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Likelihood-informed subsaces

» Consider inferring an unknown function f € C from samples
n = {x;, f(x)}";.

» Choose a Gaussian prior ;1 € M7(C) and sample p(df|n)
using MCMC.

» Speed up mixing (but lose some signal) by choosing a
finite-dimensional subspace C4, computing the push-forward
g and sampling pg(df|n).

» Also yields an easily implementable algorithm.

In this talk:

» An example inference problem (the A-coalescent) for which
the mapping C — Cy is lossless, pg can be computed explicitly
and (some of) the “residual” uncertainty between pq(df|n)
and p(df|n) can be controlled.
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The finite alleles A-coalescent

In reverse time, each k < n lineages
merges at rate

Ank 1= / r*=2(1 — r)""kN(dr).
[0,1]

Each lineage mutates with rate 6.
Sample type of most recent common
ancestor.

Mutations resolved forwards in time
through stochastic matrix M.
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The inference problem

Data: a vector of observed type
frequencies n € N9,

Missing data: the ancestral tree and
mutation events.

The likelihood
]P’/\,e,/vz(n)Z/All{n}(Ao)P/\,e,M(dA)

has no known closed form expression.

(Relatively) efficient importance
sampling algorithms are available for
pointwise evaluation.

Standing assumption: M and 6 are

known. M[A[S'
NEE



Proposition 1

Let genetic labels be identified with {1,...,d} and let
n=(ny,...,ny) denote the observed type frequencies. The
likelihood PA(n) is constant across any measures A which share the
first n — 2 moments.

Proof. The likelihood solves

9 d

]P’A(n) = W E (nj -1+ 5ij)MjiPA(n —e; + e_,')
=1
1 Y /n n—k+1
- - Apy———P —(k —1)e;).
+m9qn"i'nz->:2kzz<k> Kn—k+1 A= Jei)

with boundary condition Px(e;) = m(i), where m is the unique
M-invariant distribution on {1,...,d}.
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Parametrisation

v

Let ~, denote the equivalence relation on A's of agreement of
first n — 2 moments.

Let u € M;(M;1([0,1])) denote a prior. Proposition 1 implies
p(dA[ ~n) = p(dN)]~,.

This suggests parametrising an inference problem with n
observations with n — 2 moments.

Procedure can be interpreted as analytically integrating

“oo — (n—2)" dimensions, and leaving n — 2 to sample
(Rao-Blackwellisation)...

...provided a suitable prior can be found.



The Dirichlet process mixture model

> {ZI Iflvd H

> {3 }oo "% Beta(1, ).

> 6= 131 - B))8.

> {oi, N F.

> A(r) = 322, Big(o; (r — z)), where ¢ is the standard
Gaussian density conditioned on [n, 1] for any n > 0.

» Easy (and exponentially accurate) to truncate, or...
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Moments of the Dirichlet process mixture model

Let Gp,...,C, € R"! solve

G, = —1,
(n;r>Cr+k:1forr€{0,...,n—1}.
Then

G
n+lAan _ k
(-1)"™2 Fn(a,gn,a)—Co—l—Zﬁx

> hi(s Opyee g — 0 (X
% Z k ki 8jp — Tji» ) Bji Jk )dsk,
S1 X -+ X Sk

1< <. <jk<n

where hy is the characteristic function of a ,-random measure
and F, is the joint distribution of n moments u(g1),. .., u(g,). LAENES
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Proposition 2

If the observed allele frequencies come from a bounded number of
time points, then the posterior is always inconsistent.

Theta=0.1 Theta = 10
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Figure 1: g = (85, + Js,). Two types. Single-time sampling
distributions of the lim,_, ., type fractions in blue and green,
corresponding posterior probabilities in black and red. At 6 =1

everything is uniform.
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Proposition 3

Let A > 0 be a fixed sampling interval, and let n := (ng,..., ng)
denote samples of size n sampled at times {Aj}j.‘:_&. Suppose the
prior 1 places full mass on a D,), set of strictly positive, bounded
densities on [1, 1] for some i > 0, and for any € > 0 and ¢o € D,
suppose that

n ((75 €D, : nl {) log (ZO((:))) ‘ + ‘q;;((rl’)) - 1‘} r72¢o(r)dr < 5) > 0.

Then the posterior is consistent as both n and k — oc.

Consistency of a finite number of moments follows immediately
since ¢ +— fnl rl¢(r)dr is continuous and bounded.



Pseudo-marginal MCMC

Algorithm 1 The pseudo-marginal algorithm

Require: Prior P(x), unbiased likelihood estimator L(x), transition

T
= O

e NT s Wb

kernel g(x,y), and run length n.

Initialise Xo = x and Lo = L(x).
fori=1,...,ndo
Sample y ~ q(x,-) and L = L(y).
Seta=1A % and sample u ~ U(0,1).
if u < athen
Set X; =yand L; = L.
else
Set X; = Xj_1and L; = L;_1.
end if
end for
. return X

e
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Algorithm 2 The noisy pseudo-marginal algorithm

Require: Prior P(x), unbiased likelihood estimator L(x), transition
kernel g(x,y), and run length n.
1. Initialise Xo = x and Lo = L(x).
2: fori=1,...,ndo
3:  Sample y ~ q(x,-) and L = L(y).
4:  Sample L' = L(x).
5: 'Set a=1A % and sample v ~ U(0,1).
6: if u < athen
7 Set X;=yand L; = L.
8
9

else
Set X; = X;_1 and L; = L.
10:  end if
11: end for

12: return X




Simulation study: set up

» Prior on A: truncated Dirichlet process mixture with 4
components and 1 = 107°.
> Quantity of interest: A3 3, the first moment of A.
» Two simulated data sets of 5 x 20 individuals each, with
d = 21:
» Kingman coalescent: A = dg, A33 = 0.
» Bolthausen-Sznitman coalescent: A = U(0,1), A33 = 0.5.
» Gaussian random walk Metropolis-Hastings proposal (with
conditioning for boundaries).

> Likelihood estimator uses 180 and 75 particles, respectively.
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Simulation study: short runs
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Simulation study: long runs
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