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Likelihood-informed subsaces

I Consider inferring an unknown function f ∈ C from samples
n := {xi , f (xi )}ni=1.

I Choose a Gaussian prior µ ∈M1(C) and sample µ(df |n)
using MCMC.

I Speed up mixing (but lose some signal) by choosing a
finite-dimensional subspace Cd , computing the push-forward
µd and sampling µd(df |n).

I Also yields an easily implementable algorithm.

In this talk:

I An example inference problem (the Λ-coalescent) for which
the mapping C 7→ Cd is lossless, µd can be computed explicitly
and (some of) the “residual” uncertainty between µd(df |n)
and µ(df |n) can be controlled.



The finite alleles Λ-coalescent

● ● ●

●

●

●

●

I In reverse time, each k ≤ n lineages
merges at rate

λn,k :=

∫
[0,1]

rk−2(1− r)n−kΛ(dr).

I Each lineage mutates with rate θ.

I Sample type of most recent common
ancestor.

I Mutations resolved forwards in time
through stochastic matrix M.



The inference problem

● ● ●

●

●

●

●

I Data: a vector of observed type
frequencies n ∈ Nd .

I Missing data: the ancestral tree and
mutation events.

I The likelihood

PΛ,θ,M(n) =

∫
A
1{n}(A0)PΛ,θ,M(dA)

has no known closed form expression.

I (Relatively) efficient importance
sampling algorithms are available for
pointwise evaluation.

I Standing assumption: M and θ are
known.



Proposition 1

Let genetic labels be identified with {1, . . . , d} and let
n = (n1, . . . , nd) denote the observed type frequencies. The
likelihood PΛ(n) is constant across any measures Λ which share the
first n − 2 moments.

Proof. The likelihood solves

PΛ(n) =
θ

nθ − qnn

d∑
i ,j=1

(nj − 1 + δij)MjiPΛ(n− ei + ej)

+
1

nθ − qnn

∑
i :ni≥2

ni∑
k=2

(
n

k

)
λn,k

ni − k + 1

n − k + 1
PΛ(n− (k − 1)ei ).

with boundary condition PΛ(ei ) = m(i), where m is the unique
M-invariant distribution on {1, . . . , d}.



Parametrisation

I Let ∼n denote the equivalence relation on Λ’s of agreement of
first n − 2 moments.

I Let µ ∈M1(M1([0, 1])) denote a prior. Proposition 1 implies
µ(dΛ| ∼n) = µ(dΛ)|∼n .

I This suggests parametrising an inference problem with n
observations with n − 2 moments.

I Procedure can be interpreted as analytically integrating
“∞− (n − 2)” dimensions, and leaving n − 2 to sample
(Rao-Blackwellisation)...

I ...provided a suitable prior can be found.



The Dirichlet process mixture model

I {zi}∞i=1
i.i.d∼ H.

I {β′i}∞i=1
i.i.d∼ Beta(1, α).

I βi :=
∏i−1

j=1(1− β′j)β′j .

I {σi}∞i=1
i.i.d∼ F .

I Λ(r) =
∑∞

i=1 βiφ(σ−1
i (r − zi )), where φ is the standard

Gaussian density conditioned on [η, 1] for any η > 0.

I Easy (and exponentially accurate) to truncate, or...



Moments of the Dirichlet process mixture model

Let C0, . . . ,Cn ∈ Rn+1 solve

Cn = −1,

n−r−1∑
k=0

(
n − r

k

)
Cr+k = 1 for r ∈ {0, . . . , n − 1}.

Then

(−1)n+12nFn(σ, gn, α) = C0 +
n∑

k=1

Ck

(πi)k
×

×
∑

1≤j1<...<jk≤n

∫ ∞
0

. . .

∫ ∞
0

hk(sk ; gj1 − σj1 , . . . , gjk − σjk ;α)

s1 × · · · × sk
dsk ,

where hk is the characteristic function of a γα-random measure
and Fn is the joint distribution of n moments µ(g1), . . . , µ(gn).



Proposition 2

If the observed allele frequencies come from a bounded number of
time points, then the posterior is always inconsistent.
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Figure 1 : µ = 1
2 (δδ0 + δδ1 ). Two types. Single-time sampling

distributions of the limn→∞ type fractions in blue and green,
corresponding posterior probabilities in black and red. At θ = 1
everything is uniform.



Proposition 3

Let ∆ > 0 be a fixed sampling interval, and let n := (n1, . . . ,nk)

denote samples of size n sampled at times {∆j}k−1
j=0 . Suppose the

prior µ places full mass on a Dη, set of strictly positive, bounded
densities on [η, 1] for some η > 0, and for any ε > 0 and φ0 ∈ Dη
suppose that

µ

(
φ ∈ Dη :

∫ 1

η

{∣∣∣ log(φ0(r)

φ(r)

) ∣∣∣+ ∣∣∣φ0(r)

φ(r)
− 1
∣∣∣} r−2φ0(r)dr < ε

)
> 0.

Then the posterior is consistent as both n and k →∞.

Consistency of a finite number of moments follows immediately
since φ 7→

∫ 1
η r jφ(r)dr is continuous and bounded.



Pseudo-marginal MCMC

Algorithm 1 The pseudo-marginal algorithm

Require: Prior P(x), unbiased likelihood estimator L(x), transition
kernel q(x , y), and run length n.

1: Initialise X0 = x and L0 = L(x).
2: for i = 1, . . . , n do
3: Sample y ∼ q(x , ·) and L = L(y).

4: Set a = 1 ∧ q(y ,x)LP(y)
q(x ,y)Li−1P(x) and sample u ∼ U(0, 1).

5: if u < a then
6: Set Xi = y and Li = L.
7: else
8: Set Xi = Xi−1 and Li = Li−1.
9: end if

10: end for
11: return X



Algorithm 2 The noisy pseudo-marginal algorithm

Require: Prior P(x), unbiased likelihood estimator L(x), transition
kernel q(x , y), and run length n.

1: Initialise X0 = x and L0 = L(x).
2: for i = 1, . . . , n do
3: Sample y ∼ q(x , ·) and L = L(y).
4: Sample L′ = L(x).

5: Set a = 1 ∧ q(y ,x)LP(y)
q(x ,y)L′P(x) and sample u ∼ U(0, 1).

6: if u < a then
7: Set Xi = y and Li = L.
8: else
9: Set Xi = Xi−1 and Li = L′.

10: end if
11: end for
12: return X



Simulation study: set up

I Prior on Λ: truncated Dirichlet process mixture with 4
components and η = 10−6.

I Quantity of interest: λ3,3, the first moment of Λ.
I Two simulated data sets of 5× 20 individuals each, with

d = 215:
I Kingman coalescent: Λ = δ0, λ3,3 = 0.
I Bolthausen-Sznitman coalescent: Λ = U(0, 1), λ3,3 = 0.5.

I Gaussian random walk Metropolis-Hastings proposal (with
conditioning for boundaries).

I Likelihood estimator uses 180 and 75 particles, respectively.



Simulation study: short runs
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Noisy

Kingman (dotted), 9.3 days, acc. pr. = 35%
 Bolthausen−Sznitman (solid), 3.1 days, acc. pr. = 49%
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Exact Delayed Acceptance

Kingman (dotted), 1.1 days, acc. pr. = 14%, 35% (overall 5%)
 Bolthausen−Sznitman (solid), 0.8 days, acc. pr. = 27%, 24% (overall 6%)

1s
t M

om
en

t

0 5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Noisy Delayed Acceptance

Kingman (dotted), 1.5 days, acc. pr. = 11%, 67% (overall 7%)
 Bolthausen−Sznitman (solid), 0.9 days, acc. pr. = 13%, 54% (overall 7%)
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Simulation study: long runs
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Kingman (dotted), 11.7 days, acc. pr. = 16%, 27% (overall 4%)
 Bolthausen−Sznitman (solid), 6.2 days, acc. pr. = 17%, 21% (overall 4%)
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