Trajectorial coupling between one-dimensional diffusions with linear diffusion coefficient and their Euler scheme

A. Gloter, LaMME, Université d'Evry, joint work with Emmanuelle Clément, UPEM

Monte Carlo Conference - July, 2016

Euler approximation of a diffusion

- One dimensional diffusion :

$$
X_{t}=x_{0}+\int_{0}^{t} a\left(X_{s}\right) d B_{s}+\int_{0}^{t} b\left(X_{s}\right) d s, \quad t \in[0, T]
$$

(a and b smooth)

- Continuous time Euler approximation :

$$
\begin{gathered}
\bar{X}_{t}^{n}=x_{0}+\int_{0}^{t} a\left(\bar{X}_{\varphi_{n}(s)}\right) d B_{s}+\int_{0}^{t} b\left(\bar{X}_{\varphi_{n}(s)}\right) d s, \quad t \in[0, T], \\
\varphi_{n}(s)=\frac{i T}{n} \quad \text { if } \quad \frac{i T}{n} \leq s<\frac{(i+1) T}{n}, \quad 0 \leq i \leq n-1 .
\end{gathered}
$$

Basic approximation results

- pathwise strong approximation

$$
\forall p \geq 1, \exists C>0, \forall n \geq 1
$$

$$
E^{1 / p} \sup _{t \in[0, T]}\left|X_{t}-\bar{X}_{t}^{n}\right|^{p} \leq \frac{C}{\sqrt{n}}
$$

Basic approximation results

- pathwise strong approximation

$$
\begin{aligned}
& \forall p \geq 1, \exists C>0, \forall n \geq 1 \\
& E^{1 / p} \sup _{t \in[0, T]}\left|X_{t}-\bar{X}_{t}^{n}\right|^{p} \leq \frac{C}{\sqrt{n}}
\end{aligned}
$$

- weak approximation of the marginal laws
(Talay-Tubaro 90, Bally-Talay 96, Gobet-Labart 08, Sbai 09)
For f measurable and bounded, $\exists C>0, \forall n \geq 1$,

$$
\left|E f\left(X_{T}\right)-E f\left(\bar{X}_{T}^{n}\right)\right| \leq \frac{C}{n}
$$

For f Lipschitz continuous, $\exists C>0, \forall n \geq 1$,

$$
\sup _{t \in[0, T]}\left|E f\left(X_{t}\right)-E f\left(\bar{X}_{t}^{n}\right)\right| \leq \frac{C}{n}
$$

Weak pathwise results

$X=\left(X_{t}\right)_{t \in[0, T]}, \quad \bar{X}^{n}=\left(\bar{X}_{t}^{n}\right)_{t \in[0, T]}$
Control of $\left|E F(X)-E F\left(\bar{X}^{n}\right)\right|$ for $F: \mathcal{C}([0, T]) \mapsto \mathbb{R}$ for example $F(X)=f\left(\max _{t} X_{t}\right)$.
Wasserstein distance

$$
\mathcal{W}_{1}\left(X, \bar{X}^{n}\right)=\sup _{F ; \operatorname{Lip}(F) \leq 1}\left|E F(X)-E F\left(\bar{X}^{n}\right)\right|
$$

where $\Pi(X, \bar{X})$ is the set of random variables (Y, \bar{Y}) with values in $\mathcal{C}([0, T]) \times \mathcal{C}([0, T])$ with marginal laws respectively X and \bar{X}^{n}

Weak and strong error estimations imply :

$$
\exists c, C>0, \quad \forall n, \quad \frac{c}{n} \leq \mathcal{W}_{1}\left(X, \bar{X}^{n}\right) \leq \frac{C}{\sqrt{n}}
$$

Weak pathwise results

$X=\left(X_{t}\right)_{t \in[0, T]}, \quad \bar{X}^{n}=\left(\bar{X}_{t}^{n}\right)_{t \in[0, T]}$
Control of $\left|E F(X)-E F\left(\bar{X}^{n}\right)\right|$ for $F: \mathcal{C}([0, T]) \mapsto \mathbb{R}$ for example $F(X)=f\left(\max _{t} X_{t}\right)$.
Wasserstein distance

$$
\mathcal{W}_{1}\left(X, \bar{X}^{n}\right)=\sup _{F ; L i p(F) \leq 1}\left|E F(X)-E F\left(\bar{X}^{n}\right)\right| \leq E\left\|X-\bar{X}^{n}\right\|_{\infty}
$$

$=\inf _{(Y, \bar{Y}) \in \Pi\left(X, \bar{X}^{n}\right)} E\|Y-\bar{Y}\|$
where $\Pi(X, \bar{X})$ is the set of random variables (Y, \bar{Y}) with values in $\mathcal{C}([0, T]) \times \mathcal{C}([0, T])$ with marginal laws respectively X and \bar{X}^{n}

Weak and strong error estimations imply :

$$
\exists c, C>0, \quad \forall n, \quad \frac{c}{n} \leq \mathcal{W}_{1}\left(X, \bar{X}^{n}\right) \leq \frac{C}{\sqrt{n}}
$$

Weak pathwise results

$X=\left(X_{t}\right)_{t \in[0, T]}, \quad \bar{X}^{n}=\left(\bar{X}_{t}^{n}\right)_{t \in[0, T]}$
Control of $\left|E F(X)-E F\left(\bar{X}^{n}\right)\right|$ for $F: \mathcal{C}([0, T]) \mapsto \mathbb{R}$ for example $F(X)=f\left(\max _{t} X_{t}\right)$.
Wasserstein distance

$$
\begin{aligned}
\mathcal{W}_{1}\left(X, \bar{X}^{n}\right) & =\sup _{F ; L i p(F) \leq 1}\left|E F(X)-E F\left(\bar{X}^{n}\right)\right| \\
& =\inf _{(Y, \bar{Y}) \in \Pi\left(X, \bar{X}^{n}\right)} E\|Y-\bar{Y}\|_{\infty}
\end{aligned}
$$

where $\Pi(X, \bar{X})$ is the set of random variables (Y, \bar{Y}) with values in $\mathcal{C}([0, T]) \times \mathcal{C}([0, T])$ with marginal laws respectively X and \bar{X}^{n}.

Weak and strong error estimations imply :

$$
\exists c, C>0, \quad \forall n, \quad \frac{c}{n} \leq \mathcal{W}_{1}\left(X, \bar{X}^{n}\right) \leq \frac{C}{\sqrt{n}}
$$

Alfonsi-Jourdain-Kohatsu-Higa (2014) : bound for the p-Wasserstein distance between $X=\left(X_{t}\right)_{t \in[0, T]}$ and $\bar{X}^{n}=\left(\bar{X}_{t}^{n}\right)_{t \in[0, T]}$

$$
\forall p \geq 1, \quad, \forall \varepsilon>0, \quad \exists C, \quad \forall n \geq 1, \quad \mathcal{W}_{p}\left(X, \bar{X}^{n}\right) \leq \frac{C}{n^{\frac{2}{3}-\varepsilon}}
$$

where

$$
\mathcal{W}_{p}\left(X, \bar{X}^{n}\right)=\inf _{(Y, \bar{Y}) \in \Pi\left(X, \bar{X}^{n}\right)} E^{1 / p}\|Y-\bar{Y}\|_{\infty}^{p}
$$

Intermediate rate between the strong error rate $1 / \sqrt{n}$ and the weak error rate between the marginal laws $1 / n$

Question: is it possible to obtain the weak error rate $1 / n$?

Linear diffusion coefficient

$$
\begin{gathered}
\mathrm{d} X_{t}=X_{t} \mathrm{~d} B_{t}+b\left(X_{t}\right) \mathrm{d} t \\
\mathrm{~d} \bar{X}_{t}^{n}=\bar{X}_{\varphi_{n}(t)}^{n} \mathrm{~d} B_{t}+b\left(\bar{X}_{\varphi_{n}(t)}^{n}\right) \mathrm{d} t
\end{gathered}
$$

Main Result (Clément \& G. 15)

Assume b, b^{\prime} Lipschitz. For $p \geq 1$, there exists a positive constant C, such that for n large enough :

$$
\mathcal{W}_{p}\left(\left(X_{t}\right)_{t \in[0,1]},\left(\bar{X}_{t}^{n}\right)_{t \in[0,1]}\right) \leq C \frac{\log n}{n}
$$

- Construct X^{\prime} with the law of $X, \bar{X}^{\prime n}$ with the law of \bar{X}^{n} with $\sup _{t \in[0,1]}\left|X^{\prime}-\bar{X}^{\prime n}\right|_{\infty}=O_{L^{p}\left(\frac{\log n}{n}\right)}$
The proof is divided into three steps :
- Reduction to 'source processes'
- Control the Wasserstein distance at the discretization times (k / n)
- Extend it to the whole path of the processes

Step 1 : Reduction to 'source processes'

- Representation of the solution of the S.D.E. using Doss method :

$$
\begin{gathered}
\mathrm{d} X_{t}=X_{t} \mathrm{~d} B_{t}+b\left(X_{t}\right) \mathrm{d} t \\
X_{t}=e^{B_{t}}\left(\int_{0}^{t} e^{-B_{s}}\left(b\left(X_{s}\right)-1 / 2 X_{s}\right) \mathrm{d} s+X_{0}\right)
\end{gathered}
$$

- Comparison with the Euler scheme :

$$
\begin{aligned}
\mathrm{d} \bar{X}_{t}^{n} & =\bar{X}_{\varphi_{n}(t)}^{n} \mathrm{~d} B_{t}+b\left(\bar{X}_{\varphi_{n}(t)}^{n}\right) \mathrm{d} t \\
& =\bar{X}_{t}^{n} \mathrm{~d} B_{t}+b\left(\bar{X}_{\varphi_{n}(t)}^{n}\right) \mathrm{d} t-\left(\bar{X}_{t}^{n} \mathrm{~d} B_{t}-\bar{X}_{\varphi_{n}(t)}^{n} \mathrm{~d} B_{t}\right) \\
& =\bar{X}_{t}^{n} \mathrm{~d} B_{t}+b\left(\bar{X}_{\varphi_{n}(t)}^{n}\right) \mathrm{d} t-\bar{X}_{t}^{n}\left(B_{t}-B_{\varphi_{n}(t)}\right) \mathrm{d} B_{t}+O(1 / n) \\
& =\bar{X}_{t}^{n} \mathrm{~d} L_{t}^{n}+b\left(\bar{X}_{\varphi_{n}(t)}^{n}\right) \mathrm{d} t+O(1 / n)
\end{aligned}
$$

where we set $L_{t}^{n}=B_{t}-\int_{0}^{t}\left(B_{s}-B_{\varphi_{n}(s)}\right) \mathrm{d} B_{s}$.

One can define \tilde{X}^{n} such that

$$
\tilde{X}_{t}^{n}=e^{L_{t}^{n}}\left(\int_{0}^{t} e^{-L_{s}^{n}}\left(b\left(\tilde{X}_{s}^{n}\right)-1 / 2 \tilde{X}_{s}^{n}\right) \mathrm{d} s+X_{0}\right)
$$

and

$$
\sup _{t \in[0,1]}\left|\tilde{X}_{t}^{n}-\bar{X}_{t}^{n}\right|=O_{L^{p}}(1 / n)
$$

From the two representations :

$$
\sup _{t \in[0,1]}\left|\tilde{X}_{t}^{n}-X_{t}\right| \leq C\left(e^{\|B\|_{\infty}}+e^{\left\|L^{n}\right\|_{\infty}}\right) \sup _{t \in[0,1]}\left|L_{t}^{n}-B_{t}\right|
$$

'Conclusion'
Coupling the processes L^{n} and B induces a coupling between Euler scheme and diffusion

Step 2 : Control of the Wasserstein distance between $\left(B_{t}\right)$ and $\left(L_{t}^{n}\right)$ at the discretizations times

Find a coupling between $\left(B_{\frac{k}{n}}\right)_{0 \leq k \leq n}$ and $\left(L_{\frac{k}{n}}^{n}\right)_{0 \leq k \leq n}$.
Why focusing on discretizations times?
$B_{\frac{k}{n}}=\sum_{i=1}^{k} \Delta B_{i}={ }_{d} \frac{1}{\sqrt{n}} \sum_{i=1}^{k} Y_{i} \quad\left(Y_{i}\right)$ i.i.d. $\mathcal{N}(0,1)$
$L_{\frac{k}{n}}^{n}=\sum_{i=1}^{k}\left(\Delta B_{i}-\frac{1}{2}\left(\Delta B_{i}^{2}-\frac{1}{n}\right)\right)={ }_{d} \frac{1}{\sqrt{n}} \sum_{i=1}^{k}\left(Y_{i}-\frac{1}{2 \sqrt{n}}\left(Y_{i}^{2}-1\right)\right)$
\Rightarrow Find $\left(B_{k / n}^{\prime}\right)_{k} \stackrel{\text { law }}{=}\left(B_{k / n}\right)_{k}$ and $\left(L_{k / n}^{\prime n}\right)_{k} \stackrel{\text { law }}{=}\left(L_{k / n}^{n}\right)_{k}$, with
$\sup _{k=0, \ldots, n}\left|B_{k / n}^{\prime}-L_{k / n}^{\prime n}\right|=O(\log n / n)$.
\Rightarrow using the construction due to Komlos-Major-Tusnady (hungarian construction), we obtain :

$$
\mathcal{W}_{p}\left(\left(B_{\frac{k}{n}}\right)_{1 \leq k \leq n},\left(L_{\frac{k}{n}}^{n}\right)_{1 \leq k \leq n}\right) \leq C \frac{\log n}{n} .
$$

This is a technical part that we will explain below.

Step 3 : Extension to the whole processes

Construct $\left(B_{t}^{\prime}\right)_{t \in[0,1]}$ and $L_{t}^{\prime n}=B_{t}+\int_{0}^{t}\left(B_{s}-B_{\varphi_{n}(s)}\right) \mathrm{d} B_{s}, t \in[0,1]$ from $\left(B_{k / n}^{\prime}\right)_{k}$ and $\left(L_{k / n}^{\prime n}\right)_{k}$.
\Rightarrow using that the strong error on a time interval of length $1 / n$ is of order $1 / n$

$$
E^{1 / p} \max _{1 \leq k \leq n} \sup _{t \in\left[\frac{k-1}{n}, \frac{k}{n}\right]}\left|B_{t}^{\prime n}-L_{t}^{\prime n}\right|^{p} \leq C \frac{\log n}{n},
$$

where

$$
B_{t}^{n}=L_{\frac{k-1}{n}}^{\prime n}+B_{t}-B_{\frac{k-1}{n}}, \quad \text { for } \quad \frac{k-1}{n} \leq t<\frac{k}{n} .
$$

$$
\mathcal{W}_{p}\left(\left(B_{t}^{n}\right)_{t \in[0,1]},\left(L_{t}^{n}\right)_{t \in[0,1]}\right) \leq C \frac{\log n}{n} .
$$

Triangle inequality :

$$
\begin{aligned}
\mathcal{W}_{p}\left(\left(B_{t}\right)_{t \in[0,1]},\left(L_{t}^{n}\right)_{t \in[0,1]}\right) \leq & \mathcal{W}_{p}\left(\left(B_{t}\right)_{t \in[0,1]},\left(B_{t}^{n}\right)_{t \in[0,1]}\right) \\
& +\mathcal{W}_{p}\left(\left(B_{t}^{n}\right)_{t \in[0,1]},\left(L_{t}^{n}\right)_{t \in[0,1]}\right)
\end{aligned}
$$

Control of $\mathcal{W}_{p}\left(\left(B_{t}\right)_{t \in[0,1]},\left(B_{t}^{n}\right)_{t \in[0,1]}\right)$ by constructing brownian bridges and by using the step 2

This gives:

$$
\mathcal{W}_{p}\left(\left(B_{t}\right)_{t \in[0,1]},\left(L_{t}^{n}\right)_{t \in[0,1]}\right) \leq C \frac{\log n}{n}
$$

(rk: Step 3 is based on Alfonsi, Jourdain, Kohatsu-Higa (2014))

A KMT type result

We recall the previous notations

$$
\begin{aligned}
& B_{\frac{k}{n}}=\sum_{i=1}^{k} \Delta B_{i}={ }_{d} \frac{1}{\sqrt{n}} \sum_{i=1}^{k} Y_{i} \quad\left(Y_{i}\right) \text { i.i.d. } \mathcal{N}(0,1) \\
& L_{\frac{k}{n}}^{n}=\sum_{i=1}^{k}\left(\Delta B_{i}-\frac{1}{2}\left(\Delta B_{i}^{2}-\frac{1}{n}\right)\right)={ }_{d} \frac{1}{\sqrt{n}} \sum_{i=1}^{k}\left(Y_{i}-\frac{1}{2 \sqrt{n}}\left(Y_{i}^{2}-1\right)\right)
\end{aligned}
$$

Let $S_{k}=\sum_{i=1}^{k} Y_{i}$ and $\bar{S}_{k}=\sum_{i=1}^{k} X_{i},\left(X_{i}\right)$ i.i.d. variables
The previous problem (step 2) can be related to the KMT result, which permits to obtain the best trajectorial coupling between $\left(S_{k}\right)_{k}$ and $\left(\bar{S}_{k}\right)_{k}$.

KMT construction

Komlos-Major-Tusnady result (1976-1977) : hungarian dyadic recursive construction

Let X be a random variable such that $E X=0, V X=1, E e^{t_{0}|X|}<\infty$, for $t_{0}>0$.
Then one can construct on the same probability space a sequence of i.i.d. standard gaussian variables $\left(Y_{i}\right)_{1 \leq i \leq n}$ and a sequence of i.i.d. variables $\left(X_{i}\right)_{1 \leq i \leq n}$, with $X_{i}={ }_{d} X$, such that for positive constants C, K and λ, we have, for all n and for all $x>0$:

$$
P\left(\sup _{1 \leq k \leq n}\left|S_{k}-\bar{S}_{k}\right| \geq K \log n+x\right) \leq C e^{-\lambda x},
$$

where $S_{k}=\sum_{i=1}^{k} Y_{i}$ and $\bar{S}_{k}=\sum_{i=1}^{k} X_{i}$.
In particular :

$$
\mathcal{W}_{p}\left(\left(S_{k}\right)_{1 \leq k \leq n},\left(\bar{S}_{k}\right)_{1 \leq k \leq n}\right) \leq C \log n
$$

Optimality of the KMT construction

Let $X_{1}, \ldots, X_{n}, \ldots$, be i.i.d with distribution X different from $\mathcal{N}(0,1)$, and let $Y_{1}, \ldots, Y_{n}, \ldots$ be i.i.d. $\mathcal{N}(0,1)$. Then, there exists C_{0} such that

$$
P\left(\limsup _{n \rightarrow \infty} \frac{\left|S_{n}-\bar{S}_{n}\right|}{\log n} \geq C_{0}\right)=1
$$

where $S_{n}=\sum_{i=1}^{n} Y_{i}$ and $\bar{S}_{n}=\sum_{i=1}^{n} X_{i}$.

Back to our pb

A type of KMT construction for

$$
B_{\frac{k}{n}}={ }_{d} \frac{1}{\sqrt{n}} S_{k}=\frac{1}{\sqrt{n}} \sum_{i=1}^{k} Y_{i}, \quad\left(Y_{i}\right)_{i} \text { i.i.d } \mathcal{N}(0,1) \text { and, }
$$

$$
L_{\frac{k}{n}}^{n}={ }_{d} \frac{1}{\sqrt{n}} \bar{S}_{k}^{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{k}\left(Y_{i}-\frac{1}{2 \sqrt{n}}\left(Y_{i}^{2}-1\right)\right),
$$

The goal : $\sup _{0 \leq k \leq n}\left|B_{k / n}^{\prime}-L_{k / n}^{\prime n}\right| \approx \frac{(\log n)}{\sqrt{n} \sqrt{n}}$.

Large deviation expansion

A type of KMT construction for
$B_{\frac{k}{n}}={ }_{d} \frac{1}{\sqrt{n}} S_{k}=\frac{1}{\sqrt{n}} \sum_{i=1}^{k} Y_{i}$, and
$L_{\frac{k}{n}}^{n}={ }_{d} \frac{1}{\sqrt{n}} \bar{S}_{k}^{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{k}\left(Y_{i}-\frac{1}{2 \sqrt{n}}\left(Y_{i}^{2}-1\right)\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{k} X_{i}^{n}$,
Main tool : gaussian coupling based on a large deviation expansion of the density of $\frac{1}{\sqrt{k}} \bar{S}_{k}^{n}$.

Let \bar{p}_{k}^{n} be the density function of $\frac{1}{\sqrt{k}} \bar{S}_{k}^{n}$, and ϕ be the density of the standard gaussian law.

Theorem

$\exists \varepsilon>0, C>0$ such that for all $k \geq 1$ and n large enough, we have :

$$
\bar{p}_{k}^{n}(x)=\phi(x) e^{\frac{1}{\sqrt{n}} T_{k}(x)}, \quad \text { for } \quad|x| \leq \varepsilon \sqrt{k n}
$$

where $\left|T_{k}(x)\right| \leq C \frac{\left(1+|x|^{3}\right)}{\sqrt{k}}$.
('mixed result' between Edgeworth expansion and large deviation control)

Refined quantile coupling inequalities

Let $F_{k, n}$ be the cumulative distribution function of $\frac{1}{\sqrt{k}} \bar{S}_{k}^{n}$, ahd Φ the c.d.f. of $\mathcal{N}(0,1)$.

We have $\frac{1}{\sqrt{k}} \bar{S}_{k}^{n}={ }_{d} F_{k, n}^{-1}\left(\Phi\left(\frac{1}{\sqrt{k}} S_{k}\right)\right)$.
We assume $\frac{1}{\sqrt{k}} \bar{S}_{k}^{n}=F_{k, n}^{-1}\left(\Phi\left(\frac{1}{\sqrt{k}} S_{k}\right)\right)$, for $S_{k}=\sum_{i=1}^{k} Y_{i}$.

Theorem

$\exists \varepsilon>0, C>0$ such that, for all $k \geq 1$ and n large enough :

$$
\left|\bar{S}_{k}^{n}-S_{k}\right| \leq \frac{C}{\sqrt{n}}\left(\frac{\left|\bar{S}_{k}^{n}\right|^{2}}{k}+1\right), \quad \text { if } \quad\left|\bar{S}_{k}^{n}\right| \leq \varepsilon k \sqrt{n}
$$

(we can construct a coupling between the sums at any fixed k)

The dyadic construction of the random walks

Idea about the recursive construction :

- First we use the coupling inequality at $k=n$:

$$
\left|\bar{S}_{n}^{n}-S_{n}\right| \leq \frac{C}{\sqrt{n}}\left(\frac{\left(\bar{S}_{n}^{n}\right)^{2}}{n}+1\right), \text { if }\left|S_{n}\right| \leq \varepsilon n^{3 / 2}
$$

- Then, draw, $\bar{S}_{n / 2}^{n}=\sum_{i=1}^{n / 2} Y_{i}$ conditional to the value of \bar{S}_{n}^{n}, and draw, $S_{n / 2}=\sum_{i=1}^{n / 2} X_{i}^{n}$ conditional to the value of S_{n}, with a coupling inequality:

$$
\left|\bar{S}_{n / 2}^{n}-S_{n / 2}\right| \leq \frac{C}{\sqrt{n}}\left(\frac{\left(\bar{S}_{n / 2}^{n}\right)^{2}}{n}+\frac{\left(\bar{S}_{n}^{n}\right)^{2}}{n}+1\right)+\left|\bar{S}_{n}^{n}-S_{n}\right|
$$

- At step k, the $\bar{S}_{12^{n-k}}$ and $S_{12^{n-k}}$ are constructed for $I \in\left\{0, \ldots, 2^{k}\right\}$.
- Finally X_{i}^{n} and Y_{i} are constructed for $i=1, \ldots, n$.

We obtain for $\left(S_{k}\right)$ and $\left(\bar{S}_{k}^{n}\right)$:

For positive constants C, K and λ, we have, for all n and for all $x>0$:

$$
P\left(\sqrt{n} \sup _{1 \leq k \leq n}\left|S_{k}-\bar{S}_{k}^{n}\right| \geq K \log n+x\right) \leq C e^{-\lambda x},
$$

This permits to deduce :

$$
\mathcal{W}_{p}\left(\left(S_{k}\right)_{1 \leq k \leq n},\left(\bar{S}_{k}^{n}\right)_{1 \leq k \leq n}\right) \leq C \frac{\log n}{\sqrt{n}} .
$$

and since $B_{\frac{k}{n}}={ }_{d} \frac{1}{\sqrt{n}} S_{k}$ and $L_{\frac{k}{n}}^{n}=d \frac{1}{\sqrt{n}} \bar{S}_{k}^{n}$:

$$
\mathcal{W}_{p}\left(\left(B_{\frac{k}{n}}\right)_{1 \leq k \leq n},\left(L_{\frac{k}{n}}^{n}\right)_{1 \leq k \leq n}\right) \leq C \frac{\log n}{n} .
$$

Extensions / ongoing work

- $\left(X_{t}\right)$ diffusion process

$$
\mathrm{d} X_{t}=a\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t, b=(1 / 2) a a^{\prime} .
$$

$\left(\bar{X}_{t}^{n}\right)$ Euler approximation

- Find a pathwise coupling between between $\left(L_{t}^{n}\right)_{t \in[0,1]}$ and $(B)_{t \in[0,1]}$:
$\left(B_{t}\right)_{t}$ with law B.M : $B_{\frac{k}{n}}=\sum_{i=1}^{k} \Delta B_{i}, \quad \Delta B_{i}=B_{i / n}-B_{(i-1) / n}$

$$
L_{\frac{k}{n}}^{n}=\sum_{i=0}^{k-1}\left(\Delta B_{i}-\frac{a^{\prime}\left(X_{(i-1) / n}\right)}{2 \sqrt{n}}\left(\left(\Delta B_{i}\right)^{2}-1\right)\right)
$$

Due to $a^{\prime}\left(X_{i / n}\right)$: dependent variables
KMT for dependent variables: Berkes, I., Liu, W. and Wu, W. B (2014), Merlevede \& Rio (2012) : based on mixing properties

Extensions / ongoing work

Two main difficulties
(1) Extension of the KMT construction to the Markov chains $\left(X_{\frac{k}{n}}\right)$ and $\left(\bar{X}_{\frac{k}{n}}^{n}\right)$: essentially the recursive part of the construction
(2) Quantile coupling inequalities

- Need for sharp controls on densities.

Denote $p_{n}(u)$ the law of

$$
\frac{1}{\sqrt{n}} L_{1}^{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\Delta B_{i}-\frac{a^{\prime}\left(X_{(i-1) / n)}\right.}{2 \sqrt{n}}\left(\left(\Delta B_{i}\right)^{2}-1\right)\right)
$$

Expansion for densities
We have

$$
\begin{aligned}
& p_{n}(u) \leq \phi(u) e^{C\left(1+|u|^{6}\right)^{6} \frac{\log n}{n}} \\
& p_{n}(u) \geq \phi(u) e^{-C\left(1+|u|^{6}\right) \frac{\log n}{n}}
\end{aligned}
$$

for $|u|^{6} \leq \varepsilon \frac{n}{\log n}$

Thank you for your attention

