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Structure of the talk

1. BSDE setting (could be extended to other dynamic programming)

2. Usual Regression Monte Carlo methods [G’-Turkedjiev, Math Comp 2015]

X Algorithm (parallelization not available)

X Error estimates

X Strongest implementation constraint: memory !!

3. Stratified version, parallelization on basis functions not on simulations

X Randomization and norms equivalence

X Error estimates

X Complexity and memory analysis

4. Numerical tests on GPU

5. Data driven version with non-intrusive stratified resampler (with Liu-Zubelli)
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1) BSDE setting

Standard BSDE with fixed terminal time T :

Yt = ξ +

∫ T

t

f(s,Ys,Zs)ds−
∫ T

t

ZsdWs

X driving noise = Brownian Motion W

X Lipschitz driver f , terminal condition ξ ∈ L2

X Markovian BSDE: f(s, ω, y, z) = f(s,Xs, y, z) and ξ = g(XT ) for a diffusion
X with coefficients (b, σ)

X Reaction-diffusion equations, neuroscience, non-linear pricing in finance

Multidimensional unknown: X ∈ Rd, Y ∈ R, Z ∈ Rq.

Markovian BSDE: Yt = u(t,Xt),Zt = σ∇u(t,Xt), ∂tu + Lu + f(u, σ∇u) = 0

Approximation/simulation in 2 stages:

1. time-discretization (numerous works under rather general settings)

2. solving the dynamic programming equation (nested cond. expect., few works)
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Time discretization of Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds−

∫ T
t
ZsdWs

Discretization along equidistant time grid π := {0 = t0 < . . . < tN = T}:

X (i+ 1)-th time-step is ∆i = ti+1 − ti = T/N ;

X related Brownian motion increments ∆Wi := Wti+1
−Wti .�� ��Heuristic derivation

From Yti = Yti+1 +
∫ ti+1

ti
f(s,Xs, Ys, Zs)ds−

∫ ti+1

ti
ZsdWs, we derive

Yti = E(Yti+1
+

∫ ti+1

ti

f(s,Xs, Ys, Zs)ds|Fti)

≈ E(Yti+1
+ f(ti,Xti ,Yti+1

,Zti) ∆i|Fti),

Zti∆i ≈ E(

∫ ti+1

ti

Zsds|Fti) = E([Yti+1
+

∫ ti+1

ti

f(s,Xs, Ys, Zs)ds]∆W
>
i |Fti)

≈ E(Yti+1
∆W>

i |Fti) (where > denotes the transpose).
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F One-step forward Dynamic Programming equation Yi = Ei (Yi+1 + fi(Yi+1, Zi)∆i) , 0 ≤ i < N, YN = ξ.

∆iZi = Ei
(
Yi+1∆W>i

)
, 0 ≤ i < N.

(ODP)

X X could be approximated by a path-wise approximation (e.g. Euler scheme)

X For f and g Lipschitz, the L2-error is of order N−
1
2

F Multi-Step forward Dynamic Programming equation:{
Yi = Ei

(
ξ +

∑N−1
k=i fk(Yk+1, Zk)∆k

)
,

∆iZi = Ei
(

[ξ +
∑N−1
k=i+1 fk(Yk+1, Zk)∆k]∆W>i

)
.

(MDP)

X Without extra approximation, ODP⇐⇒MDP.

X
�

Differences occur when conditional expectations are approximated: MDP
> ODP
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2) Usual Regression Monte Carlo method

X Markovian representations: Yi = yi(Xi) and Zi = zi(Xi)

X Computations of y and z on approximation spaces FYi ,FZi (finite
dimensional vector spaces: global/local polynomials, Fourier basis,
wavelets. . . )

X N independent learning samples: at time i, [(Xi,m
j )0≤j≤N ,∆W

i,m
i ]1≤m≤M .

→→→ Initialization : for i = N take yF,MN (·) = g(·).
→→→ Iteration : for i = N − 1, · · · , 0, solve the empirical least-squares problems

zF,M
i = arginf

ϕ∈FZi

M∑
m=1

∣∣∣[g(Xi,m
N )+

∑
j≥i+1

f(tj , X
i,m
j , yF,M

j+1 (Xi,m
j+1), zF,M

j (Xi,m
j ))∆j

]∆W i,m
i

∆i
− ϕ(Xi,m

i )
∣∣∣2,

yF,M
i = arginf

ϕ∈FYi

M∑
m=1

∣∣∣g(Xi,m
N )+

∑
j≥i

f(tj , X
i,m
j , yF,M

j+1 (Xi,m
j+1), zF,M

j (Xi,m
j ))∆j − ϕ(Xi,m

i )
∣∣∣2.

X Apply soft thresholding with explicit constants.
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Theorem (Non asymptotic error estimates). ∃ C (explicit) s.t.

E
[
‖yF,Mi (·)− yi(·)‖2i,M

]
≤ C inf

ϕ∈FYi
E|ϕ(Xi)− yi(Xi)|2 + C

dim(FYi )

M
+ C

N−1∑
j=i

E(j)∆j ,

N−1∑
j=i

E
[
‖zF,Mj (·)− zj(·)‖2j,M

]
∆j ≤ C

N−1∑
j=i

E(j)∆j ,

E(j) := inf
ϕ∈FYj

E|ϕ(Xj)− yj(Xj)|2 + inf
ϕ∈FZj

E|ϕ(Xj)− zj(Xj)|2 +
(

dim(FY
j ) +

dim(FZ
j )

∆j

) log(M)

M
.

Estimates are sharp: approximation error + statistical error

Explicit error bounds, robust w.r.t. the model and the basis

Simulation effort: M ≥∆−1i max(Ndim(FZ
i ),dim(FY

i ))

Memory effort: max
(∑N

i=1 dim(FZ
i ) + dim(FY

i ),NM
)

= NM

In this form, no clear parallelization
X Optimal parameters: L2-error = Computational Cost

− 1

8+ dimension
smoothness of z .
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3) Stratification

Two objectives:

X Relaxing the requirement on M

X Allowing parallel computations w.r.t. the basis functions

First choice: local approximations

X partition of the state space Rd in strata à finite number of disjoints sets
(Hk)k

X on each set Hk, (local) polynomial

I LP0: piecewise constant approx-
imation

I LP1: linear approximation

X function spaces LY,k,LZ,k of dimension 1 or d+ 1

X to get a statistical error of order N−1, only N2 simulations in Hk are required
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Second choice: stratified simulations and regressions

Samples for usual RMC Samples for Stratified RMC

X ν = probability distribution on Rd

X νk = restriction of ν to Hk
�

one should be able to simulate according to νk

X In our test: take Hk as hypercube and ν with independent coordinates,
having the logistic distribution (1d-CDF is Fµ(x) = eµx/(1 + eµx))

X At each date ti and each stratum Hk, draw M simulations according to νk
and start independent M diffusion/Euler scheme from these M points.
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zF,M
i

∣∣∣
Hk

= arginf
ϕ∈LZ,k

M∑
m=1

∣∣∣[g(Xi,k,m
N )+

∑
j≥i+1

f(tj , X
i,k,m
j , yF,M

j+1 (Xi,k,m
j+1 ), zF,M

j (Xi,k,m
j ))∆j

]
× ∆W i,k,m

i

∆i
− ϕ(Xi,k,m

i )
∣∣∣2,

yF,M
i

∣∣∣
Hk

= arginf
ϕ∈LY,k

M∑
m=1

∣∣∣g(Xi,k,m
N )+

∑
j≥i

f(tj , X
i,k,m
j , yF,M

j+1 (Xi,k,m
j+1 ), zF,M

j (Xi,k,m
j ))∆j − ϕ(Xi,k,m

i )
∣∣∣2.

This can be done in parallel on different processors

As many processors as the number of cubes Hk

Information on value functions must be shared by all the processors
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Convergence analysis

To allow the control of errors propagation, one should wonder whether

Xi,ν
j

d
= Xj,ν

j (= ν)?

X In general NO, since ν is not a stationary distribution and X is not ergodic

X But, we have the BM equivalence property: under mild assumptions on b
and σ,

E
(
|h(Xi,ν

j )|2
)
≶c

∫
Rd

|h(x)|2ν(dx), for any h,

with a constant c uniform in 0 ≤ i ≤ j ≤ N .

X Satisfied for distributions with Sub Exponential tails (like logistic
distribution)
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Example (Laplace distribution ν(dx) = 1
2e
−|x|dx).

Distribution of X0 +W1

with X0
dist.
= ν

Distribution of X0+W10

with X0
dist.
= ν

International Conference on Monte Carlo techniques - Paris (2016, July. 5th-8th) 12/20



E. Gobet - Stratified Nested Regression Monte-Carlo scheme with large scale parallelization

Theorem (Error estimates for LP0 and LP1 spaces). For some explicit
constant C, one has

E
[ ∫

Rd
|yF,Mi (x)− yi(x)|2ν(dx)

]
≤ CE(i) + C

N−1∑
j=i

E(j)∆j ,

N−1∑
j=i

E
[ ∫

Rd
|zF,Mj (x)− zj(x)|2ν(dx)

]
∆j ≤ C

N−1∑
j=i

E(j)∆j ,

E(j) :=
∑
k

ν(Hk) inf
ϕ∈LY,k

∫
Hk
|ϕ(x)− yj(x)|2νk(dx)

+
∑
k

ν(Hk) inf
ϕ∈LZ,k

∫
Hk
|ϕ(x)− zj(x)|2νk(dx) +

log(M)

∆jM
.

Better dependency on M .
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Stratified algorithm (SRMDP) vs non-stratified (LSMDP)

Algorithm Number of Computational

simulations cost

LP0 LP1 LP0 LP1

SRMDP N2 N2 N4+d/2 N4+d/4

LSMDP N2+d/2 N2+d/4 N4+d/2 N4+d/4

Comparison of numerical parameters as a function of N .

Algorithm LP0 LP1

SRMDP N1+d/2 N1+d/4 ∨N2

LSMDP N2+d/2 N2+d/4

Comparison of shared memory requirement as a function of N .

�

Recall that LSMDP can not take advantage of parallel architecture.
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4) Numerical tests

We perform numerical experiments on the BSDE with data

X g(x) = ω(T, x)(1 + ω(T, x))−1 with ω(t, x) = exp(t+
∑d
j=1 xj).

X f(t, x, y, z) =
(∑d

j=1 zj

) (
y − 2+d

2d

)
X Tests up to dimension d = 19

Explicit solution:

yi(x) = ω(ti, x)(1 + ω(ti, x))−1, zj,i(x) = ω(ti, x)(1 + ω(ti, x))−2.

Computer:

X GPU GeForce GTX TITAN Black with 6 GBytes of global memory

X Intel Xeon CPU E5-2620 v2 clocked at 2.10 GHz with 62 GBytes of RAM,
CentOS Linux, NVIDIA CUDA SDK 7.0 and GNU C compiler 4.8.2.

X 256× 64 threads configuration
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F d = 4, LP0

∆t #CUBES K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 8 4096 25 −3.712973 −3.774071 −0.964842 0.23 2.00

0.1 12 20736 100 −4.066741 −4.303750 −1.607104 5.23 2.20

0.05 17 83521 400 −4.337988 −4.698645 −2.302092 171.92 12.39

0.02 28 614656 2500 −4.472564 −4.988069 −3.225411 58066.33 3070.92

F d = 6, LP0

∆t #CUBES K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 64 25 −2.392320 −2.451332 −0.431059 0.21 1.99

0.1 3 729 100 −2.440274 −2.500775 −1.096603 0.47 2.05

0.05 4 4096 400 −2.829757 −2.905192 −1.687142 17.21 3.15

0.02 7 117649 2500 −3.235130 −3.539011 −2.557686 13930.70 874.25
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5) Data driven version with non-intrusive stratified resampler

Framework.

X Root sample: M given observations of X on the period [0, N ].

X M small: impossible to calibrate accurately the model

X

Example. Electricity consumption.

I France, weekly data, 2001-2012

I Seasonality trend

I Time-varying volatility

X Structure assumption:

Xt = x0 −
∫ t

0

A(Xs − X̄s)ds +

∫ t

0

ΣsdWs + Lt

with A known (only).
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Non-intrusive stratified resampler (NISR):

X Example (on electricity consumptions).
Resampling one path from any point
Resampling from the path 2005, be-
tween June and July, from different
levels
�

At most, M paths can be resam-
pled, from any point and any time
(we loose independency)
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�� ��B Optimal stopping example

A travel agency wants to launch a promotion, its profit is affected by the
temperature and the exchange rate. We want to compute v(X1

0 , X
2
0 ) defined by

ess sup
τ∈T

E
[
q((τ − 0.25)2 × 240 +X1

τ )

e−|τ−1/6|
(
c− c(eX

2
τ+1month)

) ]
where T = { k48 , k = 0, 1, · · · , 24} and

X t = 0 = 1st october

X t = 1/6 = 1st december

X t = 0.25 = 1st january

Campaign effectiveness q

Cost function c
Model for X: X1=OU process, X2=ABM.
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Approximation (left), error (right) at t = 0, #cubes = 1002, M = 40.

Continuation value func-
tion and exercice bound-
ary at 8th week
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