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Intractable likelihoods

Types of intractable likelihood

A likelihood is intractable when it is difficult to evaluate
pointwise at θ .

1 Big data

f (y |θ) =
N

∏
i=1

fi (yi |θ).

2 When there are a large number of latent variables x , with

f (y |θ) =
∫
x
f (y ,x |θ)dx .

3 When, for an intractable Z (θ) (e.g for a Markov random field),

f (y |θ) =
1

Z (θ)
γ(y |θ).

4 Where f (·|θ) can be sampled, but not evaluated.
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Intractable likelihoods

Exact-approximate methods

Suppose that, for any θ , it is possible to compute an unbiased
estimate f̂ (y |θ) of f (y |θ). Then...

1 Using the acceptance probability

α

(
θ
(p),θ ∗

)
= min

{
1,

f̂ (y |θ ∗)p(θ ∗)q(θ (p)|θ ∗)
f̂ (y |θ (p))p(θ (p))q(θ ∗|θ (p))

}
yields an MCMC algorithm with target distibution π (θ |y).

2 Using the weight

w (p) =
f̂ (y |θ (p))p(θ (p))

q(θ (p))

yields an importance sampling algorithm with target
distribution π (θ |y).

Beaumont (2003), Andrieu and Roberts (2009), Fearnhead et al. (2010).
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Intractable likelihoods

Type 3: “doubly intractable” distributions

Coined by Murray et al. (2006).
Intractable in that we need to resort to simulation.
Doubly intractable since the acceptance probability in MH

min

{
1,

γ(y |θ ∗)
γ(y |θ (p))

p(θ ∗)

p(θ (p))

q(θ (p)|θ ∗)
q(θ ∗|θ (p))

1
Z (θ ∗)

Z (θ (p))

1

}

requires evaluating the intractable term Z .
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Intractable likelihoods

The single auxiliary variable (SAV) method

Møller et al. (2006) use

qu(u∗|θ ∗,y)

γ(u∗|θ ∗)

with some distribution qu and u∗ ∼ f (.|θ ∗), as an unbiased
importance sampling estimator of 1

Z(θ ∗) .

This gives an acceptance probability of

min

{
1,

γ(y |θ ∗)
γ(y |θ (p))

p(θ ∗)

p(θ (p))

q(θ (p)|θ ∗)
q(θ ∗|θ (p))

qu(u∗|θ ∗,y)

γ(u∗|θ ∗)
γ(u|θ (p))

qu(u|θ (p),y)

}
.

Richard Everitt University of Reading

Noisy Monte Carlo algorithms



beamer-icsi-logo

Intractable likelihoods Noisy methods Application to Ising models Conclusions

Intractable likelihoods

SAV importance sampling

Everitt et al. (2016) use

qu(u∗|θ ∗,y)

γ(u∗|θ ∗)
with some distribution qu and u∗ ∼ f (.|θ ∗), as an unbiased
importance sampling estimator of 1

Z(θ ∗) .

Using qu(u|θ ∗,y)
γ(u|θ ∗) as an IS estimator of 1

Z(θ ∗) we obtain

w (p) =
γ(y |θ (p))p(θ (p))

q(θ (p))

qu(u|θ (p),y)

γ(u|θ (p))
.

Note: we may use multiple importance points, i.e. use

1
M

M

∑
m=1

qu(u(m)|θ ∗,y)

γ(u(m)|θ ∗)
.
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Noisy methods

Noisy methods

The use of “inexact approximate” or “noisy” methods in which
an exact method is approximated without resulting in an
exact target distribution.
Focus on doubly intractable problems

strong link to work on other types of intractable likelihood.

In particular, that an exact sampler does not exist for
u∗ ∼ f (.|θ ∗).
Alternatives:

Russian roulette (Lyne et al., 2015);
use a long run of an MCMC in place of an exact sampler
(Caimo and Friel, 2011; Everitt, 2012).
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Noisy methods

Justification?

1 Is the distribution targeted by the noisy algorithm close to the
exact target?

2 What is the error in estimates produced by the noisy
algorithm?

given a fixed computational budget, how should it be allocated
to minimise the error of estimates?

Everitt R. G. (2012). Bayesian Parameter Estimation for Latent Markov
Random Fields and Social Networks, Journal of Computational and
Graphical Statistics, 21(4), 940-960, or arXiv(1203.3725)
Alquier, P., Friel, N., Everitt, R. G., Boland, A. (2015). Noisy Monte
Carlo: Convergence of Markov chains with approximate transition kernels,
Statistics and Computing, or arXiv(1403.5496).
Everitt, R. G., Johansen, A. M., Rowing, E., Evdemon-Hogan, M. (2016).
Bayesian model comparison with un-normalised likelihoods,
arXiv(1504.00298).
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Noisy methods

Noisy MCMC

MCMC involves simulating a Markov chain (θn)n∈N with
transition kernel P such that π is invariant under P .

In some situations there is a natural kernel P with this
property, but which we cannot draw θn+1 ∼ P(θn, ·) for a fixed
θn.
A natural idea is to replace P by an approximation P̂ .
This leads to the obvious question:

Can we say something on how close the resultant Markov
chain with transition kernel P̂ is that resulting from P? Eg, is

it possible to upper bound?∥∥∥δθ0P̂
n−π

∥∥∥ .
It turns out that a useful answer is given by the study of the
stability of Markov chains.
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Noisy methods

Stability result

Theorem (Mitrophanov (2005), Corollary 3.1)

If (H1) the MC with transition kernel P is uniformly ergodic:

sup
θ0

‖δθ0P
n−π‖ ≤ Cρ

n

for some C < ∞ and ρ < 1.

Then we have, for any n ∈ N, for any starting point θ0,

‖δθ0P
n−δθ0P̂

n‖ ≤

(
λ +

Cρλ

1−ρ

)
‖P− P̂‖

where λ =
⌈

log(1/C)
log(ρ)

⌉
.
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Noisy methods

Noisy MCMC: uniform ergodicity

So, if something can be said about ‖P− P̂‖ we know
something about:

the distance between the iterated noisy and exact kernels
when the invariant distribution of P̂ exists, the distance
between the noisy and exact targets.

In particular:

Everitt (2012) shows that when the burn in increases, the
distance goes to zero;
same argument is used in Andrieu and Roberts (2009) for
Monte Carlo within Metropolis;
Alquier et al. (2015) give cases where the bound on ‖P− P̂‖
can be given in terms of M (where the quality of the
approximation goes to zero as M → ∞).
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Noisy methods

Noisy MCMC: geometric ergodicity

Alquier et al. (2015) also note that similar results can hold in
the geometrically ergodic case

from result in Ferré, Hervé and Ledoux (2013)
taken much further by Medina-Aguayo et al. (2015).

Further developments in the geometrically ergodic case, and
using Wasserstein distance rather than total variation

Pillai and Smith (2014);
Rudolf and Schweizer (2015).
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Noisy methods

Sequential Monte Carlo

Richard Everitt University of Reading

Noisy Monte Carlo algorithms



beamer-icsi-logo

Intractable likelihoods Noisy methods Application to Ising models Conclusions

Noisy methods

SMC samplers

An iteration of an SMC algorithm at target t +1.
For p = 1 : P

Update θ
(p)
t to θ

(p)
t+1 using some kernel K .

For p = 1 : P

Reweight: find w̃
(p)
t+1, so that the

(
θ
(p)
t+1, w̃

(p)
t+1

)
are

(unnormalised) weighted points from pt+1(.|y).

Normalise
{
w̃

(p)
t+1

}P

p=1
to give

{
w

(p)
t+1

}P

p=1
.

Resample the weighted points if some threshold is met.

An estimate of the marginal likelihood is given by
∏

T
t=1 ∑

P
p=1 w̃

(p)
t .
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Noisy methods

Noisy SMC: strong mixing assumptions

In Everitt et al (2016), we

use biased weights at every step of the SMC;
are interested in how the error accumulates as the SMC
algorithm iterates.

Under strong mixing assumptions (stronger than a global
Doeblin condition) we obtain a uniform bound on
total-variation discrepancy between the iterated target
distributions of the exact and noisy methods

strong mixing can prevent the accumulation of error even in
systems with biased weights.
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Noisy methods

Noisy SMC: empirical study
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Noisy methods

Error of estimates: noisy MCMC

The noisy method is more efficient (in terms of mean squared
error) if

3
sεP

(
1+

1
sεP

)
+

3
4

ε
2 <

1
P

(
1+

1
P

)
.

Johndrow, J. E., Mattingly, J. C. Mukherjee, S. Dunson, D. (2015) Approximations of
Markov Chains and High-Dimensional Bayesian Inference, arXiv.
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Noisy methods

Error of estimates: noisy IS

Noisy importance sampling and sequential Monte Carlo:
Everitt et al (2016).
Under some simplifying assumptions, noisy importance
sampling is more efficient (in terms of mean squared error)
compared to an exact-approximate algorithm if

1
P

(
Varq [w(θ) +b(θ)] +Eq[σ̀2

θ ]
)

+Eq[b(θ)]2

<
1
P

(
Varq [w(θ)] +Eq[σ́2

θ ]
)
,

where b(θ) > 0 is the bias of the noisy weights, σ̀2
θ
is the

variance of the noisy weights, σ́2
θ
is the variance of the

exact-approximate weights and

w(θ) :=
p(θ)γ(y |θ)

Z (θ)q(θ)
.
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Application to Ising models

SAV importance sampling

Recall SAVIS.
Use it to estimate the marginal likelihood p(y).

We obtain

p̂(y) =
1
P

P

∑
p=1

γ(y |θ (p))p(θ (p))

q(θ (p))

M

∑
m=1

qu(u(m,p)|θ (p),y)

γ(u(m,p)|θ (p))
,

where the u(m,p) are generated by taking the final point of a
long MCMC run (length B) targeting f (·|θ (p)).
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Application to Ising models

Application to Ising models

An Ising model is a pairwise Markov random field with binary
variables.
Reanalyse the data from Friel (2013), which consists of 20
realisations from a first-order 10×10 Ising model and 20
realisations from a second-order 10×10 Ising model.
Compare

population exchange;
SAVIS and variations on this idea.
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Application to Ising models

Ising models: results
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Conclusions

Use exact methods where possible...

... however the bias from a noisy method may be small
compared to errors resulting from commonly accepted
approximate techniques such as ABC (and also the Monte
Carlo variance).
What is the best we can do fo some finite computational
budget?

Promising results, but many open questions:

what one should do in practice is not obvious;
potential accumulation of bias in SMC (mitigated by mixing
well);
in both cases the theory requires very strong assumptions.
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