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Statistical Arbitrage

° Principle 1

® There are identifiable patterns in the financial markets

¢ That means:

® We can find exploitable trading strategies

° Example:

® Price trends

Volatility trends

* Volume trends

Macro events

® News
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Statistical Arbitrage

° Principle 2

®* Some identified patterns are statistically robust

¢ That means:

* Some patterns are stable under small changes on their input and their

parameters

* Example:
® Parametric models:
Model is stable
* Non-parametric models:
Distribution is stable

® Recurrent behaviour:

Volumes and Volatility spikes
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Statistical Arbitrage

* Principle 3

® For some patterns, past behaviour can on average predict future

behaviour

Stability of cumulative distribution

1.0 T T

® That means: [
0.8

* Some patterns are stable in time

® At least in the short term oor

* Potential need of “periodic recalibration” 04F

* Example: 00f=
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)
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® Volume curves wikipedia.com

° Volatility curves

® Correlations
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Statistical Arbitrage

° Principle 4

° A strategy exploiting a robust pattern is profitable on average

¢ That means:

* Do not expect to win all the time
* But you can win in the long run:
Law of Large Numbers

Central Limit Theorem

° Example:

¢ Insurance premium
° Option pricing
° Market—making
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Statistical Arbitrage

® Principle 5

° A pattern normally changes after some time

¢ That means:
* Even if patterns are stable in time, they do not to last forever
* Some patterns can disappear if the market changes

* Frequent recalibration to determine when a strategy is no longer profitable

PEP Pepsico, Inc. NYSE + BATS ®StockChartscom
19-Jun-2013 12:.03pm Open 22.26 High 8267 Low 8185 Last 2250 Volume 1.7 Chg -0.07 (:0.02%) v
= PEP (Daily) 82.50
[ ] l M Volume 1,746,434
Example: S By 410

Note how closely

® Correlation strategies:
the stock prices ®p

1 3 Coca-Cola follow each other
Pair tradmg 3 until Pepsico falls 7
out of synch near va
Il’ldeX aI'b the end of May.

t

Pepsico
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nasdaq.com
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2. Backtesting
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Backtesting

L Stage 1
® Build prototype of the trading strategy

150 - T T -
® What to dOZ Canada A
140 France
® Code the rules of the algorithm JGermany h\} \
apan W v
o . |
* Simulate time series: r e - " okl J v/}
Monte Carlo £ 10
. . r i\
* Use simulations to test: =l f'm A
VY :
COde y !v W :/ AW
100 /™ v
Rules W
Dependence on parameters % %0 100 150 200 0

Trading Day
* Get afirst glimpse of the distribution

mathworks.com
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Backtesting

L Stage 2

® Define the parameters and the “utility function”

* What to do:
* Define the space of parameters

Potentially reduce dimensions

Detine the optimisation function
Utility function
* Maximise
Cost function

e Minimise

Quants at work - Mauricio Labadie

File Edit View Insert Tools Desktop Window Help

Ded&S h RQAON® € 08 =8O




4 N
Backtesting

° Stage 3
® Define your “In Sample” and “Out of Sample”

* What to do: :

u Out of sample data )

® Get time series of real data:

Data needs to be cleaned

Markets / Instruments

® Divide the sample set in two:

In Sample : | Older’ Data ‘ Recen’t Data

* Find optimal parameters tradingsystemlife.com
Out of Sample:

e Test statistical robustness of the optimal parameters found in In

Sample
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Backtesting

L Stage 4

* Find the optimal parameters for the utility function

* What to do:
* Find the best parameters In Sample:
By “brute force”if 1 or 2 parameters:
* Plot the whole utility function
* Find the global maximum
By numerical methods:

¢ Gradient methods
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Backtesting

L Stage 5
* Test the stability of the In-Sample best parameters in the Out of Sample

* What to do:
If the pattern is still profitable, keep the strategy

115,000

110,000

105,000
http://aostrading.cz/

100,000
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Backtesting

L Stage 5
* Test the stability of the In-Sample best parameters in the Out of Sample

* What to do:
If the pattern is still profitable, keep the strategy
Otherwise, discard the strategy and restart from Stage 1

115,000

110,000

105,000
http://aostrading.cz/
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3. Pairs Trading: Definition
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Pairs Trading

® Market neutral strategy
® Buy one stock, sell another
® Their correlation needs to be strong:

Same sector, country, market cap, etc

° Assumptions:
® (Correlation will continue to be strong

* Any break in correlation is temporary

® The spread is mean reverting
® Sell spread ifit is large:
Sell outperforming stock
Buy underperforming stock

* Buy spread if it is small
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Pairs Trading

* We will use only 2 parameters:
¢ The threshold of the entry signal:

u(t) + ao(t)
® The threshold of the stop-loss signal:

u(t) £ ba(t),b>a

Spread
A

u(®) + bo(t)

u(t) + ao(t)

u(t)

>» Time
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Pairs Trading

* We will use only 2 parameters:
¢ The threshold of the entry signal:

u(t) + ao(t)
® The threshold of the stop-loss signal:

u(t) £ ba(t),b>a

Spread
A

u(®) + bo(t)

Entry: sell spread

!

p@+aoct) | N

Exit: take profit

!

u(t)
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Pairs Trading

* We will use only 2 parameters:

¢ The threshold of the entry signal:

u(t) + ao(t)
® The threshold of the stop-loss signal:

u(t) £ ba(t),b>a

Spread
A

u(®) + bo(t)

1

Exit: stop loss

Entry: sell spread

!

p@®+aoct) | LN N

Exit: take profit

!

u(t)
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3. Pairs Trading: Example
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Example

¢ Build the algorithm:

Price and levels

* Create a price simulator 1015

Use it to simulate the spread .

Intraday prices every 5 minutes
100.5

One day of data
100
* Compute the entry and exit levels 995k

Rolling mean and volatility ool

¢ Check rules %85, 20 10 a0 a0 100 120

We buy (sell) when we have to buy (sell)

We enter (exit) the position when we hit the thresholds
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Example

® Monte Carlo Simulation:

® Run the algorithm for 252 days
° Compute:

PNL (profit and loss) per transaction
Cumulative PNL

Price and levels
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Example

®* Monte Carlo Simulation:
¢ Build the distribution of PNL
Histogram
* Spread was modelled as a Normal random variable

Shall we expect a normal distribution of PNL?
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Example

®* Monte Carlo Simulation:
Build the distribution of PNL
Histogram
Spread was modelled as a Normal random variable

Shall we expect a normal distribution of PNL?

Histogram PnL| mean PnL = 0.0015019 | std dev PnL = 0.24074
450 T T T T

sof
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300} Not very “normal”!
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Example

®* Monte Carlo Simulation:
Build the distribution of PNL
Histogram
Spread was modelled as a Normal random variable

Shall we expect a normal distribution of PNL?

Histogram PnL| mean PnL = 0.0015019 | std dev PnL = 0.24074

- Exit: take profit

450

400

30t .
Exit: stop loss

l

ool Not very “normal”!
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