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Motivation

Why study and use cross-dependent volatility?

m Multi-asset models typically assume that each asset follows a single-asset
local volatility (LV, Dupire, 1994) dynamics: o (¢, S})
m Particular and very restrictive modeling choice guided only by operational
convenience:
m A unique LV (o14c,i, from the Dupire formula) calibrates to market smile of
Si
m Single-asset derivatives have same price in multi-asset and single-asset LV
models
m Constant correlation cannot fit basket smile; local correlation (LC)
p(t,St,...,8) typically can (Langnau, Reghai, G. and Henry-Labordgre,
G.)
m All calibrating LCs can be built using the particle method and the affine
transform method (G., Local correlation families, Risk, 2013, and

Calibration of local correlation models to basket smiles, Journ. Comp.
Fin., 2016)

Julien Guyon Bloomberg L.P.
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Motivation

Benefits of incorporating cross-asset information in the LV

m However, the natural multi-asset extension of the single-asset LV model
assigns to each asset S* a LV o(t, S}, S7,...,SY)

m Theoretically awkward to assume that o; is “blind” to the assets j # i

m More natural to assume that the volatility of each asset, as well as the
correlation, depend on the full information up to time ¢, i.e., on
Sy = (St,82,...,5), as anyway the model is Markovian in S;

m Practical evidence that stock volatilities depend on index levels; S&P 500
volatilities depend on VIX futures

Julien Guyon Bloomberg L.P.
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Motivation

Benefits of incorporating cross-asset information in the LV

Extends the capabilities of the model:

Julien Guyon

What matters is covariance, not correlation!

Cross-dependent LV (CDLV) models can generate skewed baskets from flat
individual smiles and constant correlation

This is an important message of this talk: steep basket skews are not
necessarily a sign of correlation skew; they may as well be a sign of
cross-dependent volatility, e.g., a sign that stock volatilities are driven by
index levels

CDLV models can even be calibrated exactly to the market smiles of a
basket and of its constituents using a flat, state-independent correlation
matrix p(t)

A local correlation that fits the market smile of a basket may exist under
CDLV models, but not under the “cross-blind” LV model

Richer joint dynamics of all assets, implied volatilities, and implied
correlations

m Better assessment of model risk
m Better accounts for cross-asset volatility and correlation risk

Bloomberg L.P.
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Motivation

Calibration to market smiles - General cross-dependent volatility models

m No known calibration procedure so far for CDLVs

m We will explain how to practically build all the CDLV models that are
exactly calibrated to the market smiles of the N assets and to the market
smile of a basket

m The exact same calibration procedures work for cross-dependent volatility
(CDV) models = models in which the instantaneous volatilities and
correlation do not depend only on the current asset prices S}, S2,..., SN
but on the whole paths of the NV assets up to time ¢

m For instance, CDV models allow stock volatilities to be driven by recent
index returns, a pattern we empirically observe

m CDV models = the multi-asset “cross-aware” version of path-dependent
volatility (PDV) models.

m Single-asset PDV models combine benefits from LV and stochastic
volatility models: complete, fit exactly the market smile, and produce rich
implied volatility dynamics. Can also capture prominent historical patterns
of volatility (G., Path-dependent volatility, Risk, 2014)

Julien Guyon Bloomberg L.P.
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Cross-dependent volatility models

m The natural multidimensional extension of path-dependent volatility
(PDV) models:

d‘;t = Zz(t7 St) thZa d<Wl7 Wj>t = Pij (t7 St) dt
t
St = (5,,0<u<t1<j<N)

m CDV models are complete

Julien Guyon Bloomberg L.P.
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Calibration to the N asset smiles

Calibration to the N asset smiles

m Assume that N “pure” CDVs o1(t,S),...,on(¢,S) and a correlation
matrix p(t,S) are given

m We define a new “impure” CDV model by multiplying each o; by a
function I; of time and S} only—the “leverage function”:

dSSit = 0i(t,Se) Li(t, S AW, AW, W) = pij(t,Se)dt (1)
t

m From It6-Tanaka's formula—or, in this deterministic interest rate
framework, from Gydngy's theorem—Model (1) is exactly calibrated to the
market smile of S* if and only if

E%[o7 (t, Se)[S{E (t, ) = opei(t, ) (2)

where Q denotes the unique risk-neutral measure

Julien Guyon Bloomberg L.P.
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Calibration to the N asset smiles

Calibration to the N asset smiles

Julien Guyon

E°[07 (. S¢)[S]EE (£, S1) = 0ine,a(t, SE)

m — The calibrated model satisfies the nonlinear McKean stochastic
differential equation

s oi(t,S)
S EQ[02(t,S:)[S7]

Oloc,i(t, Sg) thi, d(Wi, Wj>t = pi;(t,S¢) dt
(3)

m Multiplying o; by a positive function f(t,S;) does not affect the calibrated
model. In particular the global level of o; does not matter, it is corrected
for by the leverage function

. i\ Uloc,i(tysi)
hhS) = VEQ[02(t,80)[S} = 5] *)

Bloomberg L.P.
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Calibration to the N asset smiles

Calibration to the N asset smiles: Particle algorithm

The particle method (G. and Henry-Labordere, Being particular about
calibration, Risk, 2012) is an incredibly efficient and very elegant Monte Carlo
method that computes the conditional expectations, hence the leverage
functions I;, on the fly while simulating the paths, using nonparametric
regression:

Initialize k := 1. Choose [;(0,So) = 01;5’(87(,05’05)8)

Simulate the M sample paths S}, ..., SY from tx_1 to t; using a
discretization scheme, e.g., a log-Euler scheme

Forall 1 <i< N, for all S%in a grid Gik of asset ¢ values, compute
li(tk, S*) using nonparametric regression to approximate the conditional
expectation E® [07 (¢, S;)|S;], then interpolate and extrapolate

Uloc z(t St)

St 1i(t, 8% = N AR N

Set k := k + 1. Iterate Steps 2 and 3 up to the maturity date T

Julien Guyon Bloomberg L.P.
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Calibration to the N asset smiles

Calibration to the N asset smiles

m Conversely, a calibrating CDV ; can always read

ai(t, St)
EQ[o7(t, St)|S{]

Si(t,Se) = loc,i(t, S1)

(take o; = X, for which [; = 1).

m = All calibrating CDVs can be built by varying the correlation matrix p
and the pure CDVs o1, ...,0n, and using the particle method

Julien Guyon Bloomberg L.P.




Cross-dependent local volatility models

m In particular, this solves a longstanding issue in quantitative finance: How
to build volatilities 3J; such that the cross-dependent local volatility
(CDLV) model (or multidimensional LV model)

ds;
St

=St Sty .., SO AW, AW W)y = py(t, St ..., Sy dt

is exactly calibrated to the N individual market smiles?

m For a given correlation matrix p(t,Si,..., S ), the calibrating volatilities
are exactly those functions X; that read

oi(t, S, ..., 8N)

- ,Joc,itysi
RS sy )

it 8., 8N =

for some functions o1,...,0n

m All calibrating volatilities can be built by varying the “pure” CDLVs
o1,...,0n and the correlation, and using the particle method

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Matching basket skew using correlation skew: 2 assets, normal vols

m Classical approach: For given pure CDVs o1, 02, at each time ¢:
Calibrate leverage functions:

oi(t,S)

VE? [02(2,80)18} = 5]
Correlation p(t, S) is calibrated to the basket smile:

E? [£3(¢,St) + £3(¢, Se) + 20(t, St)Z1(t, Se)Za(t, Se)|SF + 57| = o, 5 (t, SF + 57)  (5)
Go to t + At

i(t,8) = loc,i(t, S*)

m For Step 2, mimick the affine transform method of G. (Local correlation
families, Risk, 2013): Choose 2 functions «(¢,S;) and 3(¢,S:), and define:

pa,ﬂ(t7 St) = O((t, St) + 6(t7 St)lp(tv Stl + 51‘2)

m Plug into (5) = a unique [,,, hence a unique pq,g, which can be
computed using the particle method

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Matching basket skew using correlation skew: N assets, lognormal vols

m For given pure CDVs o1,...,0nN, at each time ¢:
Calibrate leverage functions
Correlation p(t, S) is calibrated to the basket smile (B; = Zf\il w; S} ):
E® [v,(t,S¢)| Bi] = Biofc p(t, Bt) (6)
with v, (¢, S¢) the instantaneous (normal) variance of the basket:
N o
vp(t,S¢) = Z wiw;pij(t, St)3;(t, St) X, (¢, St)Sz'Sg
i,5=1
Go to t + At
m Choose 4 functions p°, p', a and 3, and define:

p(t, St) = (1 - A(tast))po(tv St) +A(t’st)p1(t7 St) (7)
At,Se) = alt,St) + B(t, Se)l,(t, Bt) (8)
I (t B ) _ B?O’EOC’B(t,Bt) —]EQ [vpo(t,St) +a(t,St)(vp1 —vpo)(t,St)’Bft‘]\
Py EQ [B(t,Se)(vp1 — v,0)(t,Se)| Be] N

m p° and p! take values in the set of correlation matrices

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Calibration of correlation skew: Particle algorithm

Initialize k := 1. Choose [;(0,So) = 0‘(:5*(67(’08’50) and
Bgotoe, 5 (0:B0) = ,0(0,S0)
(v,1=v,0)(0,S0)

A(0,80) =

Simulate the M sample paths S}, ..., SY from tx_1 to tx using a
discretization scheme, e.g., a log-Euler scheme

Forall 1 <i < N, for all S%in a grid Gik of asset ¢ values, compute
l;(tk, S*) using nonparametric regression to approximate the conditional
expectation in (4), then interpolate and extrapolate ;(tx, -)

For all B in a grid GtBk of basket values, compute 1, (tx, B) using
nonparametric regression to approximate the two conditional expectations
in (9), then interpolate and extrapolate I, (tx, ). This fully defines

p(tk7 Stk)
Set k := k + 1. lterate Steps 2, 3 and 4 up to the maturity date T'

M = 4,000 paths, n = 20 time steps: 2s; M = 10,000, n = 50: 7s'

Lusing Python, on a single processor Intel Core i5-3570 CPU @ 3.40GHz with 8 GB of RAM

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Calibration of correlation skew

m Model (1)-(4)-(7)-(8)-(9) is admissible if and only if the resulting p(¢, St)
takes values in the set of correlations matrices

m Guaranteed if \(¢,S;) takes values in [0,1]

m Conversely, any calibrating CDV model can be put in the form (7)—(9):
For instance, take po(t, St) = p(t,S:), =0, =1, and
p(t,S:) — p°(t,S:) positive definite or negative definite, so that
E? [B(t,St)(v,1 — v,0)(t,S¢)|Be] #0

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Skewed baskets with flat individual smiles and constant correlation

m Common belief: “Large skews of basket options are a sign that the
underlying assets are more correlated when the market is down. They can
only be captured using local or stochastic correlation”

m This is untrue: using CDV, for example, one can generate basket skews
from flat individual smiles using constant correlation

m Again: What matters is covariance, not correlation!

Julien Guyon Bloomberg L.P.




Calibration to basket smiles

Explaining the main idea: 2 assets, normal vols

dS} = o1 dW},  dSP = oo dW?, AW, W?), = pidt, Sy =55 =100

1 2
Basket: B; = @
2 1

Instantaneous basket variance: 0%, = & (01, + 03, + 2pi01,102,¢)

Local basket variance: of..(t, B) = E[0} ,| By = B]
Problem: How to generate (say, negative) basket skew?

Will be guaranteed if i (t, B) decreases with B:

]E[G'it + Ug,t + 2pi01,402,4|By = B] decreases with B

Julien Guyon Bloomberg L.P.




Calibration to basket smiles

Solution 1

Goal: E[a%’t + agyt + 2pt01,:02,¢| Bt = B] decreases with B

Solution 1: use constant correl, and skew each asset using local vol:
oit = 0i(t, S;) decreases with S;

Local volatility of S' and $*
T T

Local volatility of basket
T T

asset value basket value

Guyon Bloomberg L




Calibration to basket smiles

Solution 2

Goal: E[a%’t + agyt + 2pt01,:02,¢| Bt = B] decreases with B

Solution 2: use constant vols, and skew the correlation: p; = p(t, St, S7).
E.g., p: = p(t, B:) decreases with B;
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What if asset smiles are flat
and correl is constant?




New solution

Calibration to basket smiles

Goal: E[a%’t + agyt + 2pt01,:02,¢| Bt = B] decreases with B

New solution: use constant correl and cross-dependent vols

oi = oi(t,St,S?). E.g., stock vol driven by index level: o = o(t, B;)

decreases with B;

Cross-dependent volatility
T

] S

basket value

Guyon

Local volatility of basket

basket value
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Calibration to basket smiles

What if asset smiles are flat and correl is constant?

New solution works! Pick o;(t, S, S?) s.t.

E[o7(t, Si, 57)IS1) = oioc,i(t, Sp)  (flat)
E.g., oi(t,St,S7) =o(t, By)li(t, S}) with the leverage function I; calibrated to
the flat smile of S* using the particle method

Smiles of S', 5* and S'/S?. Constant correlation p = 0.5
T T

0.18 - - .
! ! ! e—e ' calibrated
I I I
i | =—a 5 calibrated
016} — - =7 A ‘
I ! I — S/
I I T
| ) i |
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Calibration to basket smiles

Skewed baskets with flat individual smiles and constant correlation

m Ex: Triangle of FX rates S', S* and S'? = S5'/S?, e.g., EURUSD,
GBPUSD and EURGBP. Assume that the smiles of S! and S? are flat

m Consider the CDLV model (p constant, I; calibrated to market smile of S¢)

ds; S dS? S
Stlt :O'( Sg)ll(t St)th, Sit;:o-( Sg)lQ(t St)th
(10)

m Local variance of cross rate is o7 12(t, S) = 0° (¢, S) (¢, S) where

]

Ce,5) = B (100,81 + 1300, 57) — 2002t 5Dia (1. 51| 5
t

m —> A natural candidate to generate large negative cross skew is for

instance (g < @)
5 if g < gl2
ot 5) = {a if §< St (11)

o otherwise

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Skewed baskets with flat individual smiles and constant correlation

01 Smiles of 5!, 5 and S!/S% Constant correlation p = 0.5
- T T T T 1
! ! ! e S! calibrated
o6l _ _ | i | | w—= 5” calibrated | |
‘ 1 58
|
I ;
U5 1 TP [N —
I I
| |
£on | ‘
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8 I |
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A e
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0.04 !
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T = 1, flat smiles at 10% for S* and 52, p = 50%, 0 = 2% and & = 25%
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Calibration to basket smiles

Skewed baskets with flat individual smiles and constant correlation

Leverage functions [, and [,, and ¢ function at maturity

T I
e—e [|(T,-)calbrated
(T, ) calibrated | |

T T T
I I 1 I
I I 1 I
30L - - - [ [ Lo _m—a by
| I ! |
I I I I
I I 1 I
| 1 !

asset value

T = 1, flat smiles at 10% for S* and 52, p = 50%, 0 = 2% and & = 25%
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Calibration to basket smiles

Matching basket skew with no correlation skew: the FX case

®m The common “local in cross” CDV o (t, Su), together with a time-
dependent correl p(t), can even be calibrated to the market smile of S*?
m Assume that p(u) and o(u, S) have been calibrated for u < ¢t. Then p(t)
and 0+(S) = o(t, S) must satisfy
cal)
2t _ g
57

Uloc,i(tv Sl) (12)

el @))]
t

m First determine for each given function o the value p., (t) of p(t) such
that the above equation is satisfied for S = 532 (for instance)

m Then, Picard iterations give fixed point o2 of functional ®;, where the
function ®,(0?) is defined by

St
57

< f f
‘71200,12(7575) = U't2 (9) (EQ |:l%,0'f, + l%,crf, = S:| - 2p(t)]E@ |:l1;f7tl2afft

lz,at

0120c,12(t’ S)

Pi(07)(S) =

Sl
B |14, (65) + 8, (4:57) = 20, (0010 6,5l (059) | 35 = 5 |

(13)

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Matching basket skew with no correlation skew: the FX case

01200,12 (t’ S)

2 —
Qi(0p)(S) = o] —s}
sz

(t7 Stl) + 13 (t’ Stz) — 2po, (t)ll,at (t’ Stl)llat (t7 St2)

2,0¢

f
EQ l%,at
m For ¢ > 0, if the function o7 is a fixed point of ®;, then so is co?

m However, by the property of ps, (t), ®:(07)(S?) = 07(S5?), so the Picard
iterates are “anchored”: They all have the same value at a given cross rate
value, which explains why they may converge

Bloomberg L.P.
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Calibration to basket smiles

Calibration of CDV in correlation-skew-free model: Fixed point-compound
particle algorithm

Initialize & := 1, o0(S) = 1, 1;(0, 53) = 010c,:(0, S3) and
(0) _ GIQOC,I(O’S(%)+Gl20c,2(0753)_01200,12(0’862)
P - 20106,1(0’56)0100,2(0153)

Simulate the M sample paths S}, S? from ¢,_1 to t; using a
discretization scheme, e.g., a log-Euler scheme

Starting from the guess at(g) = 04,_,, compute the iterates

2
(G'EZJFU) =y, ((at(z))2) on a grid Gy, of cross rate values until

convergence is reached. To compute ®;, , use nonparametric regression to
approximate first the conditional expectation in (12), and then the one in

(13). Set 04, (S) = 01> (S) and p(tx) = P00 (k)
k

Set k := k + 1. Iterate Steps 2 and 3 up to the maturity date T’

Bloomberg L.P.




Calibration to basket smiles

Calibration of CDV in correlation-skew-free model

o1 Market smiles and calibrated smiles of 5*, 5% and 5'/S*
) T T T T T

e o 5'market
— 5! calibrated
® e S?market

DI2F — - = =~ ===~ Mo —— == o~ — = — — 57 calibrated ’
e o 5'/5” market

. — 51/5” calibrated

F 0w

S

3

5

E

=
2
=

0.06

T =1, flat smiles at 10% for S* and 52, S} =S2 =1,
Tloc,12(t,S) = 0.15 — 0.05(1 + tanh(80(S/SE2 — 1)))
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Calibration to basket smiles

Calibration of CDV in correlation-skew-free model

t volatility

T
|
|
|
q----=-=--

Cross-dependent volatility at maturity
T

~



Calibration to basket smiles

Calibration of CDV in correlation-skew-free model

Time-dependent correlation
T

T
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Calibration to basket smiles

Calibration of CDV in correlation-skew-free model

Leverage functions [, and 1., and ¢ function at maturity
T T T T I T
! e—e [4(7,)calibrated

=—u [T, -)calibrated |]

016 F 1o - — - - FR

asset value
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Calibration to basket smiles

Matching basket skew with no correlation skew: the equity case

m For given correl matrices p°(t) and p'(t), and B, = 1V | w; Si:

dsSi  o(t, B)oroc,i(t, St) Ay o
SZ» = EC [02 (t,Bt)|Sﬂ awy, d<W W >t = p”(t) dt
pt) = (L=X0)P"() + D)o (1) (14)

Denote 04(B) = o(t, B) and

B20'120C73(t, B)

1(07)(B) = _
T1oc,i(t:57) T1oc,j (£:57) iqi _
\/]EQ TN \/]EQ J(Bt)|31 SiS]| By = B:|

(15)
p7t(t) < A%t(t), A7t (t) unique value of A(t) s.t. ®.(c7)(Bo) = o (Bo)
Model (14) calibrated by construction to the N stock market smiles. Also
calibrated to the index smile <= o7 is a fixed point of &, for all ¢

N
Zz ,Jj=1 wlw]pm

m —> The common CDLV o,(B) and p(t) can be computed on the go using
the fixed point-compound particle method

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Generalizing to path-dependent models

m For given pure CDVs o;(t,S:) search for common leverage function
I5(t, B) and p(t) s.t. this correlation-skew-free model fits basket smile:

dsi  oi(t,S))ls(t, B)owc,i(t, Si) i o
St VER[o2(t,S.)35(t, B[ S]] dwi, AW W7)e = pi(t) dt
p(t) = (1=21)p’()+A1)p' (1) (16)

m Denote I;(B) = I5(t, B). Model (16) fits basket smile <= for all t, I7 is
a fixed point of ®;:

BZUEOC’B (t, B)

o (17)(B) =
N s bt Q oi(t,St)0100,i (t,5}]) 7 (t,St)010c,; (t:57) i _
2= wiws e (1) VEQ[02(8,80)12(By)|5]] \/E@[aﬁ(t,st)zf(stﬂsf] S| B B}

(17)

B p't «— A, X () unique value of A(t) s.t. ®:(17)(Bo) = 17(Bo)

m = The particle method works along the same lines as for CDLV models

m Can capture the fact that stock volatilities depend on recent index returns,

as well as on recent stock returns, through the pure CDV o;
m Easy to generalize to cross-dep interest rates, div yield, and stoch vol

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Specifying the correlation skew

m Choose a state-dependent function p(¢, S¢;). Scalar parameter v
introduced to control the global level of correlation

m Then search for a leverage function I (t, B) (common to all assets S%)
and ~(t) s.t. this model fits basket smile:
ds; oi(t, St)lB(t Bi)0loc,i(t, St)

A AWE, AW WY, = pii(t, Se;v(t)) dt
SZ \/IE@ t St 2 (t Bt)|S’] t ( >t PJ( t 'Y( ))

m Fixed point-compound particle method works the same

Julien Guyon Bloomberg L.P.
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Calibration to basket smiles

Specifying the correlation skew

m Model is admissible if and only if p(t, S¢;y(t)) is positive semi-definite

m All the calibrating CDV models are of this type: taking o; = ¥; and
p(t,Se;7) = (1 —3)p° 4+ vp(t, St) for some p° such that p — p° is definite
positive or definite negative (so that 4'*(t) is uniquely defined) will lead to
lp =~ =1, if &; is indeed a contraction mapping

m This calibration procedure is somehow dual to the classical one: instead of
specifying CDVs and calibrating the correlation, here we specify the
correlation skew and calibrate the CDVs

Julien Guyon Bloomberg L.P.
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Pricing

Outline

Why study and use cross-dependent volatility?
Cross-dependent volatility models
Calibration to the N individual asset smiles

Calibration to basket smiles:

m For given volatilities, calibrate the correlation
m Or, for a given correlation, calibrate the volatilities

Numerical calibration and pricing results in the FX smile triangle case

Concluding remarks

Discussion

Bloomberg L.P.




Pricing

Pricing example: cross-blind but path-dependent volatility

(7 oitxi<1 } ;
oi(t,5) =17 1o o B

S Xi=—2L 5= 6%,7 = 14%, A = 1/12
otherwise J, A Sidr
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Pricing
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Pricing

Pricing example: cross-aware but path-independent volatility (CDLV)

Examples:
m Classical cross-blind LVLC, p(t, B:) (equity) or p(t, St?) (FX)
m Correlation-skew free CDLV model (10), o(t, B;) or o(t, S¢?)

‘ ‘ Basket-corridor var swap ‘

Equity Ek ]'Btk <L (% Zé\;l(rngrl)Q - U%(At)

ARGk
FX >k 1S§§§L< tegl . byl _U%At>

Table : Basket-corridor var swap payoff

Julien Guyon Bloomberg L.P.
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Pricing

Pricing example: cross-aware but path-independent volatility (CDLV)

\ \ Basket-corridor correl swap

2k lpy, < L’"tk_,_lﬁ,CJrl
pij =
JEe e, <L(q,€+1> VEx e, <00l )7

Xyt Sl2<LT%+1”k+1

\/Zk 512<L(Ttk+1) \/Zk 312<L(Ttk+1

Bquity |y 2oic; Pis — P

FX P = PK;

Table : Basket-corridor correl swap payoff

\ | Basket-corridor VS (o) | Basket-corridor CS (px) |

Cross-blind LVLC, p(t, S;?) 10.0% 7.7%
Correl-skew free model (10) 15.1% 48.5%

Table : Basket-corridor var swap and basket-corridor correl swap prices, L = 532

Julien Guyon Bloomberg L.P.
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Pricing example: cross-aware and path-dependent volatility (general CDV)

Julien Guyon Bloomberg L.P.
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Pricing example: cross-aware and path-dependent volatility
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Conclusion

Conclusion

m Classical model for simultaneously calibrating stocks and index smiles =
“cross-blind” LV o;(t, S) + fitting a LC p(t, S*,...,S™)

m Can be seen as extremal, in the sense that the simplest volatility model
calibrating to the N individual smiles (LV) is used, and the extra skewness
of the index smile comes purely from correlation

m We introduced another model, which is somehow extremal in the opposite
direction: the simplest correlation model (state-independent correlation) is
imposed, and the extra skewness of the index smile comes purely from the
cross-dependency of volatility

m Shows that steep basket skews are not necessarily a sign of correlation
skew

m In reality, steep basket skews can result from both correl skew and CDV
m We proposed a general framework and described two dual ways to
calibrate those mixed models to the basket smile:
m one where the CDVs are specified and the correlation is calibrated

m the other where the correlation skew is specified and a common leverage
function, depending on the basket level, is calibrated

Julien Guyon Bloomberg L.P.
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Conclusion

Conclusion

m CDV models are also calibrated to all the individual smiles, offering a
natural cross-dependent generalization of the local volatility model
(Dupire), as well as a cross-dependent generalization of path-dependent
volatility models (G.)

m Generate richer joint dynamics of spots, implied volatilities and implied
correlations than cross-blind volatility models

m Also capture historical behaviour of volatilities, such as stock volatilities
being driven by index returns

Julien Guyon Bloomberg L.P.
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Cutting edge: Derivatives pricing

Cross-dependent volatility

Local volatilities in multi-asset models typically have no cross-asset dependency. Julien Guyon intreduces.cross=dependent
volatility models and explains how to calibrate them to market smiles and how they can be used to assess medel risk,
capture historical behaviour, and generate steep index skews without correlation skew

dimensional extension: each asset %, 1< 1 < N, has | gyt mig-December 2014)are betief explained by recent neg-

a constant (lognormal) volatility, and the driving Brownian | atve returns of the S&P 500 index (blue) than by recent negative
motions are correlated using a constant matrix p. In the natural multi- | stock returns (black)
dimensional extension of the local volatility (LV) model (Dupire
1994), the LV a; of asset 7, as well as the correlation matrix, are _ 2100
functions of time and all the current asset prices S/, S7,.... SV,
However, to the best of our knowledge, when practitioners use a multi-
dimensional LV model to price multi-asset derivatives, they always
assume the LV have no cross-asset dependency: oj is a function of

he single-asset Black-Scholes 1 has a na 1| ti- . .
r I Y he single-asset Black-Scholes model has a natural mulii= |\ g0\ \otatiity (red) spikes of the Home Depot stock (early
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time and S only. This particular modelling choice scems to be guided

&P 500 price

only by operational convenience: it ensures that a unique o; (the Dupire
LV opyp, i) calibrates to the market smile of S’ and that single-asset
derivatives have the same price in the multi-asset and single-asset LV
‘models.

Now, incorporating cross-asset information in the LV has many ben-
efits. Theoretically, it is awkward to assume that a; is *blind’ to thé Aprt4
assets j # i. It is more natural to assume that the volatility of each | Note the drop in stock volatility at dividend dates
asset, as well as the correlation, depends on the full i ionup to
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