
Fast QMC matrix vector
multiplication in option pricing

Josef Dick
joint work with F. Kuo, Q. T. Le Gia, Ch. Schwab

School of Mathematics and Statistics, UNSW, Sydney, Australia

fg=brown

We consider the pricing of options:

Consider the geometric Brownian motion

dSt = rSt dt + σSt dWt , t ≥ 0,

where r is the risk-free interest rate, σ is the volatility, and Wt is
a standard Brownian motion. The solution of this SDE is given
by

St = S0 exp
(
(r − 1

2σ
2)t + σWt

)
, t ≥ 0.

Let g be the payoff function of some option. Then the expected
payoff is given by

E(g) =
∫
Rs

g(w)
exp

(
−1

2w>Σ−1w
)√

(2π)s det(Σ)
dw ,

where the covariance matrix Σ = (Σi ,j)1≤i ,j≤s is given by

Σi ,j = ∆t min(i , j), i , j = 1, . . . , s.

Here we assume equally spaced times tj = j∆t for j = 1, . . . , s,
where ∆t = T

s .

The option price is then e−rTE(g).

Generate normally distributed samples with a general
covariance matrix.

Consider ∫
Rs

g(w)
exp

(
−1

2wΣ−1w>
)√

(2π)s det(Σ)
dw .

Use a factorization Σ = A>A and w = Φ−1(y)A, where Φ−1 is
the inverse standard normal CDF, to get∫

[0,1]s
f (Φ−1(y)A) dy .

We approximate this integral by

1
N

N−1∑
n=0

f (Φ−1(yn)A).

Generate normally distributed samples with a general
covariance matrix.

Consider ∫
Rs

g(w)
exp

(
−1

2wΣ−1w>
)√

(2π)s det(Σ)
dw .

Use a factorization Σ = A>A and w = Φ−1(y)A, where Φ−1 is
the inverse standard normal CDF, to get∫

[0,1]s
f (Φ−1(y)A) dy .

We approximate this integral by

1
N

N−1∑
n=0

f (Φ−1(yn)A).

Generate normally distributed samples with a general
covariance matrix.

Consider ∫
Rs

g(w)
exp

(
−1

2wΣ−1w>
)√

(2π)s det(Σ)
dw .

Use a factorization Σ = A>A and w = Φ−1(y)A, where Φ−1 is
the inverse standard normal CDF, to get∫

[0,1]s
f (Φ−1(y)A) dy .

We approximate this integral by

1
N

N−1∑
n=0

f (Φ−1(yn)A).

Commonly used factorizations of Σ are: Cholesky factorization,
Brownian bridge (Moskowitz and Caflisch), Principle
component analysis (Acworth, Broadie and Glasserman).

All of these factorizations are known explicitely and in each
case the matrix A has a ‘nice’ structure such that the matrix
vector product Φ−1(y)A can be computed fast (PCA:
Scheicher).

For QMC the choice of A can make a difference in the
approximation properties of the estimator (Papageorgiou).

The strategie is then to choose A ”wisely” (Imai and Tan). For
instance, Leobacher and Leobacher and Irrgeher use the
Householder transform.

Commonly used factorizations of Σ are: Cholesky factorization,
Brownian bridge (Moskowitz and Caflisch), Principle
component analysis (Acworth, Broadie and Glasserman).

All of these factorizations are known explicitely and in each
case the matrix A has a ‘nice’ structure such that the matrix
vector product Φ−1(y)A can be computed fast (PCA:
Scheicher).

For QMC the choice of A can make a difference in the
approximation properties of the estimator (Papageorgiou).

The strategie is then to choose A ”wisely” (Imai and Tan). For
instance, Leobacher and Leobacher and Irrgeher use the
Householder transform.

Now consider multi-asset options: Assume d stocks with
constant volatilities σi and correlations ρi ,j . The covariance
between these stocks is given by the symmetric positive
definite matrix Γ = (Γi ,j)1≤i ,j≤d with entries

Γi ,j = σiρi ,jσj , i , j = 1, . . . ,d .

The expected payoff for a given payoff function g is then

E(g) =
∫
Rds

g(w)
exp(−1

2w>(Σ⊗ Γ)−1w)√
(2π)ds det(Σ⊗ Γ)

dw

=

∫
[0,1]sd

g(Φ−1(y)(A⊗ B)) dy ,

where Σ = AA> and Γ = BB>, and A⊗ B denotes the
Kronecker product

A⊗ B =

a1,1B . . . a1,sB
...

. . .
...

as,1B . . . ad ,dB

 .

We approximate the integral by∫
[0,1]sd

g(Φ−1(y)(A⊗ B)) dy ≈ 1
N

N−1∑
n=0

g(Φ−1(yn)(A⊗ B)).

In general, the matrix A⊗ B does not have a nice structure
anymore.

One way to speed up the computation of yn(A⊗ B) is by
rearranging this product to

AΦ−1(Yn)B>,

where Yn is a suitable rearrangement of yn. The matrix A has
a nice structure as before. However, the matrix B does not have
a nice structure.

More generally, let us consider the approximation of an integral
of the form∫

[0,1]s
f (Φ−1(y)A) dy ≈ 1

N

N−1∑
n=0

f (Φ−1(yn)A),

where y is a row-vector of length s, the function Φ−1 is applied
component-wise, and A ∈ Rs×t .

Let

X =

Φ−1(y0)

Φ−1(y1)
...

Φ−1(yN−1)

 =

Φ−1(y0,1) . . . Φ−1(y0,s)

Φ−1(y1,1) . . . Φ−1(y1,s)
...

...
Φ−1(yN−1,1) . . . Φ−1(yN−1,s)

 .

More generally, let us consider the approximation of an integral
of the form∫

[0,1]s
f (Φ−1(y)A) dy ≈ 1

N

N−1∑
n=0

f (Φ−1(yn)A),

where y is a row-vector of length s, the function Φ−1 is applied
component-wise, and A ∈ Rs×t .

Let

X =

Φ−1(y0)

Φ−1(y1)
...

Φ−1(yN−1)

 =

Φ−1(y0,1) . . . Φ−1(y0,s)

Φ−1(y1,1) . . . Φ−1(y1,s)
...

...
Φ−1(yN−1,1) . . . Φ−1(yN−1,s)

 .

For X = Φ−1(Y), we compute

XA = B =

b0
b1
...

bN−1

 ∈ RN×t .

Computing the matrix product XA costs O(Nst) operations.

We want to find a method to compute this product faster.

Idea: Find quadrature points y0,y1, . . . ,yN−1 such that the
matrix-vector product Xak can be computed fast, where
A = (a1,a2, . . . ,at) .

For X = Φ−1(Y), we compute

XA = B =

b0
b1
...

bN−1

 ∈ RN×t .

Computing the matrix product XA costs O(Nst) operations.

We want to find a method to compute this product faster.

Idea: Find quadrature points y0,y1, . . . ,yN−1 such that the
matrix-vector product Xak can be computed fast, where
A = (a1,a2, . . . ,at) .

Lattice rule:

Let N be a prime number and
g = (g1,g2, . . . ,gs) ∈ {1,2, . . . ,N − 1}s. Then

yn =
({ng1

N

}
, . . . ,

{ngs

N

})
for n = 0,1, . . . ,N − 1,

where {x} = x − bxc for x ≥ 0.

Let β be a primitive element of the multiplicative group Z∗N , that
is, {βk mod N : k = 0,1,2, . . . ,N −2} = {1,2, . . . ,N −1}. Write

gj = β
cj−1 (mod N), cj ∈ {1, . . . ,N − 1}.

Conveniently, the fast component-by-component construction
computes cj .

Let

xn,j = Φ
−1

({
βcj−1−(n−1)

N

})
= Φ−1

({
βcj−n

N

})
and

X ′ =

 x1,1 . . . x1,s
...

...
xN−1,1 . . . xN−1,s

 .
Since the ordering of the points is irrelevant, we can compute

X ′ak instead of Xak .

Let β be a primitive element of the multiplicative group Z∗N , that
is, {βk mod N : k = 0,1,2, . . . ,N −2} = {1,2, . . . ,N −1}. Write

gj = β
cj−1 (mod N), cj ∈ {1, . . . ,N − 1}.

Conveniently, the fast component-by-component construction
computes cj .
Let

xn,j = Φ
−1

({
βcj−1−(n−1)

N

})
= Φ−1

({
βcj−n

N

})
and

X ′ =

 x1,1 . . . x1,s
...

...
xN−1,1 . . . xN−1,s

 .
Since the ordering of the points is irrelevant, we can compute

X ′ak instead of Xak .

Goal: Write X ′ = ZP.
For k ∈ Z let

zk = Φ−1
({

βk

N

})
.

Then zk = zk+v(N−1) for all v ∈ Z . Let

Z =

z0 z1 z2 . . . zN−3 zN−2

zN−2 z0 z1
. zN−3

zN−3 zN−2 z0
. zN−4

...
.

...

z2
. z0 z1

z1 z2 zN−2 z0

.

Let P = (pk ,j)1≤k≤N−1,1≤j≤s ∈ {0,1}(N−1)×s be given by

pk ,j =

{
1 if k = cj ,

0 otherwise.

Each column of P has at most one entry 1 with the remaining
entries being 0.

Then
X ′ = ZP.

Computing ck = Pak is just a re-ordering of the elements and
Zck can be computed using the fast Fourier transform in
O(N log N) operations.

The number of operations is now O(N(log N)t) instead of
O(Nst), i.e., we replace s by log N.

This method incurs a storage cost of O(Nt).

Then
X ′ = ZP.

Computing ck = Pak is just a re-ordering of the elements and
Zck can be computed using the fast Fourier transform in
O(N log N) operations.

The number of operations is now O(N(log N)t) instead of
O(Nst), i.e., we replace s by log N.

This method incurs a storage cost of O(Nt).

Then
X ′ = ZP.

Computing ck = Pak is just a re-ordering of the elements and
Zck can be computed using the fast Fourier transform in
O(N log N) operations.

The number of operations is now O(N(log N)t) instead of
O(Nst), i.e., we replace s by log N.

This method incurs a storage cost of O(Nt).

Apart from lattice point sets, the following point sets also work:
Polynomial lattice point set

Union of all (polynomial) lattice point sets
One can apply a transformation φ : [0,1]→ R: for instance
an inverse (normal) cumulative distribution function or the
tent-transform;

Apart from lattice point sets, the following point sets also work:
Polynomial lattice point set
Union of all (polynomial) lattice point sets

One can apply a transformation φ : [0,1]→ R: for instance
an inverse (normal) cumulative distribution function or the
tent-transform;

Apart from lattice point sets, the following point sets also work:
Polynomial lattice point set
Union of all (polynomial) lattice point sets
One can apply a transformation φ : [0,1]→ R: for instance
an inverse (normal) cumulative distribution function or the
tent-transform;

Union of all lattice point sets:

yn,g =

({
ng0

N

}
, . . . ,

{
ngs−1

N

})
, n,g = 1,2, . . . ,N − 1.

Quadrature rules based on this point set behave more like MC
rather than QMC.

Apply transformation φ : [0,1]→ R: Use point set

yn =
(
φ
({ng1

N

})
, . . . , φ

({ngs

N

}))
, n = 0,1, . . . ,N − 1.

Method works in the same way as before, one only needs to
replace zk by

zk = φ

({
βk

N

})
.

Similarly as in the case when we apply the inverse normal
cumulative distribution function.

Union of all lattice point sets:

yn,g =

({
ng0

N

}
, . . . ,

{
ngs−1

N

})
, n,g = 1,2, . . . ,N − 1.

Quadrature rules based on this point set behave more like MC
rather than QMC.

Apply transformation φ : [0,1]→ R: Use point set

yn =
(
φ
({ng1

N

})
, . . . , φ

({ngs

N

}))
, n = 0,1, . . . ,N − 1.

Method works in the same way as before, one only needs to
replace zk by

zk = φ

({
βk

N

})
.

Similarly as in the case when we apply the inverse normal
cumulative distribution function.

Cases where (currently) it does not work:
Randomizations such as random (digital) shift, scrambling;
Interlaced polynomial lattice rules;
Higher order polynomial lattice rules (works but is not
effective);

Second order + fast QMC matrix vector multiplication possible.
A special case from a result by (Goda, Suzuki, and Yoshiki)
shows that applying the tent transform to polynomial lattice
rules yields a second order QMC rule (no randomization
needed).

Cases where (currently) it does not work:
Randomizations such as random (digital) shift, scrambling;
Interlaced polynomial lattice rules;
Higher order polynomial lattice rules (works but is not
effective);

Second order + fast QMC matrix vector multiplication possible.
A special case from a result by (Goda, Suzuki, and Yoshiki)
shows that applying the tent transform to polynomial lattice
rules yields a second order QMC rule (no randomization
needed).

Method N \s 200 400 600 800 1000
std. 16001 0.309 0.741 1.296 1.617 2.154
fast 0.164 0.301 0.450 0.589 0.741
std. 32003 0.589 1.468 2.435 3.063 4.238
fast 0.603 1.198 1.792 2.395 2.994
std. 64007 1.167 2.970 4.921 6.001 8.349
fast 1.804 3.853 5.551 7.582 9.827
std. 127997 2.579 5.889 9.490 11.891 16.818
fast 2.331 4.661 7.321 9.984 12.284
std. 256019 4.279 11.105 17.646 23.115 33.541
fast 5.401 10.933 16.174 24.147 26.898
std. 512009 8.885 23.368 31.942 48.059 66.378
fast 10.947 22.066 35.543 45.164 56.190

Table: Times (in seconds) to generate normally distributed points with
random covariance matrix. The top row is the time required by using
the standard approach, whereas the bottom row shows the time
required using the fast QMC matrix-vector approach.

Another application: Partial differential equations with random
coefficients

In PDE examples:
O(MNs) operations for standard implementation;
O(MN log N) operations + O(MN) memory using fast QMC
matrix-vector multiplication;

I.e., we can replace s by log N in the cost. If s = Nκ, then
log N � log s.

N 509 1021 2053 4001 8009 16001
std. 190 1346 10610 74550 ≈ 144 hrs ≈ 1000 hrs
fast 0.462 1.562 5.591 19.678 87.246 342.615

Table: Times (in seconds) where M = s = 2N

.
N 509 1021 2053 4001 8009 16001

std. 1.272 3.570 10.813 30.127 89.42 273.873
fast 0.059 0.126 0.265 0.516 1.113 2.443

Table: Times (in seconds) where M = s = d
√

Ne

.N 67 127 257 509
std. 6 82 1699 27935
fast 0.243 1.385 11.268 107.042

Table: Times (in seconds) where s = N and M = N2

.

N 509 1021 2053 4001 8009 16001
std. 0.436 1.734 15.173 84.381 614.636 4391.2
fast 0.326 1.122 4.296 15.203 60.546 270.691

Table: Times (in seconds) where M = s = 2N

.
N 509 1021 2053 4001 8009 16001

std. 0.182 0.375 0.791 1.609 4.100 7.874
fast 0.106 0.228 0.480 0.940 2.670 4.597

Table: Times (in seconds) where M = s = d
√

Ne

.
N 67 127 257 509 1021

std. 0.162 0.945 9.935 84.790 891.175
fast 0.204 1.084 10.154 83.861 746.907

Table: Times (in seconds) where s = N and M = N2

.

Thank You!

