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Motivation

Stochastic control problem

Stochastic control is a practical mathematical tool for modelings in
industry and in finance. We are interested in the maximized expected
value:

V0 = sup
α∈A

E
[∫ T

0
e−

∫ t
0 r(s,Xαs ,αs)ds f (t,Xα

t , αt)dt + e−
∫ T

0 r(t,Xαt ,αt)dtg(Xα
T )
]
,

where A is the set of all adapted processes taking values in a compact set
A, Xα is a controlled process:

dXα
t = µ(t,Xα

t , αt)dt + σ(t,Xα
t , αt)dWt ,

and f , g are the running profit and the final utility functions, respectively.
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Motivation

Hamilton-Jacobi-Bellman equation

Classical literature builds up the relation between the stochastic control
problem and the Hamilton-Jacobi-Bellman equation:

−∂tu − H(t, x , u,Du,D2u) = 0, u(T , x) = g(x),

where the Hamiltonian

H(t, x , y , z , γ) = sup
α

{1

2
σ2(t, x , α)γ+µ(t, x , α)z − r(t, x , α)y + f (t, x , α)

}
.

Under general conditions, we have V0 = u0. To simplify notations, we let
all terms in Green equal to 0.
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Motivation

Numerical approaches

In order to solve this problem numerically, one may directly calculate
the (viscosity) solution to the HJB equation.

Alternatively, Fahim, Touzi & Warin as well as Guyon &
Henry-Labordère, they have proposed a regression algorithm based on
the Monte-Carlo simulation.

However, the numerical solution u is sub-optimal, i.e. u ≤ u,
and it is difficult to estimate the bias. Naturally, one may ask

Can we numerically provide an upper bound u?
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Dual problem

Review the optimal stopping problem ... Duality

In optimal stopping problems, we have already experience in providing
upper-biased numerical solution. Consider

U0 := sup
τ≤T

E
[
ξτ
]

Assume the filtration is Brownian.

Then the Rogers’ duality result shows

U0 = inf
ϕ∈U

E
[

sup
t≤T

{
ξt −

∫ t

0
ϕsdWs

}]
≤ E

[
sup
t≤T

{
ξt −

∫ t

0
ϕ∗sdWs

}]
for any chosen ϕ∗ in U , the set of all previsible processes. The r.h.s. is the
required upper-biased solution.

Remark : In the dual problem, the maximization is over all constant time
t, instead of stopping time.
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Dual problem

Dual problem of stochastic control

Similar studies on the stochastic control problems are conducted by Rogers
in discrete time model, and by Davis & Burstein as well as by Diehl, Friz
& Gassiat in the semilinear case, i.e.

σ(t, x , α) = σ(t, x).

Viewing the arising interest in the uncertainty of volatility, we want to
treat the case with control α in function σ.

We first approximate the value function with discrete controls. Let Ah be
the set of all adapted processes constant on

[
i
h ,

i+1
h

)
and taking values in

a finite h-net Ah of A. Krylov showed that

V0 = lim
h→0

V h
0 := sup

α∈Ah

E
[
g(Xα

T )
]
.
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Dual problem

The dual form of the discretized problem

Theorem

Assume that σ is bounded, Hölder continuous in t, Lipschtiz in x , and
continuous in α, and that g is bounded and continuous. We have

V h
0 = inf

ϕ∈U
E
[

sup
a∈Dh

{
g(X a

T )−
∫ T

0
ϕt(X

a)σ(t,X a
t , at)dWt

}]
,

where Dh is the set of all functions [0,T ]→ Ah constant on the intervals[
i
h ,

i+1
h

)
.

In the dual problem, the maximization is over deterministic functions,
instead of adapted processes.

The approximation via the discrete controls is to avoid the nonsense
as supa∈D

∫ T
0 atdWt , where D is the set of all functions [0,T ]→ A.
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Dual problem

Sketch of proof

The l.h.s. is clearly smaller than the r.h.s. On the other hand, assume that
the HJB equation has a smooth solution u. Then the Itô’s formula reads

du(t,Xα
t ) = ∂tu(t,Xα

t )dt +
1

2
σ2D2u(t,Xα

t )dt + σDu(t,Xα
t )dWt .

By taking ϕt(ω) := Du(t, ωt), we obtain

r.h.s. ≤ E
[
sup
a∈Dh

{
g(X a

T )−u(T ,X a
T ) + u0 +

∫ T

0

(
∂tu(t,X

a
t ) +

1

2
σ2D2u(t,X a

t )
)
dt
}]

≤ E
[
sup
a∈Dh

{
u0 +

∫ T

0

(
∂tu(t,X

a
t ) + H(t,X a

t )
)
dt
}]

≤ u0 = l.h.s.
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Dual problem

If NOT smooth

Without the smoothness assumption, we need the following key ingredient
for a rigorous proof.

Lemma (Krylov)

For the value function u, the mollification uε := u ∗ K ε is a smooth
super-solution to the HJB equation, i.e.

−∂tuε − H(t, x) ≥ 0.
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Dual problem

Some extensions

Non-Markov stochastic control
Consider the stochastic control problem:

V0 = sup
α∈A

E
[
ξ(Xα

T∧·)
]
, dXt = µ(t, αt)dt + σ(t, αt)dWt .

Note that the utility function ξ is path-dependent. In this case, we can
still prove formally the same duality result. The main technique we used is
the ’path-frozen’ method by Ekren, Touzi & Zhang.

Mixed problem of stochastic control and optimal stopping
Consider the optimization:

V0 = sup
α∈A,τ∈TT

EP0
[
g(Xα

τ )
]
, dXt = µ(αt)dt + σ(αt)dWt .

Then we still have a similar duality result.
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Numerical tests
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Numerical tests

Superhedge with the uncertainty of volatility

We consider a simple model with uncertainty of volatility. Let X be the
price of an asset, and be model by the diffusion:

dXα
t = αtdWt , αt ∈ [0, 1, 0.2]

In order to over-hedge the option with payoff g(XT ), one needs to
calculate

V0 = sup
αt∈[0,1,0.2]

E
[
g(Xα

T )
]
.

We will solve this problem by the regression method and our duality bound,
and compare the pair of solutions with the solution to the HJB equation.
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Numerical tests

Numerical results

90− 110 call spread (XT − 90)+ − (XT − 110)+, basis= 5-order polynomial:

uLS
0 = 11.07 < uPDE

0 = 11.20 < udual
0 = 11.70,

Digital option 1XT≥100, basis= 5-order polynomial:

uLS
0 = 62.75 < uPDE

0 = 63.33 < udual
0 = 66.54,

Outperformer option (X 2
T − X 1

T )
+ with 2 uncorrelated assets,

uLS
0 = 11.15 < uPDE

0 = 11.25 < udual
0 = 11.84,

Outperformer option with 2 correlated assets ρ = −0.5

uLS
0 = 13.66 < uPDE

0 = 13.75 < udual
0 = 14.05,

Outperformer spread option (X 2
T − 0.9X 1

T )
+ − (X 2

T − 1.1X 1
T )

+ with 2 correlated
assets ρ = −0.5,

uLS
0 = 11.11 < uPDE

0 = 11.41 < udual
0 = 12.35.
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Numerical tests

A tip on numerical application

In general cases, it is NOT easy to calculate the pathwise maximization in
the expectation in the dual form. However, in some problems, it can be
simplified. Consider the case where the control only appears in the
discount function r . Assume µ = 0, σ = 1. Then, the duality reads

V h
0 = inf

ϕ∈U
E
[

sup
a∈Dh

{
e−ΛT g(WT )−

∫ T

0
e−Λtϕt(W )dWt

}]
,

where Λt :=
∫ t

0 r(s,Ws , as)ds.
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Numerical tests

Instead of computing the maximization in the expectation directly, we
introduce:

uHJ
ω,n(t) = sup

rs∈[0,c]

{
e−ΛT +Λtgω,n +

∫ T

t
e−Λs+Λt

(
αω,n(s) + βω,n (s)

)
ds
}
,

with

gω,n = g(W n
T (ω)), αω,n(t) = −ϕ(t,W n

t (ω))Ẇ n
t (ω) ,

βω,n (t) =
1
2
Dϕ(t,W n

t (ω)),

where W n is the classical Zakai approximation to Brownian motion,
which is absolutely continuous.

uHJ
ω,n is the value function of a deterministic control problem, so can

be calculated through solving the corresponding Hamilton-Jacobi
equation (first order PDE).

We can prove r.h.s. ≤ limn→∞ E[uHJ
·,n ], so we still obtain an

upper-biased solution.
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Numerical tests

Thank you for your attention!

Zhenjie Ren (CMAP) Dual algorithm Paris, 07/07/2016 18 / 17


	Motivation
	Dual problem
	Numerical tests

