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Review : robust static hedging
For any convex function f on R+, for any x , y ∈ R+,

f (y) = f (x)+f ′(x)(x − y) +

∫
(0,x]

(K − y)+f
′(dK )

+

∫
(x ,∞)

(y − K )+f
′(dK ),

where f ′ is the right derivative of f and f ′(dK ) is the associated
Lebesgue-Stieltjes measure. f ′(dK ) = f ′′(K )dK if it is absolutely
continuous.

Therefore, however an asset price process S behaves, always

f (ST ) = f (St)+f ′(St)(ST − St) +

∫
(0,St ]

(K − ST )+f
′(dK )

+

∫
(St ,∞)

(ST − K )+f
′(dK ).



Review: robust semi-static hedging

Now assume S is a continuous semi-martingale. For any locally
integrable function g ,∫ T

t
g(Su)d⟨log S⟩u = fg (ST )− fg (St)−

∫ T

t
f ′g (Su)dSu,

where

fg (s) = 2

∫ s

1

∫ u

1

g(v)

v2
dvdu.

The European payoff fg (ST )− fg (St) is statically hedged with cost

Vt [g ] :=

∫
(0,St ]

Pt(K )f ′g (dK ) +

∫
(St ,∞)

Ct(K )f ′g (dK ),

where P(K ) and C (K ) are put and call option prices respectively.
(By the way, assume risk-free rates to be zero in this talk)



Idea

• We are considering an asset S of which the put and call
options are available in a market.

• To price and hedge an exotic option portfolio of S , one faces
the uncertainty of, especially, the volatility of S .

• A (weighted) variance swap is useful to control an exposure to
the volatility model-independently.

• The fair strike (price) of a variance swap is a model-free
measure of volatility, c.f. VIX.

• The use of variance swaps in a risk management however
requires an idea how it is correlated to S .

• Why don’t we consider a dynamic hedging in option markets
to gain more robust hedging instruments ?

The main result : a leverage effect (the covariation of S and its
variance swap) can be hedged model-independently.



The framework

(Ω,F , {Ft}) : a measurable space with a filtration
S : Ω× [0,T ] → (0,∞)
P : Ω× [0,T ]× (0,∞) → [0,∞)
C : Ω× [0,T ]× (0,∞) → [0,∞)
We assume
(1) [0,T ] ∋ t 7→ St(ω) ∈ (0,∞), [0,T ] ∋ t 7→ Pt(K )(ω) ∈ (0,∞)
are continuous and PT (K )(ω) = (K − ST (ω))+.
(2) the call-put parity

Ct(K )(ω) = Pt(K )(ω) + St(ω)− K .

(3) (0,∞) ∋ K 7→ Pt(K )(ω) ∈ (0,∞) is convex and

lim
K→0

Pt(K )(ω) = lim
K→0

P ′
t(K )(ω) = 0, lim

K→∞
P ′
t(K )(ω) = 1.

(4) Q := {Q;S and P(K ) are local martingales under Q} ̸= ∅



Properties

(1)

Pt(K ) =

∫
R+

(K − s)+P
′
t(ds).

(2) 0 ≤ Pt ≤ K , 0 ≤ Ct ≤ St
(3) For a given convex function f , let

Qt [f ] =f (S0) + f ′(S0)(St − S0)

+

∫
(0,S0]

Pt(K )f ′(dK ) +

∫
(S0,∞)

Ct(K )f ′(dK ).

This is the portfolio value of the static hedging for f (ST ). Then,

Qt [f ] = f (St) +

∫
R+

min(Pt(K ),Ct(K ))f ′(dK ).



Tradable assets
Definition : We say Q[f ] = {Qt [f ]} is a tradable asset if it is
finite and continuous in t for all ω ∈ Ω.

Lemma : If the Stieltjes measure f ′is finite, then Q[f ] is a
tradable asset.

Lemma : If Q[f ] is a tradable asset, it is a local martingale under
Q for all Q ∈ Q.

Definition : We say an adapted process X is attainable if there
exist convex functions f1, . . . fn s.t. Q[fj ] is a tradable asset and
there exists a progressively measurable process (H1, . . . ,Hn) s.t.

n∑
j=1

∫ T

0
|H j

u|2d⟨Q[fj ]⟩u < ∞, Xt = X0 +
n∑

j=1

∫ t

0
H j
udQu[fj ]

for all t, Q almost surely for all Q ∈ Q.



Attainable processes

If X is attainable, then it is local martingale under Q for all
Q ∈ Q. The payoff Xt can be hedged model-independently with
replication cost at time s ∈ [0, t] being Xs .

Tradable assets are attainable. The sum of two attainable
processes is attainable.

Let H be a cad-lag progressively measurable process and X be an
attainable process. Define

H · Xt = lim inf
n→∞

∞∑
j=0

Hτnj
(Xτnj+1∧t − Xτnj ∧t),

where τnj = inf{t > τnj−1; |Ht − Hτnj
| ≥ 2n}. Then H · X is

attainable, c.f. Karandikar(1995).



Example of attainable process
For cad-lag attainable processes X and Y , define

⟨X ,Y ⟩t = XtYt − X0Y0 − X · Yt − Y · Xt .

Then, XY − ⟨X ,Y ⟩ is attainable. The definition of the bracket is
extended to “semi-attainable” processes in an obvious manner.

Let f be a C 2 function and X be a cad-lag attainable process.
Then,

f (X )− 1

2

∫ ·

0
f ′′(Xt)d⟨X ⟩t

is attainable. Here ⟨X ⟩ = ⟨X ,X ⟩ by definition.

For example, attainable are

log S +
1

2
⟨log S⟩, S log S +

1

2
S⟨log S⟩ − ⟨S , log S⟩.



Variance swaps
Proposition : Let g be a locally integrable nonnegative function
and define fg as before. Put Vt [g ] = Qt [f ]− f (St). If Q[fg ] is a
tradable asset, then

V [g ] +

∫ ·

0
g(St)d⟨log S⟩t

is attainable and

V [g ] =

∫
R+

min{P(K ),C (K )}f ′g (dK ), VT [g ] = 0.

The fair strike at time s ∈ [0,T ] of the weighted variance swap
with maturity T and floating leg∫ T

s
g(St)d⟨log S⟩t = VT [g ]+

∫ T

0
g(St)d⟨log S⟩t−

∫ s

0
g(St)d⟨log S⟩t

is therefore given by Vs [g ].



Covariance of Variances

Corollary : If V [g ] and V [h] are finite and continuous, then(
V [g ] +

∫ ·

0
g(St)d⟨log S⟩t

)(
V [h] +

∫ ·

0
h(St)d⟨log S⟩t

)
− ⟨V [g ],V [h]⟩

is attainable.
Therefore for any Q ∈ Q, subject to integrability,

CovQ

(∫ T

0
g(St)d⟨log S⟩t ,

∫ T

0
h(St)d⟨log S⟩t

)
= EQ [⟨V [g ],V [h]⟩T ].



Robust replication of leverage

Theorem : Let I : R+ → R+ be the identity. If V [g ] and V [Ig ]
are finite and continuous, then

V [g ]S − V [Ig ]− ⟨V [g ], S⟩

is attainable. In particular, taking g = δK ,

O(K )(S − K )− ⟨O(K ), S⟩

is attainable, where O(K ) := min{P(K ),C (K )} is the OTM
option price.

Therefore the replication prices for ⟨V [g ], S⟩T and ⟨O(K ), S⟩T are
respectively V0[Ig ]− V0[g ]S0 and O0(K )(K − S0).



Implied leverage
The model-free replication price of ⟨V [g ], S⟩T is V0[Ig ]− V0[g ]S0.
This means,

EQ [⟨V [g ], S⟩T ] = V0[Ig ]− V0[g ]S0

for any Q ∈ Q, subject to integrability. Therefore the RHS is
understood as a model-free measure of the leverage effect.

This is the same spirit to consider

EQ [⟨log S⟩T ] = V0[1]

as a model-free measure of the volatility, c.f. VIX, VXJ

In particular,

EQ [⟨V [1], S⟩T ] = V0[I ]− V0[1]S0 = (G0 − V0)S0 =: S0V0L0,

where G0 and V0 are the price of the gamma swap and variance
swap respectively. Call L0 the Model-Free Implied Leverage.



Slope

Model-Free Implied Leverage :

L0 =
G0 − V0

S0V0
.

Neuberger (2009) called G0 − V0 the slope. In fact, Under a
general perturbation model around the Black-Scholes model, say,
small vol-of-vol, fast-mean reverting, two-scale,... we have

σBS(k)
2 ∼ V0

(
1 +

L0
2

)
+ L0k,

where k is log-moneyness, σBS is the implied volatility.
Yoshida’s formula for martingale expansion : Fukasawa (2011).
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