General multilevel adaptations for stochastic approximation algorithms

Steffen Dereich

Westfälische Wilhelms-Universität Münster http://wwwmath.uni-muenster.de/statistik/dereich/

joint work with Thomas Müller-Gronbach

Multilevel Monte Carlo @ Paris

7/7/2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Agenda

- I Introduction
- II Preliminaries
- III Local error analysis (main results)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 ${\sf IV}\,$ Conclusion

I Introduction

Given:

- random variable U with values in a measurable space \mathcal{U}
- ▶ $F : \mathbb{R}^d \times \mathcal{U} \to \mathbb{R}^d$ measurable such that $F(\theta, U)$ is integrable $\forall \theta \in \mathbb{R}^d$

Aim: Find zeroes of $f : \mathbb{R}^d \to \mathbb{R}^d$ given by

 $f(\theta) = \mathbb{E}[F(\theta, U)].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I Introduction

Given:

- random variable U with values in a measurable space \mathcal{U}
- ▶ $F : \mathbb{R}^d \times \mathcal{U} \to \mathbb{R}^d$ measurable such that $F(\theta, U)$ is integrable $\forall \theta \in \mathbb{R}^d$

Aim: Find zeroes of $f : \mathbb{R}^d \to \mathbb{R}^d$ given by

 $f(\theta) = \mathbb{E}[F(\theta, U)].$

- E.g.: Computation of quantiles
 - ► $F(\theta, U) = \alpha \mathbf{1}_{\{U \le \theta\}}$ for a $\alpha \in (0, 1)$ and a \mathbb{R} -valued random variable U⇒ zero of $f(\theta) = \mathbb{E}[F(\theta, U)] = \alpha - \mathbb{P}(U \le \theta)$ is α -quantile

Computation of extremes

▶ *F* now is a mapping $F : \mathbb{R}^d \times \mathcal{U} \to \mathbb{R}$ and an extremal value of $f(\theta) = \mathbb{E}[F(\theta, U)]$ corresponds to a zero of

 $g(\theta) = \nabla f(\theta) = \mathbb{E}[\nabla_{\theta}F(\theta, U)].$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

I Examples

Focus: on the case where $F(\theta, U)$ is not simulatable.

Ex 1: SDE. $F(\theta, U) = f(\theta, X_T^{(\theta, U)})$, where $U = (U_t)$ is a Brownian motion and $(X_t^{(\theta, U)})_{t \ge 0}$ solves an integral equation

$$X_t^{(\theta,U)} = x_0^{(\theta)} + \int_0^t a(X_s^{(\theta,U)},\theta) \,\mathrm{d} U_s + \int_0^t b(X_s^{(\theta,U)},\theta) \,\mathrm{d} s.$$

I Examples

Focus: on the case where $F(\theta, U)$ is not simulatable.

Ex 1: SDE. $F(\theta, U) = f(\theta, X_T^{(\theta, U)})$, where $U = (U_t)$ is a Brownian motion and $(X_t^{(\theta, U)})_{t \ge 0}$ solves an integral equation

$$X_t^{(\theta,U)} = x_0^{(\theta)} + \int_0^t a(X_s^{(\theta,U)},\theta) \,\mathrm{d}U_s + \int_0^t b(X_s^{(\theta,U)},\theta) \,\mathrm{d}s.$$

Ex 2: PDE with random coefficients. $F(\theta, U)$ value of a PDE with random coefficients U at a certain point.

(日) (日) (日) (日) (日) (日) (日) (日)

I Introduction

Central concepts: (to be introduced on the next slides)

- Robbins-Monro algorithm (Robbins, Monro '51)
- Polyak-Ruppert averaging (Ruppert '91, Polyak, Juditsky '92)
- Multilevel paradigm (Heinrich '98, Giles '08)

Aim: Multilevel stochastic approximation algorithms in the spirit of Giles '08 **Rel. research:** N. Frikha '13+, Multi-level stochastic approximation algorithms

II Robbins-Monro algorithms (L-attractors)

Def: We call a zero θ^* of f *L*-attractor for an L > 0 if

 $f(\theta) = H(\theta - \theta^*) + o(|\theta - \theta^*|), \quad \text{ as } \theta \to \theta^*,$

where H is in $\mathbb{R}^{d \times d}$ with

 $\max{\operatorname{Re}(\lambda) : \lambda \text{ eigenvalue of } H} \le -L.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

II Robbins-Monro algorithms (L-attractors)

Def: We call a zero θ^* of f *L*-attractor for an L > 0 if

$$f(\theta) = H(\theta - \theta^*) + o(|\theta - \theta^*|), \quad \text{ as } \theta \to \theta^*,$$

where *H* is in $\mathbb{R}^{d \times d}$ with

$$\max{\operatorname{Re}(\lambda) : \lambda \text{ eigenvalue of } H} \le -L.$$

Motivation: For an *L*-attractor θ^* the solution $u : [0, \infty) \to \mathbb{R}^d$ of the differential equation

$$\dot{u}(t)=f(u(t))$$

looks in the vicinity of θ^* like

II Robbins-Monro algorithms

The evolution equation "finds" attracting zeroes. To get from the evolution equation

 $\dot{u}(t) = f(u(t))$

to stochastic approximation algorithms one does

- Euler steps with step width $\gamma_1, \gamma_2, \ldots$
- ▶ with *f* replaced by a random variable having the "right" expectation.

II Robbins-Monro algorithms

The evolution equation "finds" attracting zeroes. To get from the evolution equation $% \left({{{\left[{{{C_{{\rm{B}}}} \right]}}}} \right)$

 $\dot{u}(t) = f(u(t))$

to stochastic approximation algorithms one does

- Euler steps with step width $\gamma_1, \gamma_2, \ldots$
- ▶ with *f* replaced by a random variable having the "right" expectation.

Robbins-Monro system: Given a sequence $(\gamma_n)_{n \in \mathbb{N}}$ of strictly positive reals and a starting value θ_0 we set

 $\theta_n = \theta_{n-1} + \gamma_n F(\theta_{n-1}, U_n)$

for $n \in \mathbb{N}$, where U_1, U_2, \ldots are independent copies of U.

II Robbins-Monro algorithms

The evolution equation "finds" attracting zeroes. To get from the evolution equation

 $\dot{u}(t) = f(u(t))$

to stochastic approximation algorithms one does

- Euler steps with step width $\gamma_1, \gamma_2, \ldots$
- ▶ with *f* replaced by a random variable having the "right" expectation.

Robbins-Monro system: Given a sequence $(\gamma_n)_{n \in \mathbb{N}}$ of strictly positive reals and a starting value θ_0 we set

 $\theta_n = \theta_{n-1} + \gamma_n F(\theta_{n-1}, U_n)$

for $n \in \mathbb{N}$, where U_1, U_2, \ldots are independent copies of U.

Note: Natural assumptions on (γ_n) are

- ▶ $\gamma_n \rightarrow 0$: randomness of U_n should lose its impact
- ► $\sum_{n \in \mathbb{N}} \gamma_n = \infty$: the associated "Euler time" should tend to infinity.

Refs: Robbins, Monro '51, ..., Pelletier '98, ..., Duflo '96, Kushner, Yin '03

II Polyak-Ruppert averaging

Note: The fastest convergence of (θ_n) is obtained for (γ_n) of the form

$$\gamma_n = rac{\gamma_0}{n}$$
 with $\gamma_0 > (2L)^{-1}$

Then

$$|\theta_n - \theta^*| \quad " \approx " \quad n^{-1/2}.$$

Problem: The strength of attraction *L* is typically not known!

II Polyak-Ruppert averaging

Note: The fastest convergence of (θ_n) is obtained for (γ_n) of the form

$$\gamma_n = rac{\gamma_0}{n}$$
 with $\gamma_0 > (2L)^{-1}$

Then

$$|\theta_n - \theta^*| \quad " \approx " \quad n^{-1/2}.$$

Problem: The strength of attraction *L* is typically not known!

Remedy: Use $\gamma_n = n^{-\eta}$ with $\eta \in (1/2, 1)$ instead and consider as approximation

$$\bar{\theta}_n = \frac{1}{n} \sum_{k=1}^n \theta_k.$$

- requires stronger assumptions on f
- same order of convergence

Refs: Ruppert '91, Polyak, Juditsky '92

III Multilevel stochastic approximation

Aim: Compute zero of

 $f(\theta) = \mathbb{E}[F(\theta, U)]$

for a nonsimulatable $F(\theta, U)$!

Use: Hierarchical scheme of approximations:

 $F_1, F_2, \ldots : \mathbb{R}^d \times \mathcal{U} \to \mathbb{R}^d$

measurable functions. Further $F_0 \equiv 0$.

Establish stochastic approximation schemes that show the same rates of convergence as one has in the computation of a single expectation.

Employ similar assumptions as in Giles '08.

III Assumptions

Assu A=A($\alpha, \beta, \theta^*, L, p$): θ^* is a *L*-attractor of *f* and there exist $\delta > 0$ and $c \in (0, \infty)$ such that for $\theta \in B(\theta^*, \delta)$

- $\blacktriangleright |\mathbb{E}[F(\theta, U)] \mathbb{E}[F_k(\theta, U)]| \le c (M^k)^{-\alpha}$
- $\blacktriangleright \mathbb{E}[|F(\theta, U) F_k(\theta, U)|^p]^{2/p} \le c (M^k)^{-\beta}$
- one simulation of $F_k(\theta, U) F_{k-1}(\theta, U)$ is assigned the cost $C_k = M^k$

(with $\alpha, \beta, L \in (0, \infty)$, $\theta^* \in \mathbb{R}^d$ and $p \in [2, \infty)$).

Note:

The assumptions only require an error control for fixed θ uniformly in a neighbourhood of θ*.

III Assumptions

Assu A=A($\alpha, \beta, \theta^*, L, p$): θ^* is a *L*-attractor of *f* and there exist $\delta > 0$ and $c \in (0, \infty)$ such that for $\theta \in B(\theta^*, \delta)$

- $\blacktriangleright |\mathbb{E}[F(\theta, U)] \mathbb{E}[F_k(\theta, U)]| \le c (M^k)^{-\alpha}$
- $\blacktriangleright \mathbb{E}[|F(\theta, U) F_k(\theta, U)|^p]^{2/p} \le c (M^k)^{-\beta}$
- one simulation of $F_k(\theta, U) F_{k-1}(\theta, U)$ is assigned the cost $C_k = M^k$

(with $\alpha, \beta, L \in (0, \infty)$, $\theta^* \in \mathbb{R}^d$ and $p \in [2, \infty)$).

Note:

- The assumptions only require an error control for fixed θ uniformly in a neighbourhood of θ*.
- In the SDE example one may for instance choose Euler approximations with M^k steps.
- The error analysis done for classical multilevel algorithms can directly be transferred.
- More elaborate multilevel algorithms such as antithetic Milstein can also be combined with our approach.

III Scheme with deterministic choice of levels (A)

Algorithms are specified by an initial vector $\theta_0 \in \mathbb{R}^d$,

- (i) $(\gamma_n)_{n \in \mathbb{N}} \subset (0, \infty)$: decreasing sequence determining step sizes
- (ii) $(m_n)_{n \in \mathbb{N}} \subset \mathbb{N}$: increasing sequence determining maximal levels, and
- (iii) $(a_k)_{k \in \mathbb{N}} \subset (0, \infty)$: decreasing sequence determining iteration numbers

 $N_{n,k} = [a_k/a_{m_n}], \text{ for } k = 1, \dots, m_n \text{ and } n \in \mathbb{N}.$

Innovation: Using iid copies $(U_{n,k,\ell})$ of U we set

$$Z_n(\theta) = \sum_{k=1}^{m_n} \frac{1}{N_{n,k}} \sum_{\ell=1}^{N_{n,k}} (F_k(\theta, U_{n,k,\ell}) - F_{k-1}(\theta, U_{n,k,\ell}))$$

Robbins-Monro step: adapted dynamical system $(\theta_n)_{n \in \mathbb{N}}$ such that

$$\theta_n = \theta_{n-1} + \gamma_n Z_n(\theta_{n-1}).$$

Cost:

$$\operatorname{cost}_n = \sum_{j=1}^n \sum_{k=1}^{m_j} N_{j,k} C_k$$

III Local error analysis (Robbins-Monro)

Theorem: (D, Müller-Gronbach '16+) Suppose that Assumption A is satisfied and that $2\alpha > \beta$ or $\beta > 1$. Let

$$\sigma = rac{2lpha}{4lpha - eta - \min(1,eta)}, \quad \gamma_0 \in (
ho/(2L),\infty)$$

and

$$\gamma_n = \gamma_0 n^{-1}, \quad m_n = \left\lceil \frac{\sigma}{\alpha \ln M} \ln(n+1) \right\rceil, \quad a_n = M^{-n \frac{(\beta+1)}{2}}.$$

Then there exist $\delta, \kappa \in (0,\infty)$ such that

$$\limsup_{n\to\infty}\frac{1}{\varepsilon_n} \mathbb{E}[\mathbf{1}_{\{(\theta_n)_{n\geq k_0}\subset B(\theta^*,\delta)\}}|\theta_n-\theta^*|^p]^{1/p}\leq \kappa$$

for every $k_0 \in \mathbb{N}$ with

$$\varepsilon_n = \begin{cases} n^{-\sigma}, & \text{if } \beta \neq 1, \\ n^{-\sigma}\sqrt{\ln(n+1)}, & \text{if } \beta = 1, \end{cases} \text{ and } \operatorname{cost}_n \leq \begin{cases} \kappa n^{2\sigma}, & \text{if } \beta > 1, \\ \kappa n^{2\sigma} \ln(n+1), & \text{if } \beta = 1, \\ \kappa n^{\sigma} \left(1 + \frac{1-\beta}{\alpha}\right), & \text{if } \beta < 1. \end{cases}$$

.

III Local error analysis (Polyak-Ruppert averaging)

Polyak-Ruppert averaging: Let $(b_n)_{n \in \mathbb{N}} \subset (0, \infty)$ be an increasing sequence and consider

$$\bar{\theta}_n = \frac{1}{\sum_{k=1}^n b_k} \sum_{k=1}^n \mathbf{1}_{\{|\theta_k - \theta_n| \le C\}} b_k \theta_k.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

III Local error analysis (Polyak-Ruppert averaging)

Polyak-Ruppert averaging: Let $(b_n)_{n \in \mathbb{N}} \subset (0, \infty)$ be an increasing sequence and consider

$$\bar{\theta}_n = \frac{1}{\sum_{k=1}^n b_k} \sum_{k=1}^n \mathbf{1}_{\{|\theta_k - \theta_n| \le C\}} b_k \theta_k.$$

Assu $B=B(\alpha, \beta, \theta^*, L, p, \lambda)$: Assu A is satisfied and one has

 $f(heta) = Df(heta^*)(heta - heta^*) + o(| heta - heta^*|^{1+\lambda})$ as $heta o heta^*.$

III Local error analysis (Polyak-Ruppert averaging)

Polyak-Ruppert averaging: Let $(b_n)_{n \in \mathbb{N}} \subset (0, \infty)$ be an increasing sequence and consider

$$\bar{\theta}_n = \frac{1}{\sum_{k=1}^n b_k} \sum_{k=1}^n \mathbf{1}_{\{|\theta_k - \theta_n| \le C\}} b_k \theta_k.$$

Assu $B=B(\alpha, \beta, \theta^*, L, p, \lambda)$: Assu A is satisfied and one has

 $f(heta) = Df(heta^*)(heta - heta^*) + o(| heta - heta^*|^{1+\lambda}) ext{ as } heta o heta^*.$

Theorem: (D, Müller-Gronbach '16+) Suppose Assu B is satisfied with general $p \ge 2$ and suppose that $2\alpha > \beta$ or $\beta > 1$. Let σ , (m_n) and (a_n) be as in the previous theorem.

Take $q \in [p/(1 + \lambda), p)$ and $\eta \in ((1 - 2\sigma(p - q)/p)_+, 1)$ and set $\gamma_n = \operatorname{const} n^{-\eta}$. Further take $\xi \in [\sigma - 1/2, \infty)$ and set $b_n = n^{\xi}$.

Then there exist $\delta, \kappa \in (0, \infty)$ such that

$$\limsup_{n\to\infty}\frac{1}{\varepsilon_n} \mathbb{E}[\mathbf{1}_{\{(\theta_n)_{n\geq k_0}\subset B(\theta^*,\delta)\}}|\bar{\theta}_n-\theta^*|^q]^{1/q}\leq \kappa$$

for every $k_0 \in \mathbb{N}$ with (ε_n) as before.

IV Comparison with related work

Frikha '14+: CLT for multilevel stochastic approximation for SDEs

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

IV Comparison with related work

Frikha '14+: CLT for multilevel stochastic approximation for SDEs

Approach: Denote

 $f_n(\theta) = \mathbb{E}[F_n(\theta, U)]$

and let θ_n^* denote the unique zero of f_n (assumption). For $m \in \mathbb{N}$ one has

 $\theta_m^* = (\theta_m^* - \theta_{m-1}^*) + \ldots + \theta_1^*$

and to estimate $\theta_n^* - \theta_{n-1}^*$ one performs coupled stochastic approximation algorithms with F_n and F_{n-1} using the same U's.

IV Comparison with related work

Frikha '14+: CLT for multilevel stochastic approximation for SDEs

Approach: Denote

 $f_n(\theta) = \mathbb{E}[F_n(\theta, U)]$

and let θ_n^* denote the unique zero of f_n (assumption). For $m \in \mathbb{N}$ one has

 $\theta_m^* = (\theta_m^* - \theta_{m-1}^*) + \ldots + \theta_1^*$

and to estimate $\theta_n^* - \theta_{n-1}^*$ one performs coupled stochastic approximation algorithms with F_n and F_{n-1} using the same U's.

Comments:

- algorithms utilise Polyak-Ruppert averaging
- analysis cumbersome since one needs to analyse coupled stochastic approximation algorithms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• optimal results are obtained for (γ_n) of the form $\gamma_n = \gamma_0/n$ \Rightarrow estimate for *L* needed

IV Pros and cons

Robbins-Monro	Polyak-Ruppert averaging
estimates for <u>L</u> needed	value of <i>L</i> irrelevant
except differentiablility in θ^* no regularity assumptions on f	slightly stronger regularity assumptions on f in θ^*
original moment in error estimate	reduced moment in error estimate

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

IV Pros and cons

Robbins-Monro	Polyak-Ruppert averaging
estimates for <u>L</u> needed	value of <i>L</i> irrelevant
except differentiablility in θ^* no regularity assumptions on f	slightly stronger regularity assumptions on f in θ^*
original moment in error estimate	reduced moment in error estimate

Fixed choice of levels	Random choice of levels
general moments accessible	loss of efficiency for moments larger than 2
$2\alpha > \beta$ needed in slow regime	2lpha=eta generally allowed

IV Concluding remarks

- With multilevel stochastic approximation the computation of L-attractors is as costly as the computation of a single expectation with multilevel.
- ► As for classical multilevel Monte Carlo one can replace the random variables $F_k(\theta, U) F_{k-1}(\theta, U)$ by other random variables $P_k(\theta, U)$ having the same expectation. In particular, the antithetic Milshtein idea is applicable.
- The approach can easily be adapted to the computation of maxima.
- A combination with extrapolation methods is straight-forward.
- Central limit theorems can also be deduced by using standard theory
- In the fast regime (β > 1) one can replace in classical stochastic approximation algorithms F(θ, U) by

$$rac{F_J(heta,U)-F_{J-1}(heta,U)}{a_J}.$$

with J being independent of U with appropriate prob. weights (a_k) (in the spirit of McLeish '11, Glynn, Rhee '12).

Main reference:

S. Dereich, T. Müller-Gronbach "General multilevel adaptations for stochastic approximation algorithms", arXiv:1506.05482

This and further related articles can be found on my homepage:

http://wwwmath.uni-muenster.de/statistik/dereich/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you for your attention!