Lossless Bayesian inference in infinite dimension without discretisation or truncation: a case study on Λ-coalescents

Jere Koskela

Joint work with Paul A. Jenkins and Dario Spanò

International conference on Monte Carlo techniques 5-8 July 2016, Paris

Mathematics and Statistics Centre for Doctoral Training

THE UNIVERSITY OF

EPSRC
Engineering and Physical Sciences Research Council

Outline

Exposition: Likelihood-informed subspaces

The finite alleles \wedge-coalescent

Projection onto moments

Consistency

Sampling posterior moments

Likelihood-informed subsaces

- Consider inferring an unknown function $f \in \mathcal{C}$ from samples $\mathbf{n}:=\left\{x_{i}, f\left(x_{i}\right)\right\}_{i=1}^{n}$.
- Choose a Gaussian prior $\mu \in \mathcal{M}_{1}(\mathcal{C})$ and sample $\mu(d f \mid \mathbf{n})$ using MCMC.
- Speed up mixing (but lose some signal) by choosing a finite-dimensional subspace \mathcal{C}_{d}, computing the push-forward μ_{d} and sampling $\mu_{d}(d f \mid \mathbf{n})$.
- Also yields an easily implementable algorithm.

In this talk:

- An example inference problem (the Λ-coalescent) for which the mapping $\mathcal{C} \mapsto \mathcal{C}_{d}$ is lossless, μ_{d} can be computed explicitly and (some of) the "residual" uncertainty between $\mu_{d}(d f \mid \mathbf{n})$ and $\mu(d f \mid \mathbf{n})$ can be controlled.

The finite alleles Λ-coalescent

- In reverse time, each $k \leq n$ lineages merges at rate

$$
\lambda_{n, k}:=\int_{[0,1]} r^{k-2}(1-r)^{n-k} \Lambda(d r)
$$

- Each lineage mutates with rate θ.
- Sample type of most recent common ancestor.
- Mutations resolved forwards in time through stochastic matrix M.

The inference problem

- Data: a vector of observed type frequencies $\mathbf{n} \in \mathbb{N}^{d}$.
- Missing data: the ancestral tree and mutation events.
- The likelihood

$$
\mathbb{P}_{\wedge, \theta, M}(\mathbf{n})=\int_{\mathcal{A}} \mathbb{1}_{\{\mathbf{n}\}}\left(A_{0}\right) \mathbb{P}_{\Lambda, \theta, M}(d A)
$$

has no known closed form expression.

- (Relatively) efficient importance sampling algorithms are available for pointwise evaluation.
- Standing assumption: M and θ are known.

Proposition 1

Let genetic labels be identified with $\{1, \ldots, d\}$ and let $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right)$ denote the observed type frequencies. The likelihood $\mathbb{P}_{\Lambda}(\mathbf{n})$ is constant across any measures Λ which share the first $n-2$ moments.

Proof. The likelihood solves

$$
\begin{aligned}
\mathbb{P}_{\Lambda}(\mathbf{n}) & =\frac{\theta}{n \theta-q_{n n}} \sum_{i, j=1}^{d}\left(n_{j}-1+\delta_{i j}\right) M_{j i} \mathbb{P}_{\Lambda}\left(\mathbf{n}-\mathbf{e}_{i}+\mathbf{e}_{j}\right) \\
& +\frac{1}{n \theta-q_{n n}} \sum_{i: n_{i} \geq 2} \sum_{k=2}^{n_{i}}\binom{n}{k} \lambda_{n, k} \frac{n_{i}-k+1}{n-k+1} \mathbb{P}_{\wedge}\left(\mathbf{n}-(k-1) \mathbf{e}_{i}\right) .
\end{aligned}
$$

with boundary condition $\mathbb{P}_{\Lambda}\left(\mathbf{e}_{i}\right)=m(i)$, where m is the unique M-invariant distribution on $\{1, \ldots, d\}$.

Parametrisation

- Let \sim_{n} denote the equivalence relation on Λ 's of agreement of first $n-2$ moments.
- Let $\mu \in \mathcal{M}_{1}\left(\mathcal{M}_{1}([0,1])\right)$ denote a prior. Proposition 1 implies $\mu\left(d \Lambda \mid \sim_{n}\right)=\left.\mu(d \Lambda)\right|_{\sim_{n}}$.
- This suggests parametrising an inference problem with n observations with $n-2$ moments.
- Procedure can be interpreted as analytically integrating " $\infty-(n-2)$ " dimensions, and leaving $n-2$ to sample (Rao-Blackwellisation)...
- ...provided a suitable prior can be found.

The Dirichlet process mixture model

- $\left\{z_{i}\right\}_{i=1}^{\infty} \stackrel{\text { i.i.d }}{\sim} H$.
- $\left\{\beta_{i}^{\prime}\right\}_{i=1}^{\infty} \stackrel{\text { i.i.d }}{\sim} \operatorname{Beta}(1, \alpha)$.
- $\beta_{i}:=\prod_{j=1}^{i-1}\left(1-\beta_{j}^{\prime}\right) \beta_{j}^{\prime}$.
- $\left\{\sigma_{i}\right\}_{i=1}^{\infty} \stackrel{\text { i.i.d }}{\sim} F$.
- $\Lambda(r)=\sum_{i=1}^{\infty} \beta_{i} \phi\left(\sigma_{i}^{-1}\left(r-z_{i}\right)\right)$, where ϕ is the standard Gaussian density conditioned on $[\eta, 1]$ for any $\eta>0$.
- Easy (and exponentially accurate) to truncate, or...

Moments of the Dirichlet process mixture model

Let $C_{0}, \ldots, C_{n} \in \mathbb{R}^{n+1}$ solve

$$
\begin{aligned}
C_{n} & =-1, \\
\sum_{k=0}^{n-r-1}\binom{n-r}{k} C_{r+k} & =1 \text { for } r \in\{0, \ldots, n-1\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& (-1)^{n+1} 2^{n} F_{n}\left(\sigma, \mathbf{g}_{n}, \alpha\right)=C_{0}+\sum_{k=1}^{n} \frac{C_{k}}{(\pi i)^{k}} \times \\
& \times \sum_{1 \leq j_{1}<\ldots<j_{k} \leq n} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{h_{k}\left(\mathbf{s}_{k} ; g_{j_{1}}-\sigma_{j_{1}}, \ldots, g_{j_{k}}-\sigma_{j_{k}} ; \alpha\right)}{s_{1} \times \cdots \times s_{k}} d \mathbf{s}_{k},
\end{aligned}
$$

where h_{k} is the characteristic function of a γ_{α}-random measure and F_{n} is the joint distribution of n moments $\mu\left(g_{1}\right), \ldots, \mu\left(g_{n}\right)$.

Proposition 2

If the observed allele frequencies come from a bounded number of time points, then the posterior is always inconsistent.

Figure 1: $\mu=\frac{1}{2}\left(\delta_{\delta_{0}}+\delta_{\delta_{1}}\right)$. Two types. Single-time sampling distributions of the $\lim _{n \rightarrow \infty}$ type fractions in blue and green, corresponding posterior probabilities in black and red. At $\theta=1$ everything is uniform.

Proposition 3

Let $\Delta>0$ be a fixed sampling interval, and let $\mathbf{n}:=\left(\mathbf{n}_{1}, \ldots, \mathbf{n}_{k}\right)$ denote samples of size n sampled at times $\{\Delta j\}_{j=0}^{k-1}$. Suppose the prior μ places full mass on a \mathcal{D}_{η}, set of strictly positive, bounded densities on $[\eta, 1]$ for some $\eta>0$, and for any $\varepsilon>0$ and $\phi_{0} \in \mathcal{D}_{\eta}$ suppose that

$$
\mu\left(\phi \in \mathcal{D}_{\eta}: \int_{\eta}^{1}\left\{\left|\log \left(\frac{\phi_{0}(r)}{\phi(r)}\right)\right|+\left|\frac{\phi_{0}(r)}{\phi(r)}-1\right|\right\} r^{-2} \phi_{0}(r) d r<\varepsilon\right)>0 .
$$

Then the posterior is consistent as both n and $k \rightarrow \infty$.
Consistency of a finite number of moments follows immediately since $\phi \mapsto \int_{\eta}^{1} r^{j} \phi(r) d r$ is continuous and bounded.

Pseudo-marginal MCMC

Algorithm 1 The pseudo-marginal algorithm
Require: Prior $P(x)$, unbiased likelihood estimator $L(x)$, transition kernel $q(x, y)$, and run length n.
1: Initialise $X_{0}=x$ and $L_{0}=L(x)$.
2: for $i=1, \ldots, n$ do
3: \quad Sample $y \sim q(x, \cdot)$ and $L=L(y)$.
4: \quad Set $a=1 \wedge \frac{q(y, x) L P(y)}{q(x, y) L_{i-1} P(x)}$ and sample $u \sim U(0,1)$.
5: if $u<a$ then
6: \quad Set $X_{i}=y$ and $L_{i}=L$.
7: else
8: \quad Set $X_{i}=X_{i-1}$ and $L_{i}=L_{i-1}$.
9: end if
10: end for
11: return X

Algorithm 2 The noisy pseudo-marginal algorithm

Require: Prior $P(x)$, unbiased likelihood estimator $L(x)$, transition kernel $q(x, y)$, and run length n.
1: Initialise $X_{0}=x$ and $L_{0}=L(x)$.
2: for $i=1, \ldots, n$ do
3: \quad Sample $y \sim q(x, \cdot)$ and $L=L(y)$.
4: \quad Sample $L^{\prime}=L(x)$.
5: \quad Set $a=1 \wedge \frac{q(y, x) L P(y)}{q(x, y) L^{\prime} P(x)}$ and sample $u \sim U(0,1)$.
6: if $u<a$ then
Set $X_{i}=y$ and $L_{i}=L$.
else
Set $X_{i}=X_{i-1}$ and $L_{i}=L^{\prime}$.
end if
11: end for
12: return X

Simulation study: set up

- Prior on Λ : truncated Dirichlet process mixture with 4 components and $\eta=10^{-6}$.
- Quantity of interest: $\lambda_{3,3}$, the first moment of Λ.
- Two simulated data sets of 5×20 individuals each, with $d=2^{15}$:
- Kingman coalescent: $\Lambda=\delta_{0}, \lambda_{3,3}=0$.
- Bolthausen-Sznitman coalescent: $\Lambda=U(0,1), \lambda_{3,3}=0.5$.
- Gaussian random walk Metropolis-Hastings proposal (with conditioning for boundaries).
- Likelihood estimator uses 180 and 75 particles, respectively.

Simulation study: short runs

Simulation study: long runs

Exact Delayed Acceptance

Kingman (dotted), 11.7 days, acc. pr. $=16 \%, 27 \%$ (overall 4%) Bolthausen-Sznitman (solid), 6.2 days, acc. pr. $=17 \%, 21 \%$ (overall 4%)

Prior and posterior densities

MAS
DOC

