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Why study and use cross-dependent volatility?

Multi-asset models typically assume that each asset follows a single-asset
local volatility (LV, Dupire, 1994) dynamics: σi(t, S

i
t)

Particular and very restrictive modeling choice guided only by operational
convenience:

A unique LV (σloc,i, from the Dupire formula) calibrates to market smile of

Si

Single-asset derivatives have same price in multi-asset and single-asset LV
models

Constant correlation cannot fit basket smile; local correlation (LC)
ρ(t, S1

t , . . . , S
N
t ) typically can (Langnau, Reghai, G. and Henry-Labordère,

G.)

All calibrating LCs can be built using the particle method and the affine
transform method (G., Local correlation families, Risk, 2013, and
Calibration of local correlation models to basket smiles, Journ. Comp.
Fin., 2016)
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Benefits of incorporating cross-asset information in the LV

However, the natural multi-asset extension of the single-asset LV model
assigns to each asset Si a LV σi(t, S

1
t , S

2
t , . . . , S

N
t )

Theoretically awkward to assume that σi is “blind” to the assets j 6= i

More natural to assume that the volatility of each asset, as well as the
correlation, depend on the full information up to time t, i.e., on
St = (S1

t , S
2
t , . . . , S

N
t ), as anyway the model is Markovian in St

Practical evidence that stock volatilities depend on index levels; S&P 500
volatilities depend on VIX futures
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Coca-Cola and S&P 500
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Home Depot and S&P 500
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CME and S&P 500
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S&P 500 1M implied vol and 1st VIX future
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Benefits of incorporating cross-asset information in the LV

Extends the capabilities of the model:

What matters is covariance, not correlation!

Cross-dependent LV (CDLV) models can generate skewed baskets from flat
individual smiles and constant correlation

This is an important message of this talk: steep basket skews are not
necessarily a sign of correlation skew; they may as well be a sign of
cross-dependent volatility, e.g., a sign that stock volatilities are driven by
index levels

CDLV models can even be calibrated exactly to the market smiles of a
basket and of its constituents using a flat, state-independent correlation
matrix ρ(t)

A local correlation that fits the market smile of a basket may exist under
CDLV models, but not under the “cross-blind” LV model

Richer joint dynamics of all assets, implied volatilities, and implied
correlations

Better assessment of model risk
Better accounts for cross-asset volatility and correlation risk
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Calibration to market smiles - General cross-dependent volatility models

No known calibration procedure so far for CDLVs

We will explain how to practically build all the CDLV models that are
exactly calibrated to the market smiles of the N assets and to the market
smile of a basket

The exact same calibration procedures work for cross-dependent volatility
(CDV) models = models in which the instantaneous volatilities and
correlation do not depend only on the current asset prices S1

t , S
2
t , . . . , S

N
t

but on the whole paths of the N assets up to time t

For instance, CDV models allow stock volatilities to be driven by recent
index returns, a pattern we empirically observe

CDV models = the multi-asset “cross-aware” version of path-dependent
volatility (PDV) models.

Single-asset PDV models combine benefits from LV and stochastic
volatility models: complete, fit exactly the market smile, and produce rich
implied volatility dynamics. Can also capture prominent historical patterns
of volatility (G., Path-dependent volatility, Risk, 2014)
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Cross-dependent volatility models

The natural multidimensional extension of path-dependent volatility
(PDV) models:

dSit
Sit

= Σi(t,St) dW
i
t , d〈W i,W j〉t = ρij(t,St) dt

St = (Sju, 0 ≤ u ≤ t, 1 ≤ j ≤ N)

CDV models are complete
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Calibration to the N asset smiles

Assume that N “pure” CDVs σ1(t,S), . . . , σN (t,S) and a correlation
matrix ρ(t,S) are given

We define a new “impure” CDV model by multiplying each σi by a
function li of time and Sit only—the “leverage function”:

dSit
Sit

= σi(t,St) li(t, S
i
t) dW

i
t , d〈W i,W j〉t = ρij(t,St) dt (1)

From Itô-Tanaka’s formula—or, in this deterministic interest rate
framework, from Gyöngy’s theorem—Model (1) is exactly calibrated to the
market smile of Si if and only if

EQ[σ2
i (t,St)|Sit ]l2i (t, Sit) = σ2

loc,i(t, S
i
t) (2)

where Q denotes the unique risk-neutral measure

Julien Guyon Bloomberg L.P.
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Calibration to the N asset smiles

EQ[σ2
i (t,St)|Sit ]l2i (t, Sit) = σ2

loc,i(t, S
i
t)

=⇒ The calibrated model satisfies the nonlinear McKean stochastic
differential equation

dSit
Sit

=
σi(t,St)√

EQ [σ2
i (t,St)|Sit ]

σloc,i(t, S
i
t) dW

i
t , d〈W i,W j〉t = ρij(t,St) dt

(3)

Multiplying σi by a positive function f(t, Sit) does not affect the calibrated
model. In particular the global level of σi does not matter, it is corrected
for by the leverage function

li(t, S
i) =

σloc,i(t, S
i)√

EQ [σ2
i (t,St)|Sit = Si]

(4)
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Calibration to the N asset smiles: Particle algorithm

The particle method (G. and Henry-Labordère, Being particular about
calibration, Risk, 2012) is an incredibly efficient and very elegant Monte Carlo
method that computes the conditional expectations, hence the leverage
functions li, on the fly while simulating the paths, using nonparametric
regression:

1 Initialize k := 1. Choose li(0,S0) =
σloc,i(0,S

i
0)

σi(0,S0)

2 Simulate the M sample paths S1
t , . . . , S

N
t from tk−1 to tk using a

discretization scheme, e.g., a log-Euler scheme

3 For all 1 ≤ i ≤ N , for all Si in a grid Gitk of asset i values, compute
li(tk, S

i) using nonparametric regression to approximate the conditional
expectation EQ [σ2

i (t,St)|Sit
]
, then interpolate and extrapolate

Si 7→ li(t, S
i) =

σloc,i(t, S
i)√

EQ [σ2
i (t,St)|Sit = Si]

4 Set k := k + 1. Iterate Steps 2 and 3 up to the maturity date T .

Julien Guyon Bloomberg L.P.
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Calibration to the N asset smiles

Conversely, a calibrating CDV Σi can always read

Σi(t,St) =
σi(t,St)√

EQ [σ2
i (t,St)|Sit ]

σloc,i(t, S
i
t)

(take σi = Σi, for which li ≡ 1).

=⇒ All calibrating CDVs can be built by varying the correlation matrix ρ
and the pure CDVs σ1, . . . , σN , and using the particle method

Julien Guyon Bloomberg L.P.
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Cross-dependent local volatility models

In particular, this solves a longstanding issue in quantitative finance: How
to build volatilities Σi such that the cross-dependent local volatility
(CDLV) model (or multidimensional LV model)

dSit
Sit

= Σi(t, S
1
t , . . . , S

N
t ) dW i

t , d〈W i,W j〉t = ρij(t, S
1
t , . . . , S

N
t ) dt

is exactly calibrated to the N individual market smiles?

For a given correlation matrix ρ(t, S1
t , . . . , S

N
t ), the calibrating volatilities

are exactly those functions Σi that read

Σi(t, S
1, . . . , SN ) =

σi(t, S
1, . . . , SN )√

EQ [σ2
i (t, S1

t , . . . , S
N
t )|Sit = Si]

σloc,i(t, S
i)

for some functions σ1, . . . , σN

All calibrating volatilities can be built by varying the “pure” CDLVs
σ1, . . . , σN and the correlation, and using the particle method
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Matching basket skew using correlation skew: 2 assets, normal vols

Classical approach: For given pure CDVs σ1, σ2, at each time t:
1 Calibrate leverage functions:

Σi(t,S) =
σi(t,S)√

EQ
[
σ2
i (t,St)|Sit = Si

]σloc,i(t, S
i)

2 Correlation ρ(t,S) is calibrated to the basket smile:

EQ [Σ2
1(t,St) + Σ2

2(t,St) + 2ρ(t,St)Σ1(t,St)Σ2(t,St)|S1
t + S2

t

]
= σ2

loc,B(t, S1
t + S2

t ) (5)

3 Go to t+ ∆t

For Step 2, mimick the affine transform method of G. (Local correlation
families, Risk, 2013): Choose 2 functions α(t,St) and β(t,St), and define:

ρα,β(t,St) = α(t,St) + β(t,St)lρ(t, S
1
t + S2

t )

Plug into (5) =⇒ a unique lρ, hence a unique ρα,β , which can be
computed using the particle method

Julien Guyon Bloomberg L.P.
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Matching basket skew using correlation skew: N assets, lognormal vols

For given pure CDVs σ1, . . . , σN , at each time t:
1 Calibrate leverage functions

2 Correlation ρ(t,S) is calibrated to the basket smile (Bt =
∑N
i=1 wiS

i
t):

EQ [vρ(t,St)|Bt] = B2
t σ

2
loc,B(t, Bt) (6)

with vρ(t,St) the instantaneous (normal) variance of the basket:

vρ(t,St) ≡
N∑

i,j=1

wiwjρij(t,St)Σi(t,St)Σj(t,St)S
i
tS
j
t

3 Go to t+ ∆t

Choose 4 functions ρ0, ρ1, α and β, and define:

ρ(t,St) = (1− λ(t,St))ρ
0(t,St) + λ(t,St)ρ

1(t,St) (7)

λ(t,St) = α(t,St) + β(t,St)lρ(t, Bt) (8)

lρ(t, Bt) =
B2
t σ

2
loc,B(t, Bt)− EQ [vρ0(t,St) + α(t,St)(vρ1 − vρ0)(t,St)

∣∣Bt]
EQ
[
β(t,St)(vρ1 − vρ0)(t,St)

∣∣Bt] (9)

ρ0 and ρ1 take values in the set of correlation matrices

Julien Guyon Bloomberg L.P.
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Calibration of correlation skew: Particle algorithm

1 Initialize k := 1. Choose li(0,S0) =
σloc,i(0,S

i
0)

σi(0,S0)
and

λ(0,S0) =
B2

0σ
2
loc,B(0,B0)−v

ρ0
(0,S0)

(v
ρ1
−v

ρ0
)(0,S0)

2 Simulate the M sample paths S1
t , . . . , S

N
t from tk−1 to tk using a

discretization scheme, e.g., a log-Euler scheme

3 For all 1 ≤ i ≤ N , for all Si in a grid Gitk of asset i values, compute
li(tk, S

i) using nonparametric regression to approximate the conditional
expectation in (4), then interpolate and extrapolate li(tk, ·)

4 For all B in a grid GBtk of basket values, compute lρ(tk, B) using
nonparametric regression to approximate the two conditional expectations
in (9), then interpolate and extrapolate lρ(tk, ·). This fully defines
ρ(tk,Stk )

5 Set k := k + 1. Iterate Steps 2, 3 and 4 up to the maturity date T

M = 4, 000 paths, n = 20 time steps: 2s; M = 10, 000, n = 50: 7s1

1using Python, on a single processor Intel Core i5-3570 CPU @ 3.40GHz with 8 GB of RAM

Julien Guyon Bloomberg L.P.

Cross-dependent volatility



Motivation CDV Calibration to the N asset smiles CDLV Calibration to basket smiles Pricing Conclusion

Calibration of correlation skew

Model (1)-(4)-(7)-(8)-(9) is admissible if and only if the resulting ρ(t,St)
takes values in the set of correlations matrices

Guaranteed if λ(t,St) takes values in [0,1]

Conversely, any calibrating CDV model can be put in the form (7)–(9):
For instance, take ρ0(t,St) = ρ(t,St), α ≡ 0, β ≡ 1, and
ρ1(t,St)− ρ0(t,St) positive definite or negative definite, so that
EQ [β(t,St)(vρ1 − vρ0)(t,St)|Bt

]
6= 0

Julien Guyon Bloomberg L.P.

Cross-dependent volatility



Motivation CDV Calibration to the N asset smiles CDLV Calibration to basket smiles Pricing Conclusion

Outline

Why study and use cross-dependent volatility?

Cross-dependent volatility models

Calibration to the N individual asset smiles

Calibration to basket smiles:
For given volatilities, calibrate the correlation
Or, for a given correlation, calibrate the volatilities

Numerical calibration and pricing results in the FX smile triangle case

Concluding remarks

Discussion

Julien Guyon Bloomberg L.P.

Cross-dependent volatility



Motivation CDV Calibration to the N asset smiles CDLV Calibration to basket smiles Pricing Conclusion

Skewed baskets with flat individual smiles and constant correlation

Common belief: “Large skews of basket options are a sign that the
underlying assets are more correlated when the market is down. They can
only be captured using local or stochastic correlation”

This is untrue: using CDV, for example, one can generate basket skews
from flat individual smiles using constant correlation

Again: What matters is covariance, not correlation!

Julien Guyon Bloomberg L.P.

Cross-dependent volatility



Motivation CDV Calibration to the N asset smiles CDLV Calibration to basket smiles Pricing Conclusion

Explaining the main idea: 2 assets, normal vols

dS1
t = σ1,t dW

1
t , dS2

t = σ2,t dW
2
t , d〈W 1,W 2〉t = ρt dt, S1

0 = S2
0 = 100

Basket: Bt =
S1
t+S2

t
2

Instantaneous basket variance: σ2
B,t = 1

4

(
σ2

1,t + σ2
2,t + 2ρtσ1,tσ2,t

)
Local basket variance: σ2

loc(t, B) = E[σ2
B,t|Bt = B]

Problem: How to generate (say, negative) basket skew?

Will be guaranteed if σ2
loc(t, B) decreases with B:

E[σ2
1,t + σ2

2,t + 2ρtσ1,tσ2,t|Bt = B] decreases with B

Julien Guyon Bloomberg L.P.
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Solution 1

Goal: E[σ2
1,t + σ2

2,t + 2ρtσ1,tσ2,t|Bt = B] decreases with B

Solution 1: use constant correl, and skew each asset using local vol:
σi,t = σi(t, S

i
t) decreases with Sit

Julien Guyon Bloomberg L.P.
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Solution 2

Goal: E[σ2
1,t + σ2

2,t + 2ρtσ1,tσ2,t|Bt = B] decreases with B

Solution 2: use constant vols, and skew the correlation: ρt = ρ(t, S1
t , S

2
t ).

E.g., ρt = ρ(t, Bt) decreases with Bt

Julien Guyon Bloomberg L.P.
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What if asset smiles are flat
and correl is constant?
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New solution

Goal: E[σ2
1,t + σ2

2,t + 2ρtσ1,tσ2,t|Bt = B] decreases with B

New solution: use constant correl and cross-dependent vols
σi,t = σi(t, S

1
t , S

2
t ). E.g., stock vol driven by index level: σi,t = σ(t, Bt)

decreases with Bt

Julien Guyon Bloomberg L.P.
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What if asset smiles are flat and correl is constant?

New solution works! Pick σi(t, S
1
t , S

2
t ) s.t.

E[σ2
i (t, S1

t , S
2
t )|Sit ] = σ2

loc,i(t, S
i
t) (flat)

E.g., σi(t, S
1
t , S

2
t ) = σ(t, Bt)li(t, S

i
t) with the leverage function li calibrated to

the flat smile of Si using the particle method

Julien Guyon Bloomberg L.P.
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Skewed baskets with flat individual smiles and constant correlation

Ex: Triangle of FX rates S1, S2 and S12 ≡ S1/S2, e.g., EURUSD,
GBPUSD and EURGBP. Assume that the smiles of S1 and S2 are flat

Consider the CDLV model (ρ constant, li calibrated to market smile of Si)

dS1
t

S1
t

= σ

(
t,
S1
t

S2
t

)
l1(t, S1

t ) dW 1
t ,

dS2
t

S2
t

= σ

(
t,
S1
t

S2
t

)
l2(t, S2

t ) dW 2
t

(10)

Local variance of cross rate is σ2
loc,12(t, S) = σ2 (t, S) ζ2(t, S) where

ζ2(t, S) ≡ EQf
[
l21(t, S1

t ) + l22(t, S2
t )− 2ρl1(t, S1

t )l2(t, S2
t )

∣∣∣∣S1
t

S2
t

= S

]
=⇒ A natural candidate to generate large negative cross skew is for
instance (σ < σ)

σ(t, S) =

{
σ if S ≤ S12

0

σ otherwise
(11)

Julien Guyon Bloomberg L.P.
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Skewed baskets with flat individual smiles and constant correlation

T = 1, flat smiles at 10% for S1 and S2, ρ = 50%, σ = 2% and σ = 25%

Julien Guyon Bloomberg L.P.
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Skewed baskets with flat individual smiles and constant correlation

T = 1, flat smiles at 10% for S1 and S2, ρ = 50%, σ = 2% and σ = 25%
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Matching basket skew with no correlation skew: the FX case

The common “local in cross” CDV σ
(
t, S12

)
, together with a time-

dependent correl ρ(t), can even be calibrated to the market smile of S12

Assume that ρ(u) and σ(u, S) have been calibrated for u < t. Then ρ(t)
and σt(S) ≡ σ(t, S) must satisfy

σ2
loc,12(t, S) = σ2

t (S)

(
EQf

[
l21,σt + l22,σt

∣∣∣∣S1
t

S2
t

= S

]
− 2ρ(t)EQf

[
l1,σt l2,σt

∣∣∣∣S1
t

S2
t

= S

])
li,σt =

σloc,i(t, S
i)√

EQ
[
σ2
t

(
S1
t

S2
t

)∣∣∣∣Sit = Si
] (12)

First determine for each given function σt the value ρσt(t) of ρ(t) such
that the above equation is satisfied for S = S12

0 (for instance)

Then, Picard iterations give fixed point σ2
t of functional Φt, where the

function Φt(σ
2
t ) is defined by

Φt(σ
2
t )(S) ≡

σ2
loc,12(t, S)

EQf
[
l21,σt (t, S

1
t ) + l22,σt (t, S

2
t )− 2ρσt (t)l1,σt (t, S

1
t )l2,σt (t, S

2
t )

∣∣∣∣S1
t

S2
t

= S

]
(13)

Julien Guyon Bloomberg L.P.
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Matching basket skew with no correlation skew: the FX case

Φt(σ
2
t )(S) ≡

σ2
loc,12(t, S)

EQf
[
l21,σt (t, S

1
t ) + l22,σt (t, S

2
t )− 2ρσt (t)l1,σt (t, S

1
t )l2,σt (t, S

2
t )

∣∣∣∣S1
t

S2
t

= S

]

For c > 0, if the function σ2
t is a fixed point of Φt, then so is cσ2

t

However, by the property of ρσt(t), Φt(σ
2
t )(S12

0 ) = σ2
t (S12

0 ), so the Picard
iterates are “anchored”: They all have the same value at a given cross rate
value, which explains why they may converge

Julien Guyon Bloomberg L.P.
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Calibration of CDV in correlation-skew-free model: Fixed point-compound
particle algorithm

1 Initialize k := 1, σ0(S) = 1, li(0, S
i
0) = σloc,i(0, S

i
0) and

ρ(0) =
σ2
loc,1(0,S1

0)+σ2
loc,2(0,S2

0)−σ2
loc,12(0,S12

0 )

2σloc,1(0,S1
0)σloc,2(0,S2

0)

2 Simulate the M sample paths S1
t , S

2
t from tk−1 to tk using a

discretization scheme, e.g., a log-Euler scheme

3 Starting from the guess σ
(0)
tk
≡ σtk−1 , compute the iterates(

σ
(q+1)
tk

)2

= Φtk

(
(σ

(q)
tk

)2
)

on a grid Gtk of cross rate values until

convergence is reached. To compute Φtk , use nonparametric regression to
approximate first the conditional expectation in (12), and then the one in

(13). Set σtk (S) = σ
(∞)
tk

(S) and ρ(tk) = ρ
σ
(∞)
tk

(tk)

4 Set k := k + 1. Iterate Steps 2 and 3 up to the maturity date T
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Calibration of CDV in correlation-skew-free model

T = 1, flat smiles at 10% for S1 and S2, S1
0 = S2

0 = 1,

σloc,12(t, S) = 0.15− 0.05(1 + tanh(80(S/S12
0 − 1)))
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Calibration of CDV in correlation-skew-free model
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Calibration of CDV in correlation-skew-free model
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Calibration of CDV in correlation-skew-free model
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Matching basket skew with no correlation skew: the equity case

For given correl matrices ρ0(t) and ρ1(t), and Bt =
∑N
i=1 wiS

i
t :

dSit
Sit

=
σ(t, Bt)σloc,i(t, S

i
t)√

EQ [σ2 (t, Bt)|Sit ]
dW i

t , d〈W i,W j〉t = ρij(t) dt

ρ(t) = (1− λ(t))ρ0(t) + λ(t)ρ1(t) (14)

Denote σt(B) ≡ σ(t, B) and

Φt(σ
2
t )(B) =

B2σ2
loc,B(t, B)

∑N
i,j=1 wiwjρ

σt
ij (t)EQ

 σloc,i(t,S
i
t)√

EQ[σ2
t (Bt)|Sit]

σloc,j(t,S
j
t )√

EQ
[
σ2
t (Bt)|Sjt

]SitSjt
∣∣∣∣∣∣Bt = B


(15)

ρσt(t)←→ λσt(t), λσt(t) unique value of λ(t) s.t. Φt(σ
2
t )(B0) = σ2

t (B0)

Model (14) calibrated by construction to the N stock market smiles. Also
calibrated to the index smile ⇐⇒ σ2

t is a fixed point of Φt, for all t

=⇒ The common CDLV σt(B) and ρ(t) can be computed on the go using
the fixed point-compound particle method
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Generalizing to path-dependent models

For given pure CDVs σi(t,St) search for common leverage function
lB(t, B) and ρ(t) s.t. this correlation-skew-free model fits basket smile:

dSit
Sit

=
σi(t,St)lB(t, Bt)σloc,i(t, S

i
t)√

EQ [σ2
i (t,St)l2B(t, Bt)|Sit ]

dW i
t , d〈W i,W j〉t = ρij(t) dt

ρ(t) = (1− λ(t))ρ0(t) + λ(t)ρ1(t) (16)

Denote lt(B) ≡ lB(t, B). Model (16) fits basket smile ⇐⇒ for all t, l2t is
a fixed point of Φt:

Φt(l
2
t )(B) =

B2σ2
loc,B(t, B)

∑N
i,j=1 wiwjρ

lt
ij(t)EQ

 σi(t,St)σloc,i(t,S
i
t)√

EQ[σ2
i (t,St)l

2
t (Bt)|Sit]

σj(t,St)σloc,j(t,S
j
t )√

EQ
[
σ2
j (t,St)l

2
t (Bt)

∣∣∣Sjt ]S
i
tS
j
t

∣∣∣∣∣∣Bt = B


(17)

ρlt ←→ λlt , λlt(t) unique value of λ(t) s.t. Φt(l
2
t )(B0) = l2t (B0)

=⇒ The particle method works along the same lines as for CDLV models

Can capture the fact that stock volatilities depend on recent index returns,
as well as on recent stock returns, through the pure CDV σi
Easy to generalize to cross-dep interest rates, div yield, and stoch vol

Julien Guyon Bloomberg L.P.
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Specifying the correlation skew

Choose a state-dependent function ρ(t,St; γ). Scalar parameter γ
introduced to control the global level of correlation

Then search for a leverage function lB(t, B) (common to all assets Si)
and γ(t) s.t. this model fits basket smile:

dSit
Sit

=
σi(t,St)lB(t, Bt)σloc,i(t, S

i
t)√

EQ [σ2
i (t,St)l2B(t, Bt)|Sit ]

dW i
t , d〈W i,W j〉t = ρij(t,St; γ(t)) dt

Fixed point-compound particle method works the same

Julien Guyon Bloomberg L.P.
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Specifying the correlation skew

Model is admissible if and only if ρ(t,St; γ(t)) is positive semi-definite

All the calibrating CDV models are of this type: taking σi = Σi and
ρ(t,St; γ) = (1− γ)ρ0 + γρ(t,St) for some ρ0 such that ρ− ρ0 is definite
positive or definite negative (so that γlt(t) is uniquely defined) will lead to
lB ≡ γ ≡ 1, if Φt is indeed a contraction mapping

This calibration procedure is somehow dual to the classical one: instead of
specifying CDVs and calibrating the correlation, here we specify the
correlation skew and calibrate the CDVs
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Outline

Why study and use cross-dependent volatility?

Cross-dependent volatility models

Calibration to the N individual asset smiles

Calibration to basket smiles:
For given volatilities, calibrate the correlation
Or, for a given correlation, calibrate the volatilities

Numerical calibration and pricing results in the FX smile triangle case

Concluding remarks

Discussion
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Pricing example: cross-blind but path-dependent volatility

σi(t,S
i
t) =

{
σ if Xi

t ≤ 1

σ otherwise
, Xi

t =
Sit∫ t

t−∆
Sir dr

, σ = 6%, σ = 14%,∆ = 1/12
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Pricing example: cross-blind but path-dependent volatility
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Pricing example: cross-blind but path-dependent volatility
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Pricing example: cross-aware but path-independent volatility (CDLV)

Examples:

Classical cross-blind LVLC, ρ(t, Bt) (equity) or ρ(t, S12
t ) (FX)

Correlation-skew free CDLV model (10), σ(t, Bt) or σ(t, S12
t )

Basket-corridor var swap

Equity
∑
k 1Btk≤L

(
1
N

∑N
i=1(ritk+1

)2 − σ2
K∆t

)
FX

∑
k 1S12

tk
≤L

(
(r1tk+1

)2+(r2tk+1
)2

2
− σ2

K∆t

)
Table : Basket-corridor var swap payoff
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Pricing example: cross-aware but path-independent volatility (CDLV)

Basket-corridor correl swap

Equity 2
N(N−1)

∑
i<j ρ̂ij − ρK , ρ̂ij =

∑
k 1Btk

≤Lr
i
tk+1

r
j
tk+1√∑

k 1Btk
≤L(ritk+1

)2
√∑

k 1Btk
≤L(r

j
tk+1

)2

FX ρ̂− ρK , ρ̂ =

∑
k 1

S12
tk
≤Lr

1
tk+1

r2tk+1√∑
k 1

S12
tk
≤L(r1tk+1

)2
√∑

k 1
S12
tk
≤L(r2tk+1

)2

Table : Basket-corridor correl swap payoff

Basket-corridor VS (σK) Basket-corridor CS (ρK)

Cross-blind LVLC, ρ(t, S12
t ) 10.0% 7.7%

Correl-skew free model (10) 15.1% 48.5%

Table : Basket-corridor var swap and basket-corridor correl swap prices, L = S12
0

Julien Guyon Bloomberg L.P.
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Pricing example: cross-aware and path-dependent volatility (general CDV)

σi(t,S
i
t) =

{
σ if Xt ≤ 1

σ otherwise
, Xt =

S12
t∫ t

t−∆
S12
r dr

, σ = 6%, σ = 14%,∆ = 1/12

Julien Guyon Bloomberg L.P.
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Pricing example: cross-aware and path-dependent volatility
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Pricing example: cross-aware and path-dependent volatility
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Conclusion

Classical model for simultaneously calibrating stocks and index smiles =
“cross-blind” LV σi(t, S

i) + fitting a LC ρ(t, S1, . . . , SN )

Can be seen as extremal, in the sense that the simplest volatility model
calibrating to the N individual smiles (LV) is used, and the extra skewness
of the index smile comes purely from correlation

We introduced another model, which is somehow extremal in the opposite
direction: the simplest correlation model (state-independent correlation) is
imposed, and the extra skewness of the index smile comes purely from the
cross-dependency of volatility

Shows that steep basket skews are not necessarily a sign of correlation
skew

In reality, steep basket skews can result from both correl skew and CDV

We proposed a general framework and described two dual ways to
calibrate those mixed models to the basket smile:

one where the CDVs are specified and the correlation is calibrated
the other where the correlation skew is specified and a common leverage
function, depending on the basket level, is calibrated

Julien Guyon Bloomberg L.P.
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Conclusion

CDV models are also calibrated to all the individual smiles, offering a
natural cross-dependent generalization of the local volatility model
(Dupire), as well as a cross-dependent generalization of path-dependent
volatility models (G.)

Generate richer joint dynamics of spots, implied volatilities and implied
correlations than cross-blind volatility models

Also capture historical behaviour of volatilities, such as stock volatilities
being driven by index returns

Julien Guyon Bloomberg L.P.
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Cutting edge: Derivatives pricing

Cross-dependent volatility
Local volatilities in multi-asset models typically have no cross-asset dependency. Julien Guyon introduces cross-dependent
volatility models and explains how to calibrate them to market smiles and how they can be used to assess model risk,
capture historical behaviour, and generate steep index skews without correlation skew

T
he single-asset Black-Scholes model has a natural multi-
dimensional extension: each asset S i , 1 6 i 6 N , has
a constant (lognormal) volatility, and the driving Brownian

motions are correlated using a constant matrix �. In the natural multi-
dimensional extension of the local volatility (LV) model (Dupire
1994), the LV �i of asset S i , as well as the correlation matrix, are
functions of time and all the current asset prices S1t ; S

2
t ; : : : ; S

N
t .

However, to the best of our knowledge, when practitioners use a multi-
dimensional LV model to price multi-asset derivatives, they always
assume the LVs have no cross-asset dependency: �i is a function of
time and S it only. This particular modelling choice seems to be guided
only by operational convenience: it ensures that a unique�i (the Dupire
LV �Dup;i ) calibrates to the market smile of S i , and that single-asset
derivatives have the same price in the multi-asset and single-asset LV
models.

Now, incorporating cross-asset information in the LV has many ben-
efits. Theoretically, it is awkward to assume that �i is ‘blind’ to the
assets j ¤ i . It is more natural to assume that the volatility of each
asset, as well as the correlation, depends on the full information up to
time t , ie, on the vectorSt D .S1t ; S

2
t ; : : : ; S

N
t /, as anyway the model

is Markovian in St . Practically, there is evidence that stock volatilities
depend on index levels. Cross-dependent LV (CDLV) models are able
to capture such behaviour.

Including cross-dependency in the LV also extends the capabilities
of the model. First, when it comes to calibrating to the market smile of
a basket, CDLV models release the pressure on local correlation, since
part of the basket skew can be produced by the cross-dependency of
volatilities: a local correlation that fits the market smile of a basket may
exist under CDLV models, but not under the ‘cross-blind’ LV model.
For instance, CDLV models can produce highly skewed baskets from
flat individual smiles and constant correlation. We will even show
that, using a novel ‘fixed point-compound particle method’, we can
require the correlation �.t/ to be a flat, state-independent matrix and
still be able to calibrate a CDLV model to the market smiles of a
basket and of its constituents. This is an important message of this
article: steep basket skews are not necessarily a sign of correlation
skew; they may also be a sign of cross-dependent volatility, eg, a sign
that stock volatilities are driven by index levels. Second, CDLV models
also generate richer dynamics of spots, implied volatilities and implied
correlations than cross-blind volatility models, thus shedding light on
model risk through lower and upper bounds on the prices of multi-asset
exotic options given, say, stocks and index smiles.

The main reason CDLV has not so far been used in the finance indus-
try is that it lacked a calibration procedure. In this article, we explain
how, using the particle method, we can build all the CDLV models
that are calibrated exactly to the N asset smiles and a basket smile,
either by calibrating a local correlation, for given CDLVs, like in the

1 Several volatility (red) spikes of the Home Depot stock (early
August, mid-December 2014) are better explained by recent neg-
ative returns of the S&P 500 index (blue) than by recent negative
stock returns (black)
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Note the drop in stock volatility at dividend dates

classical ‘cross-blind’ LV model, or by calibrating the CDLVs, for a
given (eg, null) correlation skew. The exact same calibration proce-
dures actually work for cross-dependent volatility (CDV) models, the
wider class of models in which the instantaneous volatilities and corre-
lation do not depend only on the current asset prices S1t ; S

2
t ; : : : ; S

N
t ,

but on the whole paths of theN assets up to time t . For instance, CDV
models allow stock volatilities to be driven by recent index returns, a
pattern we empirically observe (see figure 1).

Cross-dependent volatility models
CDV models are the natural multi-asset extension of path-dependent
volatility (PDV) models (Guyon 2014b). In a CDV model, the instant-
aneous volatilities, as well as the correlation matrix, depend on the
whole paths of the N tradable assets so far:

dS it
S it
D ˙i .t;St / dW i

t ; dhW i ; W j it D �ij .t;St / dt

St D .S
j
u ; 0 6 u 6 t; 1 6 j 6 N/

9>=
>; (1)

For simplicity, we have taken zero interest rates, repo and dividends.
Like PDV models, CDV models are complete: since the N (tradable)
asset prices are driven byN Brownian motions, every payoff admits a
unique self-financing replicating portfolio consisting of cash and the
N assets, so its price is uniquely defined as the initial value of the repli-
cating portfolio, independently of utilities or preferences. CDV models
can also fit market smiles exactly and produce rich joint dynamics of
the assets and their implied volatilities and correlation, thus combining
benefits from LV and stochastic volatility/correlation models.
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