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Euler approximation of a diffusion

One dimensional diffusion :

Xt = x0 +

∫ t

0

a(Xs)dBs +

∫ t

0

b(Xs)ds, t ∈ [0,T ],

(a and b smooth)

Continuous time Euler approximation :

X
n

t = x0 +

∫ t

0

a(Xϕn(s))dBs +

∫ t

0

b(Xϕn(s))ds, t ∈ [0,T ],

ϕn(s) =
iT

n
if

iT

n
≤ s <

(i + 1)T

n
, 0 ≤ i ≤ n − 1.



Basic approximation results

pathwise strong approximation

∀p ≥ 1, ∃C > 0, ∀n ≥ 1,

E 1/p sup
t∈[0,T ]

|Xt − X
n

t |p ≤
C√
n
.

weak approximation of the marginal laws
(Talay-Tubaro 90, Bally-Talay 96, Gobet-Labart 08, Sbai 09)

For f measurable and bounded, ∃C > 0, ∀n ≥ 1,

|Ef (XT )− Ef (X
n

T )| ≤ C

n
.

For f Lipschitz continuous , ∃C > 0, ∀n ≥ 1,

sup
t∈[0,T ]

|Ef (Xt)− Ef (X
n

t )| ≤ C

n
.
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Weak pathwise results

X = (Xt)t∈[0,T ], X
n

= (X
n

t )t∈[0,T ]

Control of |EF (X )− EF (X
n
)| for F : C([0,T ]) 7→ R

for example F (X ) = f (maxt Xt).

Wasserstein distance

W1(X ,X
n
) = supF ;Lip(F )≤1 |EF (X )− EF (X

n
)|≤ E

∥∥∥X − X
n
∥∥∥
∞

= inf(Y ,Y )∈Π(X ,X
n
) E
∥∥Y − Y

∥∥
∞

where Π(X ,X ) is the set of random variables (Y ,Y ) with values in

C([0,T ])× C([0,T ]) with marginal laws respectively X and X
n
.

Weak and strong error estimations imply :

∃c ,C > 0, ∀n, c

n
≤ W1(X ,X

n
) ≤ C√

n
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Alfonsi-Jourdain-Kohatsu-Higa (2014) : bound for the p−Wasserstein

distance between X = (Xt)t∈[0,T ] and X
n

= (X
n

t )t∈[0,T ]

∀p ≥ 1, ,∀ε > 0, ∃C , ∀n ≥ 1, Wp(X ,X
n
) ≤ C

n
2
3−ε

where

Wp(X ,X
n
) = inf

(Y ,Y )∈Π(X ,X
n
)
E 1/p

∥∥Y − Y
∥∥p
∞

Intermediate rate between the strong error rate 1/
√
n and the weak error

rate between the marginal laws 1/n

Question : is it possible to obtain the weak error rate 1/n ?



Linear diffusion coefficient

dXt = XtdBt + b(Xt)dt

dX
n

t = X
n

ϕn(t)dBt + b(X
n

ϕn(t))dt

Main Result (Clément & G. 15)

Assume b, b′ Lipschitz. For p ≥ 1, there exists a positive constant C ,
such that for n large enough :

Wp((Xt)t∈[0,1], (X
n

t )t∈[0,1]) ≤ C
log n

n
.

• Construct X ′ with the law of X , X
′n

with the law of X
n

with

supt∈[0,1]

∣∣∣X ′ − X
′n
∣∣∣
∞

= OLp ( logn
n )

The proof is divided into three steps :

Reduction to ’source processes’

Control the Wasserstein distance at the discretization times (k/n)

Extend it to the whole path of the processes



Step 1 : Reduction to ’source processes’

• Representation of the solution of the S.D.E. using Doss method :

dXt = XtdBt + b(Xt)dt

Xt = eBt

(∫ t

0

e−Bs (b(Xs)− 1/2Xs)ds + X0

)
• Comparison with the Euler scheme :

dX
n

t = X
n

ϕn(t)dBt + b(X
n

ϕn(t))dt

= X
n

t dBt + b(X
n

ϕn(t))dt − (X
n

t dBt − X
n

ϕn(t)dBt)

= X
n

t dBt + b(X
n

ϕn(t))dt − X
n

t (Bt − Bϕn(t))dBt + O(1/n)

= X
n

t dLnt + b(X
n

ϕn(t))dt + O(1/n)

where we set Lnt = Bt −
∫ t

0
(Bs − Bϕn(s))dBs .



One can define X̃ n such that

X̃ n
t = eL

n
t

(∫ t

0

e−L
n
s (b(X̃ n

s )− 1/2X̃ n
s )ds + X0

)
and

sup
t∈[0,1]

∣∣∣X̃ n
t − X

n

t

∣∣∣ = OLp (1/n).

From the two representations :

sup
t∈[0,1]

∣∣∣X̃ n
t − Xt

∣∣∣ ≤ C
(
e‖B‖∞ + e‖L

n‖∞
)

sup
t∈[0,1]

|Lnt − Bt | .

’Conclusion’
Coupling the processes Ln and B induces a coupling between Euler
scheme and diffusion



Step 2 : Control of the Wasserstein distance between (Bt)
and (Lnt ) at the discretizations times

Find a coupling between (B k
n
)0≤k≤n and (Lnk

n

)0≤k≤n.

Why focusing on discretizations times ?
B k

n
=
∑k

i=1 ∆Bi=d
1√
n

∑k
i=1 Yi (Yi ) i.i.d. N (0, 1)

Lnk
n

=
∑k

i=1(∆Bi − 1
2 (∆B2

i − 1
n ))=d

1√
n

∑k
i=1(Yi − 1

2
√
n

(Y 2
i − 1))

⇒ Find (B ′k/n)k
law
= (Bk/n)k and (L′nk/n)k

law
= (Lnk/n)k , with

supk=0,...,n

∣∣∣B ′k/n − L′nk/n

∣∣∣ = O(log n/n).

⇒ using the construction due to Komlos-Major-Tusnady (hungarian
construction), we obtain :

Wp((B k
n
)1≤k≤n, (L

n
k
n
)1≤k≤n) ≤ C

log n

n
.

This is a technical part that we will explain below.



Step 3 : Extension to the whole processes

Construct (B ′t)t∈[0,1] and L′nt = Bt +
∫ t

0
(Bs − Bϕn(s))dBs , t ∈ [0, 1] from

(B ′k/n)k and (L′nk/n)k .

⇒ using that the strong error on a time interval of length 1/n is of order
1/n

E 1/p max
1≤k≤n

sup
t∈[ k−1

n , kn ]

|B ′nt − L′nt |p ≤ C
log n

n
,

where

Bn
t = L′nk−1

n

+ Bt − B k−1
n
, for

k − 1

n
≤ t <

k

n
.

Wp((Bn
t )t∈[0,1], (L

n
t )t∈[0,1]) ≤ C

log n

n
.



Triangle inequality :

Wp((Bt)t∈[0,1], (L
n
t )t∈[0,1]) ≤ Wp((Bt)t∈[0,1], (B

n
t )t∈[0,1])

+Wp((Bn
t )t∈[0,1], (L

n
t )t∈[0,1])

Control of Wp((Bt)t∈[0,1], (B
n
t )t∈[0,1]) by constructing brownian bridges

and by using the step 2

This gives :

Wp((Bt)t∈[0,1], (L
n
t )t∈[0,1]) ≤ C

log n

n
.

(rk : Step 3 is based on Alfonsi,Jourdain, Kohatsu-Higa (2014) )



A KMT type result

We recall the previous notations

B k
n

=
∑k

i=1 ∆Bi=d
1√
n

∑k
i=1 Yi (Yi ) i.i.d. N (0, 1)

Lnk
n

=
∑k

i=1(∆Bi − 1
2 (∆B2

i − 1
n ))=d

1√
n

∑k
i=1(Yi − 1

2
√
n

(Y 2
i − 1))

Let Sk =
∑k

i=1 Yi and Sk =
∑k

i=1 Xi , (Xi ) i.i.d. variables

The previous problem (step 2) can be related to the KMT result, which
permits to obtain the best trajectorial coupling between (Sk)k and (Sk)k .



KMT construction

Komlos-Major-Tusnady result (1976-1977) : hungarian dyadic recursive
construction

Let X be a random variable such that EX = 0, VX = 1, Eet0|X | <∞, for
t0 > 0.
Then one can construct on the same probability space a sequence of i.i.d.
standard gaussian variables (Yi )1≤i≤n and a sequence of i.i.d. variables
(Xi )1≤i≤n, with Xi =d X , such that for positive constants C , K and λ,
we have, for all n and for all x > 0 :

P( sup
1≤k≤n

|Sk − Sk | ≥ K log n + x) ≤ Ce−λx ,

where Sk =
∑k

i=1 Yi and Sk =
∑k

i=1 Xi .

In particular :

Wp((Sk)1≤k≤n, (Sk)1≤k≤n) ≤ C log n



Optimality of the KMT construction

Let X1, . . . ,Xn, . . . , be i.i.d with distribution X different from N (0, 1),
and let Y1, . . . ,Yn, . . . be i.i.d. N (0, 1). Then, there exists C0 such that

P(lim sup
n→∞

∣∣Sn − Sn

∣∣
log n

≥ C0) = 1,

where Sn =
∑n

i=1 Yi and Sn =
∑n

i=1 Xi .



Back to our pb

A type of KMT construction for

B k
n

=d
1√
n
Sk = 1√

n

∑k
i=1 Yi , (Yi )i i.i.d N (0, 1) and,

Lnk
n

=d
1√
n
S
n

k = 1√
n

∑k
i=1(Yi − 1

2
√
n

(Y 2
i − 1)),

The goal : sup0≤k≤n |B ′k/n − L′nk/n| ≈
(log n)√
n
√
n

.



Large deviation expansion

A type of KMT construction for

B k
n

=d
1√
n
Sk = 1√

n

∑k
i=1 Yi , and

Lnk
n

=d
1√
n
S
n

k = 1√
n

∑k
i=1(Yi − 1

2
√
n

(Y 2
i − 1)) = 1√

n

∑k
i=1 X

n
i ,

Main tool : gaussian coupling based on a large deviation expansion of
the density of 1√

k
S
n

k .

Let pnk be the density function of 1√
k
S
n

k , and φ be the density of the

standard gaussian law.

Theorem
∃ε > 0,C > 0 such that for all k ≥ 1 and n large enough, we have :

pnk(x) = φ(x)e
1√
n
Tk (x)

, for |x | ≤ ε
√
kn

where |Tk(x)| ≤ C (1+|x|3)√
k

.

(’mixed result’ between Edgeworth expansion and large deviation control)



Refined quantile coupling inequalities

Let Fk,n be the cumulative distribution function of 1√
k
S
n

k ,

ahd Φ the c.d.f. of N (0, 1).

We have 1√
k
S
n

k =d F−1
k,n (Φ( 1√

k
Sk)).

We assume 1√
k
S
n

k = F−1
k,n (Φ( 1√

k
Sk)), for Sk =

∑k
i=1 Yi .

Theorem
∃ε > 0,C > 0 such that, for all k ≥ 1 and n large enough :

|Sn

k − Sk | ≤
C√
n

(
|Sn

k |2

k
+ 1

)
, if |Sn

k | ≤ εk
√
n.

(we can construct a coupling between the sums at any fixed k)



The dyadic construction of the random walks

Idea about the recursive construction :
• First we use the coupling inequality at k = n :

|Sn

n − Sn| ≤
C√
n

(
(S

n

n)2

n
+ 1), if |Sn| ≤ εn3/2.

• Then, draw, S
n

n/2 =
∑n/2

i=1 Yi conditional to the value of S
n

n, and draw,

Sn/2 =
∑n/2

i=1 X
n
i conditional to the value of Sn, with a coupling

inequality :

|Sn

n/2 − Sn/2| ≤
C√
n

(
(S

n

n/2)2

n
+

(S
n

n)2

n
+ 1) +

∣∣∣Sn

n − Sn

∣∣∣ .
• At step k , the S l2n−k and Sl2n−k are constructed for l ∈ {0, . . . , 2k}.
• Finally X n

i and Yi are constructed for i = 1, . . . , n.



We obtain for (Sk) and (S
n

k) :

For positive constants C , K and λ, we have, for all n and for all x > 0 :

P(
√
n sup

1≤k≤n
|Sk − S

n

k | ≥ K log n + x) ≤ Ce−λx ,

This permits to deduce :

Wp((Sk)1≤k≤n, (S
n

k)1≤k≤n) ≤ C
log n√

n
.

and since B k
n

=d
1√
n
Sk and Lnk

n

=d
1√
n
S
n

k :

Wp((B k
n
)1≤k≤n, (L

n
k
n
)1≤k≤n) ≤ C

log n

n
.



Extensions / ongoing work

• (Xt) diffusion process

dXt = a(Xt)dBt + b(Xt)dt, b = (1/2)aa′.

(X
n

t ) Euler approximation

• Find a pathwise coupling between between (Lnt )t∈[0,1] and (B)t∈[0,1] :

(Bt)t with law B.M : B k
n

=
∑k

i=1 ∆Bi , ∆Bi = Bi/n − B(i−1)/n

Lnk
n

=
k−1∑
i=0

(
∆Bi −

a′(X(i−1)/n)

2
√
n

((∆Bi )
2 − 1)

)

Due to a′(Xi/n) : dependent variables

KMT for dependent variables : Berkes, I., Liu, W. and Wu, W. B (2014),
Merlevede & Rio (2012) : based on mixing properties



Extensions / ongoing work

Two main difficulties
1 Extension of the KMT construction to the Markov chains (X k

n
) and

(X
n
k
n
) : essentially the recursive part of the construction

2 Quantile coupling inequalities

• Need for sharp controls on densities.
Denote pn(u) the law of

1√
n
Ln

1 =
1√
n

n∑
i=1

(
∆Bi −

a′(X(i−1)/n)

2
√
n

((∆Bi )
2 − 1)

)

Expansion for densities

We have

pn(u) ≤ φ(u)eC(1+|u|6) log n
n

pn(u) ≥ φ(u)e−C(1+|u|6) log n
n

for |u|6 ≤ ε n
log n



Thank you for your attention
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