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Interest rate modeling: two challenges and a new direction

Background and motivation

• Affine factor models are among the most widely used and tractable
interest rate models.

Challenges

• Model uncertainty: For empirical and practical reasons, parameters
in affine factor models should be seen as uncertain and stochastic.

• Consistency: Recalibration to new market yield curves typically
implies a rejection of the old model.

Consistent recalibration (CRC) models

• A new class of tangent affine interest rate models combining the
advantages of factor and HJM models.
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Model uncertainty in interest rate models
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Example: Cox-Ingersoll-Ross (CIR) model

Definition

• The short rate in the Hull-White extended CIR model is given by

dr(t) =
(
θ(t) + βr(t)

)
dt +

√
αr(t)dW (t),

where θ(t) ≥ 0, α > 0, β < 0.

Parameter estimation

• α and β can be estimated robustly from realized covariations of yields.

• Then a suitable choice of θ(t) achieves an exact fit to the current
yield curve.
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Volatility parameter σ =
√
α in the CIR model

Volatility in the CIR model (%)
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Speed of mean reversion parameter β in the CIR model

Speed of mean−reversion in the CIR model
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Parameter uncertainty in the CIR model

• We propose a Bayesian rather than robust approach to model
uncertainty and view α and β as stochastic processes.

• For example, one could make α = αy and β = βy depend on a
parameter y and write dynamics of the form dr(t) =

(
θ(t) + βY (t)r(t)

)
dt +

√
αY (t)r(t)dW (t),

dY (t) = µ
(
Y (t)

)
dt + σ

(
Y (t)

)
dW̃ (t).

• Unfortunately, this usually breaks the analytic tractability of the
model, and even the simple task of calculating bond prices requires
nested simulations.

• The key idea is to lift the short rate model to a HJM model and to
introduce stochastic parameters on that level.  CRC models
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Consistency and the recalibration problem
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The geometry of affine factor models for interest rates

• In affine factor models, the short rate is an affine function of a
finite-dimensional affine factor process.

• These models have finite-dimensional realizations: the yield curve
process stays on a finite-dimensional submanifold.
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The recalibration problem

• In practice, models are recalibrated regularly. The recalibration
involves a rejection of the model if the new market yield curve lies
outside of the support of the yield curve model.

• This recalibration problem is particularly severe for affine factor
models, which have low-dimensional support: one encounters not a
risk, but a certainty of model rejection.
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Two notions of consistency

Consistency

• An interest rate model is called consistent if the yield curve process
does not leave a pre-specified set I of yield curves (classically: the
output of a curve fitting method; here: possible market observables).

Consistent recalibration property

• We add the following requirement: the yield curve process should be
able to reach any open set in I with positive probability. Then we say
that the consistent recalibration property holds.

• We will look for models satisfying the consistent recalibration
property with respect to a large set I (think: an open subset of a
Hilbert space). Impossible for factor models!  CRC models.
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Consistent recalibration (CRC) models
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Building blocks

• We take as building blocks Hull-White extended affine factor
models for the short rate depending on a parameter vector y .

• Each factor model foliates the space of yield curves into invariant
leaves.
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Main idea

• Yield curve evolutions belonging to different foliations can be
concatenated.

• CRC models are continuous-time limits of such concatenations.

• In this sense, CRC models are tangent affine.
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Example: consistent recalibration of the CIR model

Building blocks: evolutions of forward rate curves in the CIR model

The HJM equation for the forward rate curves in the CIR model is

dh(t) =
(
Ah(t) + µHJM

y

(
r(t)

))
dt + σHJM

y

(
r(t)

)
dW (t),

where A generates the shift semigroup, r(t) = h(t, 0), and µHJM
y and

σHJM
y are given explicitly.

CRC models: concatenations with time-varying parameters

In CRC models the parameter y in the HJM equation is replaced by a
stochastic process Y , i.e.,

dh(t) =
(
Ah(t) + µHJM

Y (t)

(
r(t)

))
dt + σHJM

Y (t)

(
r(t)

)
dW (t).
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Consistent recalibration of multi-dimensional factor models

Building blocks: evolutions of forward rate curves in a factor model

The HJM equation for the factor model with fixed parameter y is
dh(t) =

(
Ah(t) + µHJM

y

(
X (t)

))
dt + σHJM

y

(
X (t)

)
dW (t),

dX (t) =
(
Cyh(t) + by + βyX (t)

)
dt +

√
ay + αyX (t)dW (t),

where Cy is an operator calibrating the Hull-White extension to the
prevailing term structure.

CRC models: concatenations with time-varying parameters

In CRC models the parameter y in the HJM equation is replaced by a
stochastic process Y .
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Properties of CRC models
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Monte Carlo methods for CRC models

Splitting scheme

• Assume that Y is Markovian and independent of the factor process X .

• Then there is a natural first-order splitting scheme:

1 Let (h,X ) evolve, holding Y fixed.
2 Let Y evolve, holding (h,X ) fixed.

• Step 1 is a finite-dimensional problem because h is an explicit
function of X when Y is constant.

Theorem (H., Stefanovits, Teichmann, Wüthrich)

In the Vasiček case, the splitting scheme converges of weak first order to
the continuous-time CRC semigroup.
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The consistent recalibration property of CRC models

Verifying the consistent recalibration property

• Generically speaking, the conditions for finite-dimensional realizations
are broken in CRC models.

• Support theorems can be used to show that the yield curve process
reaches every point in a given invariant set I of yield curves.

Theorem (H., Stefanovits, Teichmann, Wüthrich)

In the Vasiček case, the consistent recalibration property holds with
respect to the set I = H if

• the support of βY (t) contains an interval [β,∞), and

• all curves in the Hilbert space H have exponentially bounded growth.
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Model selection for CRC models

Calibration methodology

• Estimation of a time series of parameters y from historical yields as
in the factor model. (No inverse problem involved!)

• Selection of a model for the evolution of Y .

Robust calibration paradigm

• Model selection is based on all available information (historical time
series and the current term structure).

• The CRC model is rejected if the empirical yield curve increments do
not match any of the underlying affine models.
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Empirical results

Description of data and models

• Data: AAA-rated Euro-area government bonds, LIBOR rates, Swiss
Average Rate (SAR), and Swiss Confederation Bonds (SWCNB).

• Models: One-factor CIR, multi-factor Vasiček; geometric Brownian
motion as models for β, σ.

Comparison to factor models without consistent recalibration

• Better fit to the market dynamics due to time-varying parameters of
the affine building blocks.

• Higher ranks of the matrix of covariations of yields, as observed on
the market, reflecting the irreducibility of the model.

• More realistic distributions of returns on bond portfolios.
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Ranks of the matrix of covariations of yields

Rank of covariation matrix
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Numerical ranks of the matrix of covariations of yields on the market, in
the Vasiček model, and in the Vasiček CRC model. Threshold: 10−6 times

the largest eigenvalue.
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Thank you very much for your attention!
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