$\begin{array}{c} \text{Application to Ising models} \\ \circ \circ \circ \end{array}$

A D > A B > A B

Noisy Monte Carlo algorithms

Richard Everitt

University of Reading

January 7th, 2016

beamer-icsi

Richard Everitt Noisy Monte Carlo algorithms

Intractable likelihoods	Noisy methods	Application to Ising models	Conclusions
•0000			
Intractable likelihoods			

Types of intractable likelihood

 A likelihood is intractable when it is difficult to evaluate pointwise at θ.

1 Big data

$$f(y|\theta) = \prod_{i=1}^{N} f_i(y_i|\theta).$$

2 When there are a large number of latent variables x, with

$$f(y|\theta) = \int_{x} f(y, x|\theta) dx.$$

3 When, for an intractable $Z(\theta)$ (e.g for a *Markov random field*),

$$f(y|\theta) = \frac{1}{Z(\theta)}\gamma(y|\theta).$$

4 Where $f(\cdot|\theta)$ can be sampled, but not evaluated.

Richard Everitt

Noisy Monte Carlo algorithms

Intractable likelihoods	Noisy methods	Application to Ising models	Conclusions
0000			
Intractable likelihoods			

Exact-approximate methods

Suppose that, for any θ , it is possible to compute an unbiased estimate $\hat{f}(y|\theta)$ of $f(y|\theta)$. Then...

1 Using the acceptance probability

$$\alpha\left(\theta^{(p)},\theta^*\right) = \min\left\{1, \frac{\widehat{f}(y|\theta^*)p(\theta^*)q(\theta^{(p)}|\theta^*)}{\widehat{f}(y|\theta^{(p)})p(\theta^{(p)})q(\theta^*|\theta^{(p)})}\right\}$$

yields an MCMC algorithm with target distibution $\pi(\theta|y)$. 2 Using the weight

$$w^{(p)} = \frac{\widehat{f}(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})}$$

University of Reading

yields an importance sampling algorithm with target distribution $\pi(\theta|y)$.

Beaumont (2003), Andrieu and Roberts (2009), Fearnhead et al. (2010).

Richard Everitt

Noisy Monte Carlo algorithms

Noisy methods

Application to Ising models 000

< < >>

Conclusions

Intractable likelihoods

Type 3: "doubly intractable" distributions

- Coined by Murray et al. (2006).
- Intractable in that we need to resort to simulation.
- Doubly intractable since the acceptance probability in MH

$$\min\left\{1,\frac{\gamma(y|\theta^*)}{\gamma(y|\theta^{(p)})}\frac{p(\theta^*)}{p(\theta^{(p)})}\frac{q(\theta^{(p)}|\theta^*)}{q(\theta^*|\theta^{(p)})}\frac{1}{Z(\theta^*)}\frac{Z(\theta^{(p)})}{1}\right\}$$

requires evaluating the intractable term Z.

Richard Everitt Noisy Monte Carlo algorithms

Application to Ising models

Conclusions

Intractable likelihoods

The single auxiliary variable (SAV) method

Møller et al. (2006) use

$$\frac{q_u(u^*|\theta^*,y)}{\gamma(u^*|\theta^*)}$$

with some distribution q_u and $u^* \sim f(.|\theta^*)$, as an unbiased importance sampling estimator of $\frac{1}{Z(\theta^*)}$.

This gives an acceptance probability of

$$\min\left\{1,\frac{\gamma(y|\theta^*)}{\gamma(y|\theta^{(p)})}\frac{p(\theta^*)}{p(\theta^{(p)})}\frac{q(\theta^{(p)}|\theta^*)}{q(\theta^*|\theta^{(p)})}\frac{q_u(u^*|\theta^*,y)}{\gamma(u^*|\theta^*)}\frac{\gamma(u|\theta^{(p)})}{q_u(u|\theta^{(p)},y)}\right\}$$

University of Reading

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Richard Everitt

Noisy Monte Carlo algorithms

Noisy methods

Application to Ising models

Conclusions

Intractable likelihoods

SAV importance sampling

Everitt et al. (2016) use

$$\frac{q_u(u^*|\theta^*,y)}{\gamma(u^*|\theta^*)}$$

with some distribution q_u and u^{*} ~ f(.|θ^{*}), as an unbiased importance sampling estimator of 1/Z(θ^{*}).
Using q_u(u|θ^{*},y)/v(u|θ^{*}) as an IS estimator of Z(θ^{*}) we obtain

$$w^{(p)} = \frac{\gamma(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})}\frac{q_u(u|\theta^{(p)},y)}{\gamma(u|\theta^{(p)})}.$$

Note: we may use multiple importance points, i.e. use

$$\frac{1}{M}\sum_{m=1}^{M}\frac{q_u(u^{(m)}|\theta^*,y)}{\gamma(u^{(m)}|\theta^*)}.$$

Richard Everitt

Noisy Monte Carlo algorithms

Intractable likelihoods 00000	Noisy methods ●00000000000	Application to Ising models	Conclusions
Noisy methods			
Noisy methods			

- The use of "inexact approximate" or "noisy" methods in which an exact method is approximated without resulting in an exact target distribution.
- Focus on doubly intractable problems
 - strong link to work on other types of intractable likelihood.
- In particular, that an exact sampler does not exist for $u^* \sim f(.|\theta^*)$.
- Alternatives:
 - Russian roulette (Lyne et al., 2015);
 - use a long run of an MCMC in place of an exact sampler (Caimo and Friel, 2011; Everitt, 2012).

Richard Everitt

Intractable likelihoods	Noisy methods ○●○○○○○○○○○	Application to Ising models	Conclusions
Noisy methods			
Justification?			

- Is the distribution targeted by the noisy algorithm close to the exact target?
- 2 What is the error in estimates produced by the noisy algorithm?
 - given a fixed computational budget, how should it be allocated to minimise the error of estimates?
 - Everitt R. G. (2012). Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks, Journal of Computational and Graphical Statistics, 21(4), 940-960, or arXiv(1203.3725)
 - Alquier, P., Friel, N., Everitt, R. G., Boland, A. (2015). Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels, Statistics and Computing, or arXiv(1403.5496).
 - Everitt, R. G., Johansen, A. M., Rowing, E., Evdemon-Hogan, M. (2016).
 Bayesian model comparison with un-normalised likelihoods, arXiv(1504.00298).

Intractable likelihoods	Noisy methods ००●००००००००	Application to Ising models	Conclusions
Noisy methods			
Noisy MCMC			

- MCMC involves simulating a Markov chain (θ_n)_{n∈ℕ} with transition kernel P such that π is invariant under P.
- In some situations there is a natural kernel P with this property, but which we cannot draw $\theta_{n+1} \sim P(\theta_n, \cdot)$ for a fixed θ_n .
- A natural idea is to replace P by an approximation \hat{P} .
- This leads to the obvious question:

Can we say something on how close the resultant Markov chain with transition kernel \hat{P} is that resulting from P? Eg, is it possible to upper bound?

$$\left| \delta_{ heta_0} \hat{P}^n - \pi \right|$$
.

It turns out that a useful answer is given by the study of the study of the stability of Markov chains.

Intractable likelihoods	Noisy methods ००●००००००००	Application to Ising models	Conclusions
Noisy methods			
Noisy MCMC			

- MCMC involves simulating a Markov chain (θ_n)_{n∈ℕ} with transition kernel P such that π is invariant under P.
- In some situations there is a natural kernel P with this property, but which we cannot draw $\theta_{n+1} \sim P(\theta_n, \cdot)$ for a fixed θ_n .
- A natural idea is to replace P by an approximation \hat{P} .
- This leads to the obvious question:

Can we say something on how close the resultant Markov chain with transition kernel \hat{P} is that resulting from P? Eg, is it possible to upper bound?

$$\left\|\delta_{\theta_0}\hat{P}^n-\pi\right\|.$$

It turns out that a useful answer is given by the study of the stability of Markov chains.

Richard Everitt

Noisy Monte Carlo algorithms

Intractable likelihoods	Noisy methods	Application to Ising models	Conclusions
	00000000000		
Noisy methods			
Stability result			

Theorem (Mitrophanov (2005), Corollary 3.1)

If (H1) the MC with transition kernel P is uniformly ergodic:

$$\sup_{\theta_0} \|\delta_{\theta_0} P^n - \pi\| \leq C \rho^n$$

for some $C < \infty$ and $\rho < 1$.

Then we have, for any $n \in \mathbb{N}$, for any starting point θ_0 ,

$$\|\delta_{ heta_0} P^n - \delta_{ heta_0} \hat{P}^n\| \leq \left(\lambda + rac{C
ho^\lambda}{1 -
ho}
ight) \|P - \hat{P}\|$$

where
$$\lambda = \left\lceil rac{\log(1/C)}{\log(
ho)}
ight
ceil$$

Richard Everitt Noisy Monte Carlo algorithms

LУ

Noisy methods

Application to Ising models

Conclusions

Noisy methods

Noisy MCMC: uniform ergodicity

- So, if something can be said about $||P \hat{P}||$ we know something about:
 - the distance between the iterated noisy and exact kernels
 - when the invariant distribution of \hat{P} exists, the distance between the noisy and exact targets.
- In particular:
 - Everitt (2012) shows that when the burn in increases, the distance goes to zero;
 - same argument is used in Andrieu and Roberts (2009) for Monte Carlo within Metropolis;
 - Alquier et al. (2015) give cases where the bound on $||P \hat{P}||$ can be given in terms of M (where the quality of the approximation goes to zero as $M \to \infty$).

• • • • • • • • • • •

Noisy methods

Application to Ising models

Noisy methods

Noisy MCMC: geometric ergodicity

- Alquier et al. (2015) also note that similar results can hold in the geometrically ergodic case
 - from result in Ferré, Hervé and Ledoux (2013)
 - taken much further by Medina-Aguayo et al. (2015).
- Further developments in the geometrically ergodic case, and using Wasserstein distance rather than total variation
 - Pillai and Smith (2014);
 - Rudolf and Schweizer (2015).

Richard Everitt

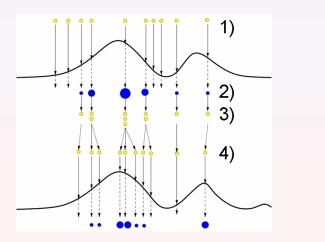
Noisy methods

Application to Ising models

Conclusions

Noisy methods

Sequential Monte Carlo



beamer-icsi-

Richard Everitt Noisy Monte Carlo algorithms

Intractable likelihoods	Noisy methods ०००००००●००००	Application to Ising models	Conclusions
Noisy methods			
SMC samplers			

An iteration of an SMC algorithm at target t+1.

• Update $\theta_t^{(p)}$ to $\theta_{t+1}^{(p)}$ using some kernel K.

Reweight: find $\widetilde{w}_{t+1}^{(p)}$, so that the $\left(\theta_{t+1}^{(p)}, \widetilde{w}_{t+1}^{(p)}\right)$ are (unnormalised) weighted points from $p_{t+1}(.|y)$.

• Normalise
$$\left\{\widetilde{w}_{t+1}^{(p)}\right\}_{p=1}^{P}$$
 to give $\left\{w_{t+1}^{(p)}\right\}_{p=1}^{P}$.

- Resample the weighted points if some threshold is met.
- An estimate of the marginal likelihood is given by $\prod_{t=1}^{T} \sum_{p=1}^{P} \widetilde{w}_{t}^{(p)}.$

Richard Everitt Noisy Monte Carlo algorithms

Noisy methods

Application to Ising models

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusions

Noisy methods

Noisy SMC: strong mixing assumptions

■ In Everitt et al (2016), we

- use biased weights at every step of the SMC;
- are interested in how the error accumulates as the SMC algorithm iterates.
- Under strong mixing assumptions (stronger than a global Doeblin condition) we obtain a uniform bound on total-variation discrepancy between the iterated target distributions of the exact and noisy methods
 - strong mixing can prevent the accumulation of error even in systems with biased weights.

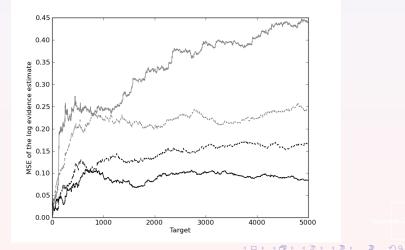
Noisy methods

Application to Ising models

Conclusions

Noisy methods

Noisy SMC: empirical study



Richard Everitt Noisy Monte Carlo algorithms

Intractable	likelihoods

Noisy methods

Application to Ising models

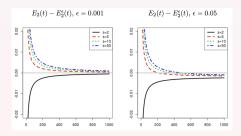
Conclusions

Noisy methods

Error of estimates: noisy MCMC

 The noisy method is more efficient (in terms of mean squared error) if

$$\frac{3}{s_{\varepsilon}P}\left(1+\frac{1}{s_{\varepsilon}P}\right)+\frac{3}{4}\varepsilon^{2}<\frac{1}{P}\left(1+\frac{1}{P}\right).$$



Johndrow, J. E., Mattingly, J. C. Mukherjee, S. Dunson, D. (2015) Approximations of Markov Chains and High-Dimensional Bayesian Inference, arXiv, arX

Richard Everitt

Noisy Monte Carlo algorithms

Intractable	likelihoods

Application to Ising models

University of Reading

Noisy methods

Error of estimates: noisy IS

- Noisy importance sampling and sequential Monte Carlo: Everitt et al (2016).
- Under some simplifying assumptions, noisy importance sampling is more efficient (in terms of mean squared error) compared to an exact-approximate algorithm if

$$\begin{split} \frac{1}{P} \left(\operatorname{Var}_{q} \left[w(\theta) + b(\theta) \right] + \mathbb{E}_{q} [\check{\sigma}_{\theta}^{2}] \right) + \mathbb{E}_{q} [b(\theta)]^{2} \\ & < \frac{1}{P} \left(\operatorname{Var}_{q} \left[w(\theta) \right] + \mathbb{E}_{q} [\check{\sigma}_{\theta}^{2}] \right), \end{split}$$

where $b(\theta) > 0$ is the bias of the noisy weights, $\dot{\sigma}_{\theta}^2$ is the variance of the noisy weights, $\dot{\sigma}_{\theta}^2$ is the variance of the exact-approximate weights and

$$w(\theta) := \frac{p(\theta)\gamma(y|\theta)}{Z(\theta)q(\theta)}.$$

Richard Everitt Noisy Monte Carlo algorithms

Noisy methods

Application to Ising models •00 Conclusions

Application to Ising models

SAV importance sampling

- Recall SAVIS.
- Use it to estimate the marginal likelihood p(y).
- We obtain

$$\widehat{p(y)} = \frac{1}{P} \sum_{p=1}^{P} \frac{\gamma(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})} \sum_{m=1}^{M} \frac{q_u(u^{(m,p)}|\theta^{(p)}, y)}{\gamma(u^{(m,p)}|\theta^{(p)})},$$

where the $u^{(m,p)}$ are generated by taking the final point of a long MCMC run (length *B*) targeting $f(\cdot|\theta^{(p)})$.

beamer-icsi

Richard Everitt Noisy Monte Carlo algorithms University of Reading

Noisy methods

Application to Ising models •00 Conclusions

Application to Ising models

SAV importance sampling

- Recall SAVIS.
- Use it to estimate the marginal likelihood p(y).
- We obtain

$$\widehat{p(y)} = \frac{1}{P} \sum_{p=1}^{P} \frac{\gamma(y|\theta^{(p)})p(\theta^{(p)})}{q(\theta^{(p)})} \sum_{m=1}^{M} \frac{q_u(u^{(m,p)}|\theta^{(p)},y)}{\gamma(u^{(m,p)}|\theta^{(p)})},$$

where the $u^{(m,p)}$ are generated by taking the final point of a long MCMC run (length *B*) targeting $f(\cdot|\theta^{(p)})$.

Richard Everitt Noisy Monte Carlo algorithms University of Reading

Noisy methods

Application to Ising models $\circ \bullet \circ$

Conclusions

Application to Ising models

Application to Ising models

- An Ising model is a pairwise Markov random field with binary variables.
- Reanalyse the data from Friel (2013), which consists of 20 realisations from a first-order 10 × 10 Ising model and 20 realisations from a second-order 10 × 10 Ising model.
- Compare
 - population exchange;
 - SAVIS and variations on this idea.

University of Reading

Noisy Monte Carlo algorithms

Richard Everitt

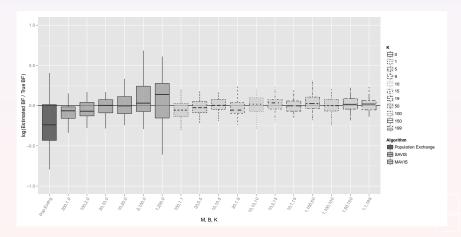
Noisy methods

Application to Ising models

Conclusions

Application to Ising models

Ising models: results



University of Reading

Richard Everitt

Noisy Monte Carlo algorithms

Intractable likelihoods	Noisy methods	Application to Ising models	Conclusions ●○
Conclusions			
Conclusions			

Use exact methods where possible...

- ... however the bias from a noisy method may be small compared to errors resulting from commonly accepted approximate techniques such as ABC (and also the Monte Carlo variance).
- What is the best we can do fo some finite computational budget?
- Promising results, but many open questions:
 - what one should do in practice is not obvious;
 - potential accumulation of bias in SMC (mitigated by mixing well);
 - in both cases the theory requires very strong assumptions

Richard Everitt

Noisy Monte Carlo algorithms

Intractable likelihoods 00000	Noisy methods ೦೦೦೦೦೦೦೦೦೦೦೦	Application to Ising models	Conclusions ●○
Conclusions			
Conclusions			

- Use exact methods where possible...
- ... however the bias from a noisy method may be small compared to errors resulting from commonly accepted approximate techniques such as ABC (and also the Monte Carlo variance).
- What is the best we can do fo some finite computational budget?
- Promising results, but many open questions:
 - what one should do in practice is not obvious;
 - potential accumulation of bias in SMC (mitigated by mixing well);

< 口 > < 同

in both cases the theory requires very strong assumptions

Richard Everitt

Noisy Monte Carlo algorithms

Intractable likelihoods	Noisy methods 00000000000	Application to Ising models	Conclusions ●○
Conclusions			
Conclusions			

- Use exact methods where possible...
- ... however the bias from a noisy method may be small compared to errors resulting from commonly accepted approximate techniques such as ABC (and also the Monte Carlo variance).
- What is the best we can do fo some finite computational budget?
- Promising results, but many open questions:
 - what one should do in practice is not obvious;
 - potential accumulation of bias in SMC (mitigated by mixing well);
 - in both cases the theory requires very strong assumptions.

Richard Everitt

Noisy methods

Application to Ising models

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusions ○●

Conclusions

Acknowledgements

- Noisy MCMC: Pierre Alquier, Nial Friel and Aiden Boland (UCD).
- Noisy IS and SMC: Adam Johansen (Warwick), Melina Evdemon-Hogan and Ellen Rowing (Reading).