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Framework

• X ∼ η, a random vector in Rd (typically: η(dx) ∝ f (x)dx).

• S : Rd → R is called the score function (black-box).

• Hence, one can only simulate the random variable Y = S(X ).

• The quantile q lies far out in the tail of the pdf of Y .

⇒ Goal: estimate p = P(S(X ) > q) = P(Y > q) ≈ 0.

Remarks:

1. p ≈ 0 ⇒ Crude Monte Carlo is computationally intractable.

Var(p̂mc)

p2
=

Var(#{i : S(Xi ) > q}/N)

p2
=

1 − p

Np
≈ 1

Np
.

2. Assuming S acts as a black-box ⇒ no Importance Sampling.
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Toy Example

pdf of Y = S(X )

q

p ≈ 0

{S(x) > q}

• Random vector: X is such that E[X ] = 0.

• Score function: Y = S(X ) = ‖X‖ is the Euclidean norm of X .

• Aim: Estimate p = P(S(X ) > q), where q ≫ E‖X‖ = E[Y ].
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Multilevel Splitting: Basic Idea

• Fix n and a sequence of levels −∞ = q0 < q1 < · · · < qn = q.

• Notation: let pj = P(Y > qj |Y > qj−1) s.t. each pj 6≈ 0.

• Bayes formula: p = P(Y > q) = p1 × p2 × · · · × pn.

• Multilevel Splitting estimator: p̂ = p̂1 × p̂2 × · · · × p̂n.

{S(x) = q1} {S(x) = q2}

q1 q2 . . .

{S(x) = qn}

{S(x) = qn−1}

q = qnqn−1

p1 p2 pn ⇒ p = p1 . . . pn
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Implementation: First step

• Ingredient: an η-symmetric transition kernel K1, i.e.

η(dx)K1(x , dx
′) = η(dx ′)K1(x

′, dx).

• Example: if X ∼ N (0, Id), then X ′ = X+σ1W√
1+σ2

1

makes the job

for any σ1 > 0 as long as W ∼ N (0, Id) and W ⊥ X .

• Remark: if no obvious K1, but η(dx) ∝ f (x)dx , then one may
apply Metropolis-Hastings algorithm.

Letting A1 = {x ∈ Rd , S(x) > q1}, apply (iterate) the kernel

M1(x , dx
′) = K1(x , dx

′)1A1(x
′) + K1(x , Ā1)δx(dx

′).
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Illustration
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Illustration

q1

{S(x) = q1}
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Illustration

q1

{S(x) = q1}

p̂1 = 3

6
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Illustration

q1

{S(x) = q1}
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Illustration

q1

{S(x) = q1}
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Illustration

q1

{S(x) = q1}
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Illustration

q1

{S(x) = q1}
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Illustration

q1q2

{S(x) = q2}
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Illustration

q1q2

p̂2 = 4

6

{S(x) = q2}
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Illustration

q1q2

{S(x) = qn}

{S(x) = qn−1}

q = qnqn−1. . .
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Illustration

q1q2

{S(x) = qn}

{S(x) = qn−1}

q = qnqn−1. . .

p̂n = 2

6
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Illustration

q1q2 q = qnqn−1. . .

p̂2p̂1 ⇒ p̂ = p̂1 . . . p̂np̂n. . .
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Implementation: Step j

Ingredient: an η-symmetric transition kernel Kj .

• Example: if X ∼ N (0, Id), then X ′ =
X+σjW
√

1+σ2
j

.

• Step j : letting Aj = {x , S(x) > qj}, apply (iterate) the kernel

Mj(x , dx
′) = Kj(x , dx

′)1Aj
(x ′) + Kj(x , Āj)δx(dx

′).

⇒ The law ηj(dx) = η(dx)1Aj
(x)/η(Aj) is the restriction of η

“above” qj and satisfies ηjMj = ηj .

Remark: Importance of the tuning parameter σj

• σj too large ⇒ most proposed transitions are refused.

• σj too small ⇒ the particles move slowly.
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Connection with Feynman-Kac Formulas

• Potential functions: 1S(x)>qj = 1Aj
(x) = Gj−1(x).

• Markov chain: let (Xj)j≥0 a non-homogeneous Markov chain
with initial distribution η0 = η and transitions Mj+1.

⇒ Unnormalized measures:

γn(ϕ) = E



ϕ(Xn)

n−1
∏

j=0

Gj(Xj)



 = E
[

ϕ(X )1S(X )>q

]

,

Thus, γn(1) = E[1S(X )>q] = p is our quantity of interest.

⇒ Normalized measures:

ηn(ϕ) =
γn(ϕ)

γn(1)
= E[ϕ(X )|S(X ) > q].
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Interacting Particle System

• Markov chain (X 1

j , . . . ,X
N
j )0≤j≤n with initial distribution η⊗N

0

and transitions described by the previous algorithm.

• p̂j+1 = ηNj (Gj) is the proportion of the sample (X 1

j , . . . ,X
N
j )

“above” qj+1, i.e., such that S(X i
j ) ≥ qj+1.

⇒ Empirical normalized measures

ηNn (ϕ) =
1

N

N
∑

i=1

ϕ(X i
n)

a.s.−−−−→
N→∞

ηn(ϕ) = E[ϕ(X )|S(X ) > q]

⇒ Empirical unnormalized measures


















γNn (1) =
∏n−1

j=0
ηNj (Gj) = p̂1 . . . p̂n = p̂

a.s.−−−−→
N→∞

γn(1) = p

γNn (ϕ) = γNn (1)× ηNn (ϕ)
a.s.−−−−→

N→∞
γn(ϕ) = E[ϕ(X )1S(X )>q]
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Fluctuation Analysis [Del Moral & Jacod (2001)]

We introduce the family of operators Qℓ,n defined by

Qℓ,n(ϕ)(x) = E



ϕ(Xn)

n−1
∏

j=ℓ

Gj(Xj)

∣

∣

∣

∣

∣

∣

Xℓ = x





and their normalized versions Qℓ,n(ϕ) = Qℓ,n(ϕ)/ηℓ(Qℓ,n(1)).

Theorem

√
N
(

γNn (ϕ)− γn(ϕ)
)

L−−−−→
N→∞

N (0, p2Σ(ϕ)),

where Σ(ϕ) =
∑n

ℓ=0
ηℓ

(

Qℓ,n(ϕ)
2 − ηn(ϕ)

2
)

. Moreover,

√
N
(

ηNn (ϕ)− ηn(ϕ)
)

L−−−−→
N→∞

N (0,Σ(ϕ)).
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Back to the Probability Estimate

Corollary

The estimator p̂ = p̂1 . . . p̂n converges a.s. to p, and we have

√
N

p̂ − p

p

L−−−−→
N→∞

N (0, σ2),

where

σ2 =
n

∑

j=1

1 − pj

pj

+
n−1
∑

j=1

1

pj
E

[

(

P(Xn−1 ∈ An|Xj−1)

P(Xn−1 ∈ An|Xj−1 ∈ Aj)
− 1

)2
∣

∣

∣

∣

∣

Xj−1 ∈ Aj

]
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What is the best thing to do?

• Consequence: one has

σ2 ≥
n

∑

j=1

1 − pj

pj
with = if the Xj ’s are ⊥

• Constrained Minimization:

arg min
p1,...,pn

n
∑

j=1

1 − pj

pj
s.t.

n
∏

j=1

pj = p

• Optimum: p1 = · · · = pn = p1/n.

• Conclusion: the levels have to be placed evenly in terms of
conditional probabilities ⇒ Adaptive Multilevel Splitting.
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Implementation with α = 1/2

pdf of Y = S(X )

{S(x) = q}

q
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Implementation with α = 1/2

α = 1

2

{S(x) = q̂1}

q̂1
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Implementation with α = 1/2

q̂1
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q̂1
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Implementation with α = 1/2

q̂1
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Implementation with α = 1/2

α = 1

2

{S(x) = q̂2}

q̂1 q̂2
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Implementation with α = 1/2

{S(x) = q}

q
q̂2

r̂ = 4

6

{S(x) = q̂n̂}

q̂1 q̂n̂
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Implementation with α = 1/2

{S(x) = q}

q
q̂2q̂1 q̂n̂

αα r̂ ⇒ p̂ = r̂ × α
n̂
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Interacting Particle System

• Markov chain (X 1

j , . . . ,X
N
j ) with initial distribution η⊗N

0
and

transitions described by the previous algorithm.

• Decomposition: Fix α, then p = r × αn ⇒ p̂ = r̂ × αn̂.

• Last step n̂ corresponds to q̂n̂+1 > q.

• Take ϕ(x) = ϕ(x)× 1S(x)>q, i.e., ϕ null below q.

⇒ Empirical normalized measures

η̂Nn̂ (ϕ) =
1

N

N
∑

i=1

ϕ(X i
n̂)

a.s.−−−−→
N→∞

ηn(ϕ) = E[ϕ(X )|S(X ) > q]

⇒ Empirical unnormalized measures


















γ̂Nn̂ (ϕ) = αn̂ × 1

N

∑N
i=1

ϕ(X i
n̂)

a.s.−−−−→
N→∞

γn(ϕ) = E[ϕ(X )1S(X )>q]

γ̂Nn̂ (1S(·)>q) = αn̂ × r̂ = p̂
a.s.−−−−→

N→∞
γn(1S(·)>q) = p
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Fluctuation Analysis [Cérou & Guyader (2015)]

Number of steps: n̂ → n = ⌊log p/ logα⌋ a.s. when N → ∞.

Notation: ηNn (ϕ) and γNn (ϕ) are the multilevel splitting estimators
for p1 = · · · = pn = α (i.e., optimal fixed levels once α is given).

Theorem
Under some (mild) regularity assumptions on S , η and the kernels
Kj , the asymptotic variances of η̂Nn (ϕ) and γ̂Nn (ϕ) are equal to
those of ηNn (ϕ) and γNn (ϕ) respectively.
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Sketch of the Proof

We have the decomposition

η̂Nn (ϕ)− ηn(ϕ) = MN
n +RN

n ,

where:

• the first term splits as follows:

MN
n = MN,1

n +MN,2
n

with martingales with respect to specific σ-fields generated by
the particles X i

j and the adaptive levels q̂j ,

• the remaining term RN
n is negligible, meaning that

√
n ×RN

n
P−−−−→

N→∞
0.
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Conclusion

• Adaptive Multilevel Splitting allows us to place the levels in an
optimal way without any loss of precision.

• The price to pay is only a low additional computational cost.

• In a different context, the take-home message here is the same
as in the paper by Beskos et al.

• References:
• A. Beskos, A. Jasra, N. Kantas, and A. Thiery. On the

Convergence of Adaptive Sequential Monte Carlo Methods.

Annals of Applied Probability, 2016.
• F. Cérou and A. Guyader. Fluctuation Analysis of Adaptive

Multilevel Splitting. Annals of Applied Probability, 2016.
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