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Introduction

Credit Valuation In a financial transaction between a party C that has to pay another party
AdJustment B some amount V/, the CVA value is the price of the insurance contract
that covers the default of party C to pay the whole sum V.

VA, 7 = (1-R)E (Vq—+1t<-r§T) (1)

> R is the recovery to make if the counterparty defaults (Assume R = 0),
» 7 is the random default time of the counterparty,
» T is the protection time horizon.
Numerical
simulation
N—1
CVAq 7~ > E (vtflTe(tth]) , ()
k=0
N < the number of time steps used for SDEs discretization.
Importance

» Hold sufficient amount of liquid assets to face the counterparty default.

> Basel Il includes the calculation of the CVA (Credit Valuation
Adjustment) as an important part of the prudential rules. -
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Introduction

TVA definition
»>

>

S. Crépey(2012)

TVA BSDE
simulatiop

>
>

>

Total valuation adjustment (>CVA+DVA+FVA), it covers:
Both defaults: 7 = 7° A 7%, CVA and DVA.

Funding our risk and the risk of the counterparty: Nonlinear BSDE part,
FVA.

Ignoring the external funding and denoting 5 = e~ Jo rudu \where r is the
risk-free short rate process, © satisfies the following BSDE on [0, 7 A T]

TAT
B0 = E | Brlrcr(Vr — RT)+/ Bego(Vs — ©,)ds|G:|  (3)
t

where G is the extension of F by the natural filtration generated by 7¢
and by 72, R is the total close-out cash-flow specified thanks to CSA
(Credit Support Annex) and g is the funding coefficient.

Only for European contracts.

Requires a good approximation of the exposure V.
Practitioners usually use rough approximations.

No trustable procedure in the general case.

[ —
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Simulation algorithms

Without funding

N—1

. T
constraints VAo =Y E( e lreqn, (k+1)h]) h= -
k=0
With funding
constraints Ok = Ex (Oxt1 + hg(k + 1, Pry1,0k41)), Oy =0.
An example of a 140 : : : ;
] two stage = Quter simulation
simulation with 5 - - = Inner simulation from 0.6 R
Mo =2, Mg = = | KR Inner simulation from 0.8 ‘ |
and Mg =4 s 120 .
C
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Simulation algorithms

CVAo, T N—1 ~ '
approximation CVAo T = Z Z F2,, (pl Si)s s Pk+1(5;<+1)) (4)
With
{ FI}+1(X17 ) = B (lTE(kh*(k+1)h]|P1 = X150 Poy1 = Xk+1) ) (5)
FE+1(X17 w Xkt1) = (Xk+1)+Fk1+1(X1» ceoy Xk )-
© approximation
For k=1,...,.N—1
—~ _ 1 . ) . i
Ok(x)="yp(x)W; ! [Z@b <@k+1 k“) + Ng(kJrl, Ok41(Sii1)s Pk+1(5{<+1))):|
(6)
A ~ 1 Mo o 1 o
and On(x) =0, Go(S0) = - ,:21 (91(51) + ﬁg(hel(s{), Pl(si))) :

Mo} are two

.....

Mo
1 =i\ , =
Where V) =% o E Y(S) (S) | with: {57} ieqa,. Moy and {S' e
i—0

independent simulations of the underlying asset S, v is a basis of monomial functions where K
is its cardinal and ¥ is an operator that must satisfy some desired properties. i

Diallo - Lokman (INRIA) MonteCarlo16 8/ 22



ST BT FEG LT Without funding constraints

Theorem  (Lokman Abbas-Turki - Mohamed Mikou: TVA on American Derivatives)

N2

s 2
E | (CVAg 7 — CVA < —
{( o7 O’T) } - My ke{oTa,)l(\l—l}

Var (FEH (’31(5{)7 ) ﬁk+1(5/£+1))>

i 2
+;4N1M_2 (£ [Vi(SH (PASFF(Pa(SD), - (S]]

N N—-1 2
B BV PSS 1 (Pr(SD. - Pi(S]. S
SLANM; py
N N Ay =1 i i i 2 N : 2 1
+§4sz (E [Vi(SHFHPLS): s PASDIPIS)) = 0] 5(0)) " + N;(Nﬂ 170 7

Where  ¢; is the density of P;(S}), V;(x) = Var (\/V, (ﬁ,—(x) - Pj(x))).

Good choices If ©;(0) is big then take M; ~ /Mo, otherwise M; ~ /Mo/N. In both
cases, N must be small when compared to v/Mp.

For example
N—j

M; = li with either My =

VMo

or My = v/ M. &'ihé%).
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ST BN FEG LT With funding constraints

Theorem  (Lokman Abbas-Turki - Mohamed Mikou: TVA on American Derivatives)
As long as {©;(x)}o<i<n—1 are of class C* on the support of S € R,
there exists a positive constant C such that foreach0 < k< N -1

2M,

K K2 K K1-2s/d
ol — K—25/d .
* (A% T, Tz T At

[(ek(s:)—ek(s')) } CKZ(‘E Visa(5}2)0¢ (141, 01(S[,), Pria (o))
1=k

Good choice Take M, ~ v/ Mo /N, N must be sufficiently small N ~ 10.

For example

N1 Mo
M = ——— My with M = 8
VI R A (8)

e
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Some simulation results

Within less than 1 minute simulation on GPU:
My = 131K, N = 10, Neds = 50

European
Path-dependent R
option o(ST) = <T 4+ T _5'?;)
2 2
+
My S} Qg std CVA()’T CVA(]’T std
VM
v 9 | 0.01364 | 4%10-5 | 0.0296 | 2x10~*
VM
9 | 0.01307 | 4%10-5 | 0.0294 2%104
VN
VMo | 0.01265 | 3105 | 0.0291 2+10 %

e
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Some simulation results

Within less than 1 minute simulation on GPU:
My = 131K, N = 10, Neds = 50

European
Path-dependent

i 3st 752 75t 352
option ®(S7) = <T+T53) ( T+TS3T>
+

My [ ©p std CVAO’T CVAO’T std
VM
5 ° 2.72%10-3 | 10-5 | 0.0365 8x10~4
VM
0 2.44%10-3 | 105 | 0.0453 8x104
VN
VMo 228%10°3 | 105 | 0.0520 8+10 2
VNy/Mo | 224 x1073 | 1075 0.0528 8x10~4
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Dynamic Marshall-Olkin (DMO)

Default time model n+ 2 credit names {-1,0,...,n}.

Y= {{_1}7{0}7---7{”},’17127---7Im}, (9)

I; contains at least two obligors, I = {1, 2, ..., Im}.

Ay (t, Xt) shock intensities, where X; = (Xty) Markov factor process

Yey

t
Ny = inf{t>0:/ Ay(s,Xs)ds>Ey}, (10)
0

Ey random variables i.i.d and exponentially distributed with parameter 1.
If Y1 #£ Y2 Q(ny:s =ny2)=0.
For each obligor i we define

i = min 11
T ATy (11)

as the default time of obligor / in common-shock model,
Th=71_41,7=1.

Hi= 1 e i
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Common-Shock Model

_ Conditior]rjal (Bielecki; Cousin; Crépey: A Bottom-Up Dynamic Model of Portfolio
survival probability Credit Risk. Part I: Markov Copula Perspective )

The conditionnal survival probability function of every obligor is given by,

for every t; > t,

Q (i > | Fe(W, H)) = Q(7i > ti|He, Xe)

,/t" T )\y(s,XSY)ds)
Ix{

:(1—H{)E e( t yey,iey

S
—/ ry + Z Ay (u, X)) | du
t

CDS clean price T,
pi = (1 _ H;) E / R Yev,iey
t

x |1=R) D A(sX))=Si|ds| X |,
Yev,ieY

> R; are the recovery rates;

e

TeA—
> S, are the contractual spreads.
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Common-Shock Model

Model example

Individual default
intensities X' are independent homogenous CIR processes,

dXi = ai(bj— X})dt + cjy/ X[ dW'.

The individual default intensities are function of X;
Moo= ki+ X[,
where k; is a constant.
Systemic shock

intensities ]
Mt X) = o i.mj At
IS

(ay)rer are nonnegative constants, Za, < 1.

lel
Idiosyncratic
Intensities .
Ai(t, Xe) = A=) N(t,Xe) >0.
iel
MonteCarlo16
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+
CVAor = E (nmd}ﬂmu — Ro) [PTO + <Z —Z) lgrrery(1— R,—)] ) . (16)

i pay irec

N—-1

4
~ Z E <H{Toe(tkstk+1]}ﬁtk+1(1 — Ro) |:Ptk+1 + (Z - Z) l{Tie(tk»thrl]}(l - Ri):| > > (17)

k=0 i pay irec

where 7€ = 7.

CDS portfolio
clean price P = (

> - Z) P’ (18)

i pay irec

tq
Y,lj

) ) My T Z (rtp + Z )\Y(tP»ti J)) (tp — tp—1)
Pilte Hy XL~ (L= HN >0 [ Do e o5 rerey

J=1 | tg=tx

YEY,iey

1-R) > Ay(rq,xtjﬂ’*f)s;} (tqtq1)>~
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Mathematical and computing work suited to GPUs

» Market factor TVA simulation within a minute.

» Credit factor CVA simulation with 100 CDS within few minutes.

More to come
> Better use of GPU cache memory (shared).

» Compute XVA on any general bank portfolio in less than one hour:
simulation of all prices +XVA.

Architecture
evolution
> High bandwidth memory (HBM) on GPU to increase throughput.

> 3d XPoint non volatile memory to store the huge number of prices.
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Conclusion

References

> L.A. Abbas-Turki and M.A. Mikou. TVA on American Derivatives:
https://hal.archives-ouvertes.fr/hal-01142874

> Stéphane Crépey and Tomasz R. Bielecki. Counterparty Risk and Funding
A Tale of Two Puzzles. Chapman and HALL

» Tomasz R. Bielecki; Areski Cousin; Stéphane Crépey. A Bottom-Up
Dynamic Model of Portfolio Credit Risk. Part I: Markov Copula
Perspective. Recent Advances in Financial Engineering 2012, Takahashi
and Y. Muromachi and T. Shibata (Eds.), pp.25-50 and 51-74, 2014.

e

Zia—

Diallo - Lokman (INRIA) MonteCarlo16 21 /22


https://hal.archives-ouvertes.fr/hal-01142874

Thank you
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