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Introduction

Sampling distribution over high-dimensional state-space has recently
attracted a lot of research efforts in computational statistics and
machine learning...

Applications (non-exhaustive)

1 Bayesian inference for high-dimensional models
2 Bayesian non parametrics
3 Aggregation of estimators and experts

Most of the sampling techniques known so far do not scale to
high-dimension... Challenges are numerous in this area...
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Logistic regression

Likelihood: Binary regression set-up in which the binary observations
(responses) (Y1, . . . , Yn) are conditionally independent Bernoulli
random variables with success probability F (βββTXi), where

1 Xi is a d dimensional vector of known covariates,
2 βββ is a d dimensional vector of unknown regression coefficient
3 F is a distribution function.

logistic regression: F is the standard logistic distribution function,

F (t) = et/(1 + et)

.

Problem: the number of predictor variables d can be large.
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Bayes 101

Bayesian analysis requires a prior distribution for the unknown
regression parameter

π(βββ) ∝ exp

(
−1

2
βββ′Σ−1

βββ βββ

)
or π(βββ) = exp

(
−

d∑
i=1

αi|βi|

)
.

The posterior of βββ is up to a proportionality constant given by

π(βββ|(Y,X)) ∝
n∏
i=1

FYi(β′Xi)(1− F (β′Xi))
1−Yiπ(βββ)
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A daunting problem ?

The posterior density distribution of βββ is given by Bayes’ rule, up to
a proportionality constant by

π(βββ|(Y,X)) ∝ exp(−U(βββ)) .

where the potential U(βββ) is given by

U(βββ) = −
p∑
i=1

{Yi log
F (βββTXi)

1− F (βββTXi)
+ log(1−F (βββTXi))}+ ‖Bβββ‖1,2

Classical composite objective function... The prior plays the role of
regularization penalty.

International Conference on Monte Carlo technique



Motivation
Smooth case

Langevin diffusions and Euler discretization
Sampling from strongly log-concave distribution

Non-smooth potentials
Numerical illustrations

A daunting problem ?

In the case of the ridge regression, the potential U is smooth
strongly convex.

In the case of the lasso regression, the potential U is non-smooth
but still convex...

A wealth of reasonably fast optimisation algorithms are available to
solve this problem in high-dimension...
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Framework

Denote by π a target density w.r.t. the Lebesgue measure on Rd,
known up to a normalisation factor

x 7→ e−U(x)/

∫
Rd

e−U(y)dy ,

Implicitly, d� 1.

Assumption: U is L-smooth : continuously differentiable and there
exists a constant L such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L‖x− y‖ .
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Langevin diffusion

Langevin SDE:

dYt = −∇U(Yt)dt+
√

2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

Denote for all x ∈ Rd, δxPt the law Yt started at x.

π ∝ e−U is reversible ; the unique invariant probability measure.

The convergence to the stationary distribution takes place at
geometrical rate.

Precise estimates of the convergence rate (TV, relative entropy) can
be obtained using:

Functional inequalities: Poincaré or Log-Sobolev inequalities
Coupling techniques: synchronous or reflection coupling, depending
upon the assumptions (Eberle, 2015)
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Discretized Langevin diffusion

Idea: Sample the diffusion paths, using for example the
Euler-Maruyama (EM) scheme:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1

where

- (Zk)k≥1 is i.i.d. N (0, Id)
- (γk)k≥1 is a sequence of stepsizes, which can either be held constant

or be chosen to decrease to 0 at a certain rate.

Euler discretization = gradient algorithm + noise.
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Discretized Langevin diffusion: constant stepzize

When γk = γ, then (Xk)k≥1 is an homogeneous Markov chain with
Markov kernel Rγ with density

rγ(x, y) = (4πγ)−d/2 exp
(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
.

Under some appropriate conditions (a bit of positive curvature at
infinity), this Markov chain is irreducible, positive recurrent ;

unique invariant distribution πγ .

Problem: πγ 6= π.
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The EM Markov chain

When (γk)k≥1 is nonincreasing and non constant, (Xk)k≥1 is an
inhomogeneous Markov chain associated with the sequence of
Markov kernel (Rγk)k≥1.

Denote by δxQ
p
γ the law of Xp stated at x.

Reminder: the diffusion converges to the target distribution

Question: since the EM disretization approximates the diffusion, can
it be used to sample from π ?

Is δxQ
p
γ close to π for which p ?

Can we have some theoretical guarantees ? Particular attention to
the dimension d, see also Dalalyan 2014.
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Metric on probability spaces

Definition

For µ, ν two probabilities measure on Rd, define

‖µ− ν‖TV = sup
|f |≤1

|Eµ[f ]− Eν [f ]| .

W 2
2 (µ, ν) = inf

ξ∈C(µ,ν)

∫
R2d

‖x− y‖2 ξ(dx,dy) .
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Geometric convergence of the Langevin diffusion

If there exists a Lyapunov function for the generator of the diffusion
then there exists κ ∈ [0, 1) such that for any initial distribution µ0

and t > 0,
‖µ0Pt − π‖TV ≤ C(µ0)κt ,

for some explicit function of the initial probability C(µ0).

Explicit expressions of the constant (the way dimension impacts
theses constants) critically depends on

- the assumptions on the potential U
- the technique of proofs (functional inequalities, coupling

constructions, etc...)
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Foster-Lyapunov condition

A function V ∈ C2(Rd) is a Lyapunov function if V ≥ 1 and if there
exists θ > 0, b ≥ 0 such that,

A V ≤ −θV + b ,

where A f = −〈∇U,∇f〉+ ∆f is the generator of the diffusion

Example: If there exist α > 1, ρ > 0 and Mρ ≥ 0 such that for all
y ∈ Rd, ‖y‖ ≥Mρ:

〈∇U(y), y〉 ≥ ρ ‖y‖α .

then V (x) = exp(U(x)/2) is a Lyapunov function.
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Geometric convergence of the Euler discretization

Let (γk)k≥1 be a sequence of positive and non-increasing step sizes

Euler discretization:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1 ,

where (Zk)k≥1 is i.i.d. N (0, Id), independent of X0.

Markov kernel Rγ and x ∈ Rd by

Rγ(x,A) =

∫
A

1

(4πγ)d/2
exp

(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy .

The sequence (Xn)n≥0 is a (possibly) time-nonhomogeneous
Markov chain whose distribution is specified by the Markov kernels
(Rγn)n≥1.
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Level-0 results

The Markov kernel Rγ is strongly Feller, irreducible, and hence all
the compact sets are therefore small.

Typically, the Rγ satisfies a Foster-Lyapunov drift condition of a
particular form, i.e. there exists κ ∈ [0, 1), b > 0 such that for all
γ > 0

RγV ≤ κγV + γb .

Rγ admits a unique stationary distribution πγ and is V -uniformly
geometrically ergodic, in the sense that, for some constant C <∞
and κ ∈ [0, 1), such that for all x ∈ Rd,∥∥Rkγ(x, ·)− πγ

∥∥
V
≤ C(γ)κγkV (x) .
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Example: A drift condition for Rγ

Theorem

Assume U is L-smooth and there exist ρ > 0, α > 1 and Mρ ≥ 0 such
that :

〈∇U(y), y〉 ≥ ρ ‖y‖α , for all y ∈ Rd, ‖y‖ ≥Mρ

Then for all γ̄ ∈
(
0, L−1

)
, there exists b ≥ 0 and s > 0 such that

RγV (x) ≤ κγV (x) + γb , for all γ ∈ (0, γ̄] and x ∈ Rd,

where
V (x) = exp(U(x)/2).
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Control of moments

By a straightforward induction, we get for all n ≥ 0 and x ∈ Rd,

QnγV ≤ κΓ1,nV + b

n∑
i=1

γiκ
Γi+1,n ,

where Γn,p =
∑p
k=n γk.

Note that we have

sup
n≥1

n∑
i=1

γiκ
Γi+1,n <∞ .
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Wasserstein distance convergence

We assume in this part that U is strongly convex: there exist and
m > 0, such that for all x, y ∈ Rd,

〈∇U(x)−∇U(y), x− y〉 ≥ m ‖x− y‖2 .
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Wasserstein distance convergence

Theorem

Assume that U is strongly convex. Then,

(i) For all probability measures x, y ∈ Rd and t ≥ 0,

W2(δxPt, δyPt) ≤ e−mt ‖x− y‖

(ii) In addition, for any x ∈ Rd,

W2(δxPt, π) ≤ C(d)e−mt .
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Elements of proof

{
dYt = −∇U(Yt)dt+

√
2dBt ,

dỸt = −∇U(Ỹt)dt+
√

2dBt ,

where (Y0, Ỹ0) = (x, y). This SDE has a unique strong solution
(Yt, Ỹt)t≥0 associated to (Bt)t≥0. Moreover∥∥∥Yt − Ỹt∥∥∥2

=
∥∥∥Y0 − Ỹ0

∥∥∥2

− 2

∫ t

0

〈
(∇U(Ys)−∇U(Ỹs)), Ys − Ỹs

〉
ds ,

which implies using Grönwall’s inequality that∥∥∥Yt − Ỹt∥∥∥2

≤
∥∥∥Y0 − Ỹ0

∥∥∥2

− 2m

∫ t

0

∥∥∥Ys − Ỹs∥∥∥2

ds ≤
∥∥∥Y0 − Ỹ0

∥∥∥2

e−2mt .

The proof follows since for all t ≥ 0, the law of (Yt, Ỹt) is a coupling
between δxPt and δyPt.
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Coupling between the Langevin and the EM discretization

Consider the synchronuous coupling between (Yt)t≥0 and (Xk)k≥0

defined by{
dYt = −∇U(Yt)dt+

√
2dBt

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1(BΓk+1
−BΓk) ,

started at (y, x) ∈ Rd × Rd.

International Conference on Monte Carlo technique



Motivation
Smooth case

Langevin diffusions and Euler discretization
Sampling from strongly log-concave distribution

Non-smooth potentials
Numerical illustrations

Bound in Wasserstein distance of order 2

We make an additional regularity assumption on U : The potential U
is three times continuously differentiable and there exists L̃ such
that for all x, y ∈ Rd:∥∥∇2U(x)−∇2U(y)

∥∥ ≤ L̃ ‖x− y‖ .
Then for all x ∈ Rd and n ≥ 1,

W 2
2 (δxQ

n
γ , π) ≤ u(1)

n (γ)

∫
Rd
‖y − x‖2 π(dy) + u(2)

n (γ) ,

where u
(1)
n (γ) and u

(2)
n (γ) are explicit.
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Decreasing step sizes

If limk→+∞ γk = 0 and limk→+∞ Γk = +∞, then

lim
p→+∞

W 2
2 (δxQ

p
γ , π) = 0 ,

with explicit convergence.

Order of convergence of W 2
2 (δxQ

n
γ , π) for γk = γ1k

−α: O(n−2α).
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Fixed step sizes

When (γk)k≥1 is held constant:

We optimize γ and p to get W1(δxQ
p
γ , π) ≤ ε. In particular, we find:

p = O(
√
dε−1) .

At fixed number of iteration p, we can choose γ such that
W1(δxQ

p
γ , π) ≤ Cn−1.

Letting p→ +∞, we get:

W2(πγ , π) ≤ Cγ .
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Convergence of the Euler discretization in total variation

If limγk→+∞ γk = 0, and
∑
k γk = +∞ then

lim
p→+∞

‖δxQpγ − π‖TV = 0 .

If the step sizes are constant γk = γ for all k ∈ N, we can optimize
γ and p to get

‖δxQpγ − π‖TV ≤ ε ,

for a target precision ε > 0.

d ε L m
γ O(d−1) O(ε2/ log(ε−1)) O(L−2) O(m)

p O(d log(d)) O(ε−2 log2(ε−1)) O(L2) O(m−2)
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Non-smooth potentials

The target distribution has a density π with respect to the Lebesgue
measure on Rd of the form x 7→ e−U(x)/

∫
Rd e−U(y)dy where U = f + g,

with f : Rd → R and g : Rd → (−∞,+∞] are two lower bounded,
convex functions satisfying:

1 f is continuously differentiable and gradient Lipschitz with Lipschitz
constant Lf , i.e. for all x, y ∈ Rd

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ .

2 g is lower semi-continuous and
∫
Rd e−g(y)dy ∈ (0,+∞).
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Moreau-Yosida regularization

Let h : Rd → (−∞,+∞] be a l.s.c convex function and λ > 0. The
λ-Moreau-Yosida envelope hλ : Rd → R and the proximal operator
proxλh : Rd → Rd associated with h are defined for all x ∈ Rd by

hλ(x) = inf
y∈Rd

{
h(y) + (2λ)−1 ‖x− y‖2

}
≤ h(x) .

For every x ∈ Rd, the minimum is achieved at a unique point,
proxλh(x), which is characterized by the inclusion

x− proxλh(x) ∈ γ∂h(proxλh(x)) .

The Moreau-Yosida envelope is a regularized version of g, which
approximates g from below.

International Conference on Monte Carlo technique



Motivation
Smooth case

Langevin diffusions and Euler discretization
Sampling from strongly log-concave distribution

Non-smooth potentials
Numerical illustrations

Properties of proximal operators

As λ ↓ 0, converges hλ converges pointwise h, i.e. for all x ∈ Rd,

hλ(x) ↑ h(x) , as λ ↓ 0 .

The function hλ is convex and continuously differentiable

∇hλ(x) = λ−1(x− proxλh(x)) .

The Moreau-Yosida envelope is L-smooth:∥∥∇hλ(x)−∇hλ(y)
∥∥ ≤ λ−1 ‖x− y‖, for all x, y ∈ Rd.
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MY regularized potential

If g is not differentiable, but the proximal operator associated with g
is available, its λ-Moreau Yosida envelope gλ can be considered.

This leads to the approximation of the potential Uλ : Rd → R
defined for all x ∈ Rd by

Uλ(x) = f(x) + gλ(x) .

Theorem

Under (H), for all λ > 0, 0 <
∫
Rd e−U

λ(y)dy < +∞.
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Some approximation results

Theorem

Assume (H).

1 Then, limλ→0 ‖πλ − π‖TV = 0.

2 Assume in addition that g is Lipschitz. Then for all λ > 0,

‖πλ − π‖TV ≤ λ ‖g‖2Lip .

3 If g = ιK where K is a convex body of Rd. Then for all λ > 0 we
have

‖πλ − π‖TV ≤ 2 (1 + D(K, λ))
−1

,

where D(K, λ) is explicit in the proof, and is of order O(λ−1) as λ
goes to 0.
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The MYULA algorithm-I

Given a regularization parameter λ > 0 and a sequence of stepsizes
{γk, k ∈ N∗}, the algorithm produces the Markov chain {XM

k , k ∈ N}:
for all k ≥ 0,

XM
k+1 = XM

k −γk+1

{
∇f(XM

k ) + λ−1(XM
k − proxλg (XM

k ))
}

+
√

2γk+1Zk+1 ,

where {Zk, k ∈ N∗} is a sequence of i.i.d. d-dimensional standard
Gaussian random variables.

International Conference on Monte Carlo technique



Motivation
Smooth case

Langevin diffusions and Euler discretization
Sampling from strongly log-concave distribution

Non-smooth potentials
Numerical illustrations

The MYULA algorithm-II

The ULA target the smoothed distribution πλ.

To compute the expectation of a function h : Rd → R under π from
{XM

k ; 0 ≤ k ≤ n}, an importance sampling step is used to correct
the regularization.

This step amounts to approximate
∫
Rd h(x)π(x)dx by the weighted

sum

Shn =

n∑
k=0

ωk,nh(Xk) , with ωk,n =

{
n∑
k=0

γkeḡ
λ(XM

k )

}−1

γkeḡ
λ(XM

k ) ,

where for all x ∈ Rd

ḡλ(x) = gλ(x)−g(x) = g(proxλg (x))−g(x)+(2λ)−1
∥∥x− proxλg (x)

∥∥2
.

International Conference on Monte Carlo technique



Motivation
Smooth case

Langevin diffusions and Euler discretization
Sampling from strongly log-concave distribution

Non-smooth potentials
Numerical illustrations

1 Motivation

2 Smooth case

3 Langevin diffusions and Euler discretization

4 Sampling from strongly log-concave distribution

5 Non-smooth potentials

6 Numerical illustrations

International Conference on Monte Carlo technique



Motivation
Smooth case

Langevin diffusions and Euler discretization
Sampling from strongly log-concave distribution

Non-smooth potentials
Numerical illustrations

Image deconvolution

Objective recover an original image x ∈ Rn from a blurred and noisy
observed image y ∈ Rn related to x by the linear observation model
y = Hx + w, where H is a linear operator representing the blur
point spread function and w is a Gaussian vector with zero-mean
and covariance matrix σ2In.

This inverse problem is usually ill-posed or ill-conditioned: exploits
prior knowledge about x.

Consider the `1 norm prior, π(x) ∝ exp (−α‖x‖1), then

π(x|y) ∝ exp
[
−‖y −Hx‖2/2σ2 − α‖x‖1

]
.
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Microscopy dataset

(a) (b)
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HPD credible region

We want to test if the molecules are indeed present in true image
(as opposed to being noise artefacts for example),

Uncertainty about their position.

For this, it can be relevent to compute the HPD credible region

C∗α = {x : U(x) ≤ ηα}

with ηα ∈ R chosen such that P(x ∈ C∗α|y) = 1− α holds. Here we
use α = 0.01 related to the 99% confidence level.
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Convergence of MYULA
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Figure : Convergence of MYULA and PMALA after 5× 106 iterations
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Comparison with PMALA

(a) (b)

Figure : Microscopy experiment: (a) HDP region thresholds ηα for MYULA
(2× 106 iterations λ = 1, γ = 0.6) and PMALA (2× 107 iterations), (b)
relative approximation error of MYULA.
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Application of MYULA

We check that a group of three molecules are in the image by a test.

MYULA (2× 106 iterations λ = 1, γ = 0.6) and PMALA (2× 107

iterations) give the same answer.

International Conference on Monte Carlo technique



Motivation
Smooth case

Langevin diffusions and Euler discretization
Sampling from strongly log-concave distribution

Non-smooth potentials
Numerical illustrations

Thank you for your attention.
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