on f

slightly stronger regularity assump-
tions on f in θ∗

original moment in error estimate reduced moment in error estimate

Fixed choice of levels Random choice of levels

general moments accessible loss of efficiency for moments larger
than 2

2α > β needed in slow regime 2α = β generally allowed
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IV Concluding remarks

I With multilevel stochastic approximation the computation of L-attractors
is as costly as the computation of a single expectation with multilevel.

I As for classical multilevel Monte Carlo one can replace the random
variables Fk(θ,U)− Fk−1(θ,U) by other random variables Pk(θ,U) having
the same expectation. In particular, the antithetic Milshtein idea is
applicable.

I The approach can easily be adapted to the computation of maxima.

I A combination with extrapolation methods is straight-forward.

I Central limit theorems can also be deduced by using standard theory

I In the fast regime (β > 1) one can replace in classical stochastic
approximation algorithms F (θ,U) by

FJ(θ,U)− FJ−1(θ,U)

aJ
.

with J being independent of U with appropriate prob. weights (ak) (in the
spirit of McLeish ’11, Glynn, Rhee ’12).
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