# Stratified Nested Regression Monte-Carlo scheme with large scale parallelization

#### emmanuel.gobet@polytechnique.edu





Joint work with J. Salas (U. da Coruña), P. Turkedjiev (EP), C. Vasquez (UdC). In minor revision for *SIAM Scientific Computing*.

#### STRUCTURE OF THE TALK

- 1. BSDE setting (could be extended to other dynamic programming)
- 2. Usual Regression Monte Carlo methods [G'-Turkedjiev, Math Comp 2015]
  - ✓ Algorithm (**parallelization not available**)
  - $\checkmark$  Error estimates
  - $\checkmark$  Strongest implementation constraint: **memory !!**
- 3. Stratified version, parallelization on basis functions not on simulations
  - $\checkmark\,$  Randomization and norms equivalence
  - $\checkmark$  Error estimates
  - $\checkmark$  Complexity and memory analysis
- 4. Numerical tests on GPU
- 5. Data driven version with non-intrusive stratified resampler (with Liu-Zubelli)

# 1) BSDE SETTING

**Standard BSDE** with *fixed terminal time T*:

$$\mathbf{Y}_{\mathbf{t}} = \xi + \int_{\mathbf{t}}^{\mathbf{T}} \mathbf{f}(\mathbf{s}, \mathbf{Y}_{\mathbf{s}}, \mathbf{Z}_{\mathbf{s}}) d\mathbf{s} - \int_{\mathbf{t}}^{\mathbf{T}} \mathbf{Z}_{\mathbf{s}} d\mathbf{W}_{\mathbf{s}}$$

 $\checkmark~{\rm driving~noise} = {\rm Brownian}~{\rm Motion}~W$ 

- ✓ Lipschitz driver f, terminal condition  $\xi \in L_2$
- ✓ Markovian BSDE:  $f(s, \omega, y, z) = f(s, X_s, y, z)$  and  $\xi = g(X_T)$  for a diffusion X with coefficients  $(b, \sigma)$
- $\checkmark\,$  Reaction-diffusion equations, neuroscience, non-linear pricing in finance

Multidimensional unknown:  $X \in \mathbb{R}^d$ ,  $Y \in \mathbb{R}$ ,  $Z \in \mathbb{R}^q$ .

Markovian BSDE:  $\mathbf{Y}_{\mathbf{t}} = \mathbf{u}(\mathbf{t}, \mathbf{X}_{\mathbf{t}}), \mathbf{Z}_{\mathbf{t}} = \sigma \nabla \mathbf{u}(\mathbf{t}, \mathbf{X}_{\mathbf{t}}), \partial_{\mathbf{t}} \mathbf{u} + \mathcal{L} \mathbf{u} + \mathbf{f}(\mathbf{u}, \sigma \nabla \mathbf{u}) = \mathbf{0}$ 

**Approximation**/simulation in 2 stages:

- 1. time-discretization (numerous works under rather general settings)
- 2. solving the dynamic programming equation (nested cond. expect., few works)

TIME DISCRETIZATION OF 
$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$

Discretization along equidistant time grid  $\pi := \{0 = t_0 < \ldots < t_N = T\}$ :

$$\checkmark$$
 (i+1)-th time-step is  $\Delta_i = t_{i+1} - t_i = T/N;$ 

 $\checkmark$  related Brownian motion increments  $\Delta W_i := W_{t_{i+1}} - W_{t_i}$ .

# Heuristic derivation)

From  $Y_{t_i} = Y_{t_{i+1}} + \int_{t_i}^{t_{i+1}} f(s, X_s, Y_s, Z_s) ds - \int_{t_i}^{t_{i+1}} Z_s dW_s$ , we derive

$$\begin{split} \mathbf{Y}_{\mathbf{t}_{i}} &= \mathbb{E}(Y_{t_{i+1}} + \int_{t_{i}}^{t_{i+1}} f(s, X_{s}, Y_{s}, Z_{s}) \mathrm{d}s | \mathcal{F}_{t_{i}}) \\ &\approx \mathbb{E}(\mathbf{Y}_{\mathbf{t}_{i+1}} + \mathbf{f}(\mathbf{t}_{i}, \mathbf{X}_{\mathbf{t}_{i}}, \mathbf{Y}_{\mathbf{t}_{i+1}}, \mathbf{Z}_{\mathbf{t}_{i}}) \ \boldsymbol{\Delta}_{i} | \mathcal{F}_{\mathbf{t}_{i}}), \\ \mathbf{Z}_{\mathbf{t}_{i}} \boldsymbol{\Delta}_{i} &\approx \mathbb{E}(\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{d}s | \mathcal{F}_{t_{i}}) = \mathbb{E}([Y_{t_{i+1}} + \int_{t_{i}}^{t_{i+1}} f(s, X_{s}, Y_{s}, Z_{s}) \mathrm{d}s] \Delta W_{i}^{\top} | \mathcal{F}_{t_{i}}) \\ &\approx \mathbb{E}(\mathbf{Y}_{\mathbf{t}_{i+1}} \boldsymbol{\Delta} \mathbf{W}_{i}^{\top} | \mathcal{F}_{\mathbf{t}_{i}}) \qquad \text{(where }^{\top} \text{ denotes the transpose).} \end{split}$$

# **Dynamic programming equations**

 $\star$  One-step forward Dynamic Programming equation

$$Y_{i} = \mathbb{E}_{i} \left( Y_{i+1} + f_{i}(Y_{i+1}, Z_{i})\Delta_{i} \right), \quad 0 \leq i < N, \qquad Y_{N} = \xi.$$
  

$$\Delta_{i} Z_{i} = \mathbb{E}_{i} \left( Y_{i+1} \Delta W_{i}^{\top} \right), \quad 0 \leq i < N.$$
(ODP)

- ✓ X could be approximated by a path-wise approximation (e.g. Euler scheme) ✓ For f and g Lipschitz, the  $L_2$ -error is of order  $N^{-\frac{1}{2}}$
- $\bigstar$  Multi-Step forward Dynamic Programming equation:

$$\begin{cases} Y_i = \mathbb{E}_i \left( \xi + \sum_{k=i}^{N-1} f_k(Y_{k+1}, Z_k) \Delta_k \right), \\ \Delta_i Z_i = \mathbb{E}_i \left( [\xi + \sum_{k=i+1}^{N-1} f_k(Y_{k+1}, Z_k) \Delta_k] \Delta W_i^\top \right). \end{cases}$$
(MDP)

- $\checkmark$  Without extra approximation, **ODP**  $\iff$  **MDP**.
- $\checkmark$   $\stackrel{\frown}{\Sigma}$  Differences occur when conditional expectations are approximated: **MDP** > **ODP**

## 2) USUAL REGRESSION MONTE CARLO METHOD

- ✓ Markovian representations:  $Y_i = y_i(X_i)$  and  $Z_i = z_i(X_i)$
- ✓ Computations of y and z on approximation spaces  $\mathcal{F}_i^Y, \mathcal{F}_i^Z$  (finite dimensional vector spaces: global/local polynomials, Fourier basis, wavelets...)
- ✓ N independent learning samples: at time  $i, [(X_j^{i,m})_{0 \le j \le N}, \Delta W_i^{i,m}]_{1 \le m \le M}$ .
- → Initialization : for i = N take  $y_N^{\mathcal{F},M}(\cdot) = g(\cdot)$ .
- $\rightarrow$  Iteration : for  $i = N 1, \dots, 0$ , solve the empirical least-squares problems

$$z_{i}^{\mathcal{F},M} = \underset{\varphi \in \mathcal{F}_{i}^{Z}}{\operatorname{arginf}} \sum_{m=1}^{M} \left| \left[ g(X_{N}^{i,m}) + \sum_{j \ge i+1} f(t_{j}, X_{j}^{i,m}, y_{j+1}^{\mathcal{F},M}(X_{j+1}^{i,m}), z_{j}^{\mathcal{F},M}(X_{j}^{i,m})) \Delta_{j} \right] \frac{\Delta W_{i}^{i,m}}{\Delta_{i}} - \varphi(X_{i}^{i,m}) \right|^{2},$$
$$y_{i}^{\mathcal{F},M} = \underset{\varphi \in \mathcal{F}_{i}^{Y}}{\operatorname{arginf}} \sum_{m=1}^{M} \left| g(X_{N}^{i,m}) + \sum_{j \ge i} f(t_{j}, X_{j}^{i,m}, y_{j+1}^{\mathcal{F},M}(X_{j+1}^{i,m}), z_{j}^{\mathcal{F},M}(X_{j}^{i,m})) \Delta_{j} - \varphi(X_{i}^{i,m}) \right|^{2}.$$

 $\checkmark\,$  Apply soft thresholding with explicit constants.

#### **Theorem (Non asymptotic error estimates).** $\exists C \text{ (explicit) s.t.}$

$$\mathbb{E}\left[\|y_i^{\mathcal{F},M}(\cdot) - y_i(\cdot)\|_{i,M}^2\right] \leq C \inf_{\varphi \in \mathcal{F}_i^Y} \mathbb{E}|\varphi(X_i) - y_i(X_i)|^2 + C \frac{\dim(\mathcal{F}_i^Y)}{M} + C \sum_{j=i}^{N-1} \mathcal{E}(j)\Delta_j,$$
$$\sum_{j=i}^{N-1} \mathbb{E}\left[\|z_j^{\mathcal{F},M}(\cdot) - z_j(\cdot)\|_{j,M}^2\right] \Delta_j \leq C \sum_{j=i}^{N-1} \mathcal{E}(j)\Delta_j,$$
$$\mathcal{E}(j) \coloneqq \inf_{\varphi \in \mathcal{F}_j^Y} \mathbb{E}|\varphi(X_j) - y_j(X_j)|^2 + \inf_{\varphi \in \mathcal{F}_j^Z} \mathbb{E}|\varphi(X_j) - z_j(X_j)|^2 + \left(\dim(\mathcal{F}_j^Y) + \frac{\dim(\mathcal{F}_j^Z)}{\Delta_j}\right) \frac{\log(M)}{M}.$$

- Estimates are sharp: approximation error + statistical error
- Explicit error bounds, robust w.r.t. the model and the basis
- Memory effort:  $\max\left(\sum_{i=1}^{N} \dim(\mathcal{F}_{i}^{\mathbf{Z}}) + \dim(\mathcal{F}_{i}^{\mathbf{Y}}), \mathbf{NM}\right) = \mathbf{NM}$
- In this form, no clear parallelization
- ✓ **Optimal parameters**:  $L_2$ -error = Computational Cost<sup>- $\frac{1}{8+\frac{\text{dimension}}{\text{smoothness of }z}}$ </sup>

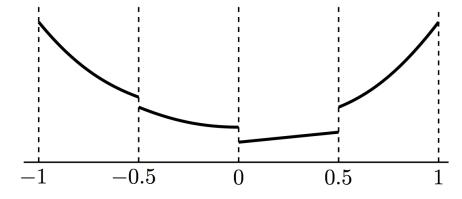
# 3) Stratification

## Two objectives:

- $\checkmark~$  Relaxing the requirement on M
- $\checkmark$  Allowing parallel computations w.r.t. the basis functions

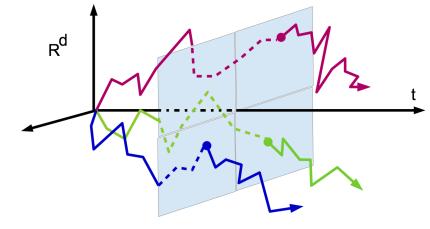
#### **First choice: local approximations**

- ✓ partition of the state space  $\mathbb{R}^d$  in strata III finite number of disjoints sets  $(\mathcal{H}_k)_k$
- $\checkmark$  on each set  $\mathcal{H}_k$ , (local) polynomial
  - ► **LP0**: piecewise constant approximation
  - ► **LP1**: linear approximation



- ✓ function spaces  $\mathcal{L}_{Y,k}, \mathcal{L}_{Z,k}$  of dimension 1 or d+1
- $\checkmark$  to get a statistical error of order  $N^{-1}$ , only  $N^2$  simulations in  $\mathcal{H}_k$  are required

#### Second choice: stratified simulations and regressions



Samples for usual RMC

 $\checkmark \nu = ext{probability distribution on } \mathbb{R}^d$ 

- $\checkmark \quad \nu_k = \text{restriction of } \nu \text{ to } \mathcal{H}_k$   $\textcircled{2} \text{ one should be able to simulate according to } \nu_k$
- ✓ In our test: take  $\mathcal{H}_k$  as hypercube and  $\nu$  with independent coordinates, having the logistic distribution (1d-CDF is  $F_{\mu}(x) = e^{\mu x}/(1 + e^{\mu x})$ )
- ✓ At each date  $t_i$  and each stratum  $\mathcal{H}_k$ , draw M simulations according to  $\nu_k$ and start independent M diffusion/Euler scheme from these M points.

R<sup>d</sup>

Samples for Stratified RMC

$$z_{i}^{\mathcal{F},M}\Big|_{\mathcal{H}_{k}} = \underset{\varphi \in \mathcal{L}_{Z,k}}{\operatorname{arginf}} \sum_{m=1}^{M} \left| \left[ g(X_{N}^{i,k,m}) + \sum_{j \ge i+1} f(t_{j}, X_{j}^{i,k,m}, y_{j+1}^{\mathcal{F},M}(X_{j+1}^{i,k,m}), z_{j}^{\mathcal{F},M}(X_{j}^{i,k,m})) \Delta_{j} \right] \right. \\ \left. \times \frac{\Delta W_{i}^{i,k,m}}{\Delta_{i}} - \varphi(X_{i}^{i,k,m}) \Big|^{2}, \\ y_{i}^{\mathcal{F},M}\Big|_{\mathcal{H}_{k}} = \underset{\varphi \in \mathcal{L}_{Y,k}}{\operatorname{arginf}} \sum_{m=1}^{M} \left| g(X_{N}^{i,k,m}) + \sum_{j \ge i} f(t_{j}, X_{j}^{i,k,m}, y_{j+1}^{\mathcal{F},M}(X_{j+1}^{i,k,m}), z_{j}^{\mathcal{F},M}(X_{j}^{i,k,m})) \Delta_{j} - \varphi(X_{i}^{i,k,m}) \Big|^{2} \right|^{2}$$

On the second second

- 9 As many processors as the number of cubes  $\mathcal{H}_k$
- Information on value functions must be shared by all the processors

#### Convergence analysis

To allow the control of errors propagation, one should wonder whether

$$X_j^{i,\nu} \stackrel{d}{=} X_j^{j,\nu} (=\nu)?$$

 $\checkmark\,$  In general NO, since  $\nu$  is not a stationary distribution and X is not ergodic

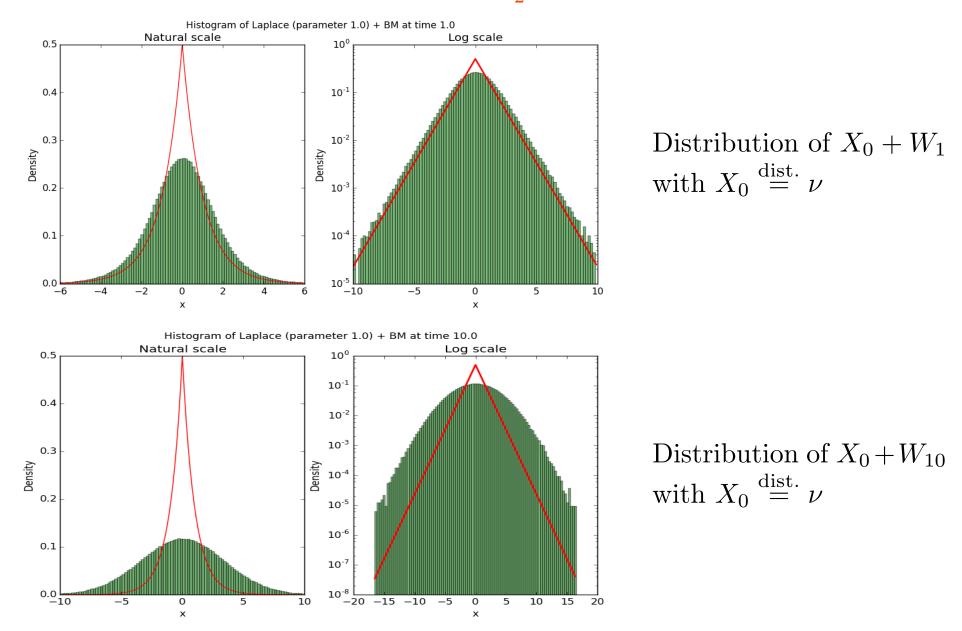
✓ But, we have the **BM equivalence property**: under mild assumptions on b and  $\sigma$ ,

$$\mathbb{E}\left(|\mathbf{h}(\mathbf{X}_{\mathbf{j}}^{\mathbf{i},\nu})|^{2}\right) \leq_{\mathbf{c}} \int_{\mathbb{R}^{\mathbf{d}}} |\mathbf{h}(\mathbf{x})|^{2} \nu(\mathrm{d}\mathbf{x}), \quad \text{for any } \mathbf{h},$$

with a constant c uniform in  $0 \le i \le j \le N$ .

✓ Satisfied for distributions with Sub Exponential tails (like logistic distribution)

#### Example (Laplace distribution $\nu(dx) = \frac{1}{2}e^{-|x|}dx$ ).



International Conference on Monte Carlo techniques - Paris (2016, July. 5th-8th)

Theorem (Error estimates for LP0 and LP1 spaces). For some explicit constant C, one has

$$\mathbb{E}\Big[\int_{\mathbb{R}^d} |y_i^{\mathcal{F},M}(x) - y_i(x)|^2 \nu(\mathrm{d}x)\Big] \le C\mathcal{E}(i) + C\sum_{j=i}^{N-1} \mathcal{E}(j)\Delta_j,$$

$$\sum_{j=i}^{N-1} \mathbb{E}\Big[\int_{\mathbb{R}^d} |z_j^{\mathcal{F},M}(x) - z_j(x)|^2 \nu(\mathrm{d}x)\Big]\Delta_j \le C\sum_{j=i}^{N-1} \mathcal{E}(j)\Delta_j,$$

$$\mathcal{E}(j) := \sum_k \nu(\mathcal{H}_k) \inf_{\varphi \in \mathcal{L}_{Y,k}} \int_{\mathcal{H}_k} |\varphi(x) - y_j(x)|^2 \nu_k(\mathrm{d}x)$$

$$+ \sum_k \nu(\mathcal{H}_k) \inf_{\varphi \in \mathcal{L}_{Z,k}} \int_{\mathcal{H}_k} |\varphi(x) - z_j(x)|^2 \nu_k(\mathrm{d}x) + \frac{\log(\mathbf{M})}{\Delta_j \mathbf{M}}.$$

Better dependency on M.

#### STRATIFIED ALGORITHM (SRMDP) VS NON-STRATIFIED (LSMDP)

| Algorithm | Num            | per of      | Computational  |             |  |
|-----------|----------------|-------------|----------------|-------------|--|
|           | simula         | ations      | $\cos t$       |             |  |
|           | $\mathbf{LP0}$ | LP1         | $\mathbf{LP0}$ | LP1         |  |
| SRMDP     | $N^2$          | $N^2$       | $N^{4+d/2}$    | $N^{4+d/4}$ |  |
| LSMDP     | $N^{2+d/2}$    | $N^{2+d/4}$ | $N^{4+d/2}$    | $N^{4+d/4}$ |  |

Comparison of numerical parameters as a function of N.

| Algorithm | LP0         | LP1                  |
|-----------|-------------|----------------------|
| SRMDP     | $N^{1+d/2}$ | $N^{1+d/4} \vee N^2$ |
| LSMDP     | $N^{2+d/2}$ | $N^{2+d/4}$          |

Comparison of shared memory requirement as a function of N.

 $\textcircled{\mathbf{S}}$  Recall that LSMDP can not take advantage of parallel architecture.

# 4) NUMERICAL TESTS

We perform numerical experiments on the BSDE with data

✓ 
$$g(x) = \omega(T, x)(1 + \omega(T, x))^{-1}$$
 with  $\omega(t, x) = \exp(t + \sum_{j=1}^{d} x_j)$ .

$$\checkmark f(t, x, y, z) = \left(\sum_{j=1}^{d} z_j\right) \left(y - \frac{2+d}{2d}\right)$$

 $\checkmark~$  Tests up to dimension d=19

#### **Explicit solution:**

$$y_i(x) = \omega(t_i, x)(1 + \omega(t_i, x))^{-1}, \qquad z_{j,i}(x) = \omega(t_i, x)(1 + \omega(t_i, x))^{-2}.$$

#### **Computer:**

- $\checkmark\,$  GPU GeForce GTX TITAN Black with 6 GBytes of global memory
- ✓ Intel Xeon CPU E5-2620 v2 clocked at 2.10 GHz with 62 GBytes of RAM, CentOS Linux, NVIDIA CUDA SDK 7.0 and GNU C compiler 4.8.2.
- $\checkmark~256\times 64$  threads configuration

#### $\bigstar d = 4, \mathbf{LP0}$

| $\Delta_t$ | #CUBES | K      | M    | $MSE_{Y,\max}$ | $MSE_{Y,\mathrm{av}}$ | $MSE_{Z,\mathrm{av}}$ | CPU      | GPU     |
|------------|--------|--------|------|----------------|-----------------------|-----------------------|----------|---------|
| 0.2        | 8      | 4096   | 25   | -3.712973      | -3.774071             | -0.964842             | 0.23     | 2.00    |
| 0.1        | 12     | 20736  | 100  | -4.066741      | -4.303750             | -1.607104             | 5.23     | 2.20    |
| 0.05       | 17     | 83521  | 400  | -4.337988      | -4.698645             | -2.302092             | 171.92   | 12.39   |
| 0.02       | 28     | 614656 | 2500 | -4.472564      | -4.988069             | -3.225411             | 58066.33 | 3070.92 |

#### $\bigstar d = 6, \mathbf{LP0}$

| $\Delta_t$ | #CUBES | K      | M    | $MSE_{Y,\max}$ | $MSE_{Y,\mathrm{av}}$ | $MSE_{Z,\mathrm{av}}$ | CPU      | GPU    |
|------------|--------|--------|------|----------------|-----------------------|-----------------------|----------|--------|
| 0.2        | 2      | 64     | 25   | -2.392320      | -2.451332             | -0.431059             | 0.21     | 1.99   |
| 0.1        | 3      | 729    | 100  | -2.440274      | -2.500775             | -1.096603             | 0.47     | 2.05   |
| 0.05       | 4      | 4096   | 400  | -2.829757      | -2.905192             | -1.687142             | 17.21    | 3.15   |
| 0.02       | 7      | 117649 | 2500 | -3.235130      | -3.539011             | -2.557686             | 13930.70 | 874.25 |

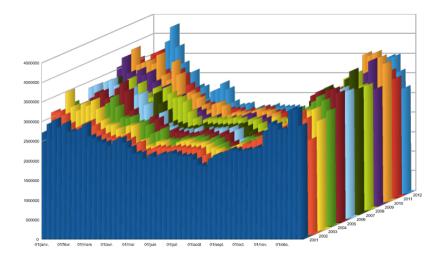
# 5) DATA DRIVEN VERSION WITH NON-INTRUSIVE STRATIFIED RESAMPLER

#### Framework.

- ✓ **Root sample:** *M* given observations of *X* on the period [0, N].
- $\checkmark$  *M* small: impossible to calibrate accurately the model

**Example.** Electricity consumption.

- $\blacktriangleright$  France, weekly data, 2001-2012
- ► Seasonality trend
- ► Time-varying volatility

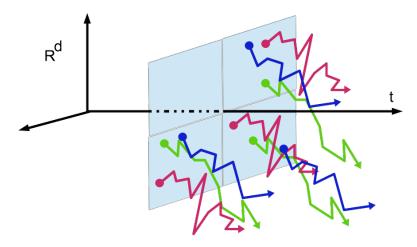


 $\checkmark\,$  Structure assumption:

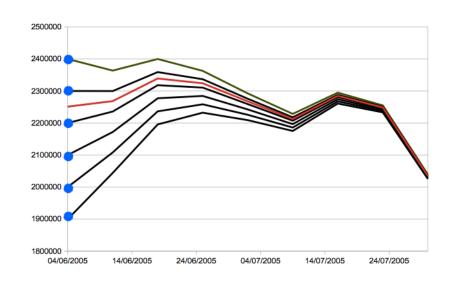
$$\mathbf{X_t} = \mathbf{x_0} - \int_0^{\mathbf{t}} \mathbf{A} (\mathbf{X_s} - \mathbf{\bar{X}_s}) \mathrm{d}\mathbf{s} + \int_0^{\mathbf{t}} \boldsymbol{\Sigma_s} \mathrm{d}\mathbf{W_s} + \mathbf{L_t}$$

with A known (**only**).

#### Non-intrusive stratified resampler (NISR):



 $\checkmark$  Example (on electricity consumptions).



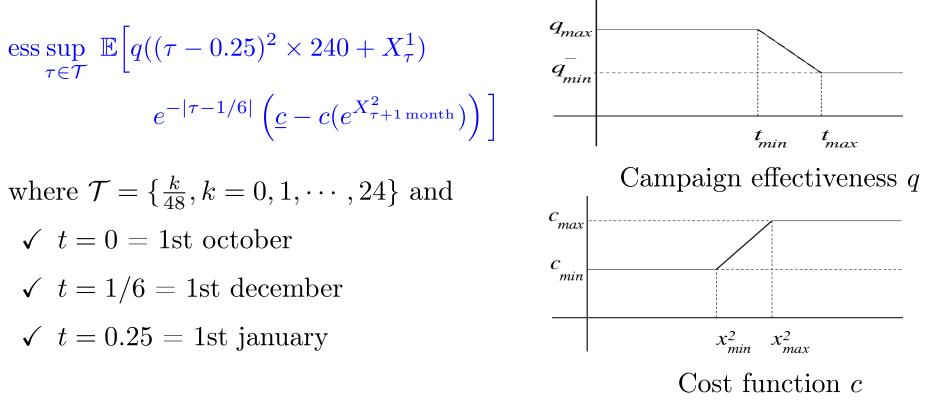
#### Resampling one path from any point

Resampling from the path 2005, between June and July, from different levels

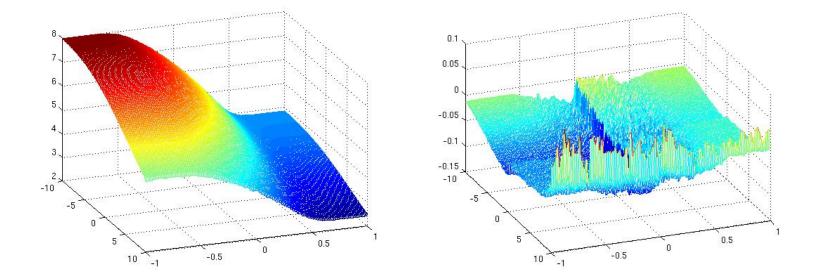
 $\checkmark$  At most, M paths can be resampled, from any point and any time (we loose independency)

# ▷ Optimal stopping example

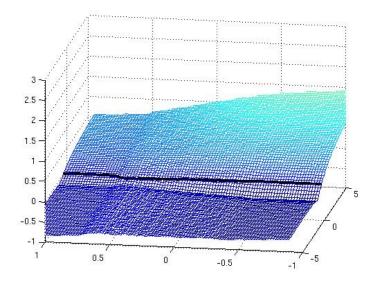
A travel agency wants to launch a promotion, its profit is affected by the temperature and the exchange rate. We want to compute  $v(X_0^1, X_0^2)$  defined by



Model for X:  $X^1$ =OU process,  $X^2$ =ABM.



Approximation (left), error (right) at t = 0,  $\#cubes = 100^2$ , M = 40.



Continuation value function and exercice boundary at 8th week