Lossless Bayesian inference in infinite dimension without discretisation or truncation: a case study on Λ -coalescents

Jere Koskela Joint work with Paul A. Jenkins and Dario Spanò

International conference on Monte Carlo techniques 5-8 July 2016, Paris

Engineering and Physical Sciences Research Council

Outline

Exposition: Likelihood-informed subspaces

The finite alleles Λ -coalescent

Projection onto moments

Consistency

Sampling posterior moments

Likelihood-informed subsaces

- Consider inferring an unknown function *f* ∈ C from samples
 n := {x_i, f(x_i)}ⁿ_{i=1}.
- ► Choose a Gaussian prior µ ∈ M₁(C) and sample µ(df|n) using MCMC.
- Speed up mixing (but lose some signal) by choosing a finite-dimensional subspace C_d, computing the push-forward µ_d and sampling µ_d(df|**n**).
- Also yields an easily implementable algorithm.

In this talk:

► An example inference problem (the Λ -coalescent) for which the mapping $C \mapsto C_d$ is *lossless*, μ_d can be computed explicitly and (some of) the "residual" uncertainty between $\mu_d(df|\mathbf{n})$ and $\mu(df|\mathbf{n})$ can be controlled.

The finite alleles Λ -coalescent

► In reverse time, each k ≤ n lineages merges at rate

$$\lambda_{n,k} := \int_{[0,1]} r^{k-2} (1-r)^{n-k} \Lambda(dr).$$

- Each lineage mutates with rate θ .
- Sample type of most recent common ancestor.
- Mutations resolved forwards in time through stochastic matrix *M*.

The inference problem

- Data: a vector of observed type frequencies n ∈ ℕ^d.
- Missing data: the ancestral tree and mutation events.
- The likelihood

$$\mathbb{P}_{\Lambda,\theta,M}(\mathbf{n}) = \int_{\mathcal{A}} \mathbb{1}_{\{\mathbf{n}\}}(A_0) \mathbb{P}_{\Lambda,\theta,M}(dA)$$

has no known closed form expression.

- (Relatively) efficient importance sampling algorithms are available for pointwise evaluation.
- Standing assumption: M and θ are known.

Proposition 1

Let genetic labels be identified with $\{1, \ldots, d\}$ and let $\mathbf{n} = (n_1, \ldots, n_d)$ denote the observed type frequencies. The likelihood $\mathbb{P}_{\Lambda}(\mathbf{n})$ is constant across any measures Λ which share the first n - 2 moments.

Proof. The likelihood solves

$$\mathbb{P}_{\Lambda}(\mathbf{n}) = \frac{\theta}{n\theta - q_{nn}} \sum_{i,j=1}^{d} (n_j - 1 + \delta_{ij}) M_{ji} \mathbb{P}_{\Lambda}(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j) \\ + \frac{1}{n\theta - q_{nn}} \sum_{i:n_i \ge 2} \sum_{k=2}^{n_i} {n \choose k} \lambda_{n,k} \frac{n_i - k + 1}{n - k + 1} \mathbb{P}_{\Lambda}(\mathbf{n} - (k - 1)\mathbf{e}_i).$$

with boundary condition $\mathbb{P}_{\Lambda}(\mathbf{e}_i) = m(i)$, where *m* is the unique *M*-invariant distribution on $\{1, \ldots, d\}$.

Parametrisation

- Let ∼_n denote the equivalence relation on Λ's of agreement of first n − 2 moments.
- ▶ Let $\mu \in \mathcal{M}_1(\mathcal{M}_1([0,1]))$ denote a prior. Proposition 1 implies $\mu(d\Lambda| \sim_n) = \mu(d\Lambda)|_{\sim_n}$.
- ► This suggests parametrising an inference problem with n observations with n 2 moments.
- ► Procedure can be interpreted as analytically integrating "∞ - (n - 2)" dimensions, and leaving n - 2 to sample (Rao-Blackwellisation)...
- ...provided a suitable prior can be found.

The Dirichlet process mixture model

•
$$\{z_i\}_{i=1}^{\infty} \stackrel{\text{i.i.d}}{\sim} H.$$

• $\{\beta'_i\}_{i=1}^{\infty} \stackrel{\text{i.i.d}}{\sim} \text{Beta}(1, \alpha).$
• $\beta_i := \prod_{j=1}^{i-1} (1 - \beta'_j)\beta'_j.$
• $\{\sigma_i\}_{i=1}^{\infty} \stackrel{\text{i.i.d}}{\sim} F.$

- $\Lambda(r) = \sum_{i=1}^{\infty} \beta_i \phi(\sigma_i^{-1}(r-z_i))$, where ϕ is the standard Gaussian density conditioned on $[\eta, 1]$ for any $\eta > 0$.
- Easy (and exponentially accurate) to truncate, or...

Moments of the Dirichlet process mixture model

Let
$$C_0, \ldots, C_n \in \mathbb{R}^{n+1}$$
 solve
 $C_n = -1,$
 $\sum_{k=0}^{n-r-1} {n-r \choose k} C_{r+k} = 1 \text{ for } r \in \{0, \ldots, n-1\}.$

Then

L

$$(-1)^{n+1}2^{n}F_{n}(\boldsymbol{\sigma},\mathbf{g}_{n},\alpha) = C_{0} + \sum_{k=1}^{n} \frac{C_{k}}{(\pi i)^{k}} \times \sum_{1 \leq j_{1} < \ldots < j_{k} \leq n} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \frac{h_{k}(\mathbf{s}_{k}; \mathbf{g}_{j_{1}} - \sigma_{j_{1}}, \ldots, \mathbf{g}_{j_{k}} - \sigma_{j_{k}}; \alpha)}{s_{1} \times \cdots \times s_{k}} d\mathbf{s}_{k},$$

where h_k is the characteristic function of a γ_{α} -random measure and F_n is the joint distribution of *n* moments $\mu(g_1), \ldots, \mu(g_n)$.

Proposition 2

If the observed allele frequencies come from a bounded number of time points, then the posterior is always inconsistent.

Figure 1: $\mu = \frac{1}{2}(\delta_{\delta_0} + \delta_{\delta_1})$. Two types. Single-time sampling distributions of the $\lim_{n\to\infty}$ type fractions in blue and green, corresponding posterior probabilities in black and red. At $\theta = 1$ everything is uniform.

M A S D O C

Proposition 3

Let $\Delta > 0$ be a fixed sampling interval, and let $\mathbf{n} := (\mathbf{n}_1, \dots, \mathbf{n}_k)$ denote samples of size *n* sampled at times $\{\Delta j\}_{j=0}^{k-1}$. Suppose the prior μ places full mass on a \mathcal{D}_{η} , set of strictly positive, bounded densities on $[\eta, 1]$ for some $\eta > 0$, and for any $\varepsilon > 0$ and $\phi_0 \in \mathcal{D}_{\eta}$ suppose that

$$\mu\left(\phi\in\mathcal{D}_{\eta}:\int_{\eta}^{1}\left\{\left|\log\left(\frac{\phi_{0}(r)}{\phi(r)}\right)\right|+\left|\frac{\phi_{0}(r)}{\phi(r)}-1\right|\right\}r^{-2}\phi_{0}(r)dr<\varepsilon\right)>0.$$

Then the posterior is consistent as both *n* and $k \to \infty$.

Consistency of a finite number of moments follows immediately since $\phi \mapsto \int_n^1 r^j \phi(r) dr$ is continuous and bounded.

Pseudo-marginal MCMC

Algorithm 1 The pseudo-marginal algorithm

Require: Prior P(x), unbiased likelihood estimator L(x), transition kernel q(x, y), and run length n. 1: Initialise $X_0 = x$ and $L_0 = L(x)$. 2: **for** i = 1, ..., n **do** Sample $y \sim q(x, \cdot)$ and L = L(y). 3: Set $a = 1 \wedge \frac{q(y,x)LP(y)}{q(x,y)L + P(x)}$ and sample $u \sim U(0,1)$. 4: 5: if $\mu < a$ then Set $X_i = y$ and $L_i = L$. 6: else 7: Set $X_i = X_{i-1}$ and $L_i = L_{i-1}$. 8: 9: end if 10: end for 11: **return** *X*

Algorithm 2 The noisy pseudo-marginal algorithm

Require: Prior P(x), unbiased likelihood estimator L(x), transition kernel q(x, y), and run length n. 1: Initialise $X_0 = x$ and $L_0 = L(x)$. 2: for i = 1, ..., n do Sample $y \sim q(x, \cdot)$ and L = L(y). 3: Sample L' = L(x). 4: Set $a = 1 \land \frac{q(y,x)LP(y)}{q(x,y)LP(x)}$ and sample $u \sim U(0,1)$. 5: 6: if u < a then Set $X_i = v$ and $L_i = L$. 7: else 8: Set $X_i = X_{i-1}$ and $L_i = L'$. 9: end if 10: 11: end for 12: **return** X

Simulation study: set up

- Prior on Λ: truncated Dirichlet process mixture with 4 components and η = 10⁻⁶.
- Quantity of interest: $\lambda_{3,3}$, the first moment of Λ .
- Two simulated data sets of 5 × 20 individuals each, with d = 2¹⁵:
 - Kingman coalescent: $\Lambda = \delta_0$, $\lambda_{3,3} = 0$.
 - Bolthausen-Sznitman coalescent: $\Lambda = U(0, 1)$, $\lambda_{3,3} = 0.5$.
- Gaussian random walk Metropolis-Hastings proposal (with conditioning for boundaries).
- Likelihood estimator uses 180 and 75 particles, respectively.

Simulation study: short runs

Simulation study: long runs

