
Optimal Execution using Statistical Learning

Sophie LARUELLE

LAMA-UPEC, CMAP-Polytechnique

July 6th, 2016

International Conference on Monte-Carlo Techniques



Outline

1 Why Using Statistical Learning for Optimal Execution ?

2 Introduction to Stochastic Approximation Algorithms

3 Applications to Optimal Execution
Intraday volume curve for optimal trade scheduling
Optimal split of orders across liquidity pools
Optimal posting price of limit orders: learning by trading
Optimal split and posting price of limit orders across lit pools



Outline

1 Why Using Statistical Learning for Optimal Execution ?

2 Introduction to Stochastic Approximation Algorithms

3 Applications to Optimal Execution
Intraday volume curve for optimal trade scheduling
Optimal split of orders across liquidity pools
Optimal posting price of limit orders: learning by trading
Optimal split and posting price of limit orders across lit pools



Why Using Statistical Learning for Optimal Execution ?

High frequency market data : Database with only the trades or all
the events that may happen in the LOB =⇒ massive database.

Evolutions of technology : The speed of processors and their
computational throughput have both increased. The traders use more
powerful computers or dedicated hardware like FPGAs to accelerate
their decision taking process.

Parameter Estimation : Non stationary condition of parameters,
global estimation to take into account the correlations =⇒ statistical
learning algorithm to estimate market parameters (like some use in
pattern recognition for computer vision).

Interaction with the LOB : Interactions between market
participants imply to estimate online the parameters and not from an
historical database (misspecification risk) =⇒ update parameter
values in trading algorithm.
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Motivations

In many fields, we often are faced with optimization or zero search
problems.

Examples: In Finance,

extraction of implicit parameter (volatility),

calibration, optimization of an exogenous parameter for variance
reduction (regression, importance sampling, etc).

Common point: all the concerned functions have a representation as an
expectation, i .e.

h(θ) = E [H(θ,Y )], where Y is a q-dimensional random vector.

The stochastic approximation is a tool based on simulation to solve
optimization or zero search problems.



Measurement : Robbins-Monro procedure

A dose θ of a chemical product creates a random effect measured by
F (θ,Y ), Y being a random variable with distribution µ and F : R2 7→ R.

We assume that the mean effect

f (θ) = E [F (θ,Y )] is non-decreasing.

We want to determine the dose θ∗ which creates a mean effect of a given
threshold α, i .e. to solve

f (θ∗) = α.

Naive idea: f (θn) ≈ 1

Nn

Nn∑
k=1

F (θn,Yk), Yk i.i.d. with distribution µ,

Nn −→
n→∞

∞.

Other idea: use F (θn,Yn+1) instead of f (θn) with γn ↘ 0 (“local”
randomization).



The Robbins-Monro procedure is the following

choose arbitrarily θ0 and administer it to a subject which reacts with
the effect F (θ0,Y1).

Recurrence: at instant n, choose a dose θn administered to a subject
(independent of the previous ones), the effect is F (θn,Yn+1).

As (Yn)n≥1 is a sequence of i.i.d. random variables with distribution µ,
then

f (θn) = E [F (θn,Yn+1) | F (θ0,Y1), . . . ,F (θn−1,Yn)].

The Robbins-Monro algorithm for the choice of θn then reads

θn+1 = θn − γn (F (θn,Yn+1)− α), (γn) non-negative tending to 0.

By setting H(θ, y) := F (θ, y)− α, this procedure is then a zero search of
the function

h(θ) := f (θ)− α = E [F (θ,Y )− α] = E [H(θ,Y )].



Convergence: Martingale approach or ODE method

Martingale approach: Existence of a Lyapunov function and control
of both martingale increment and remainder term.

ODE method: Study of the SA as a discretization of

ODEh ≡ θ̇ = −h(θ).

Assume that (γn)n≥1 is a non-negative sequence such that∑
n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞.

Then,
θn

a.s.−→
n→∞

θ∗.



Rate of convergence: CLT (SDE method)

Let θ∗ be an equilibrium point of {h = 0}. Assume that the function h is
differentiable at θ∗ and that all the eigenvalues of Dh(θ∗) have a
non-negative real part. Specify the step sequence as follows

∀n ≥ 1, γn =
α

n
, α >

1

2Re(λmin)
(1)

where λmin denotes the eigenvalue of Dh(θ∗) with the lowest real part.

Then, the previous convergence a.s. is ruled on {θn
a.s.−→ θ∗} by the

following CLT √
n (θn − θ∗)

L−→
n→∞

N (0, αΣ)

with

Σ :=

∫ +∞

0

(
e
−
(
Dh(θ∗)− Id

2α

)
u
)t

Γe
−
(
Dh(θ∗)− Id

2α

)
u
du.
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Intraday volume curve for optimal trade scheduling
Let split the trading day into N equal slices. Assume a trader has
estimated from historical data a reference volume curve

(V 0
1 , . . . ,V

0
N)

where V 0
n is the total (estimated) traded volume of the slice n. Then we

deduce the estimated weights for the slice n

w0
n :=

V 0
n∑N

k=1 V
0
k

, n = 1, . . . ,N.

At the end of the nth slice, the real value of the traded volume Vn is
known. Thus the weighted volume curve can be updated as follows

w0 = w0
0 , wn+1 =

V 0
n+1 + (Vn − V 0

n )∑n
k=1 Vk +

∑N
k=n+1 V

0
k

n = 0, . . . ,N − 1,

and used in trading algorithm (for VWAP or IS for example) to update the
trading curve.
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Static modelling

The principle of a Dark pool is the following:

It proposes a bid price with no guarantee of executed quantity at the
occasion of an OTC transaction.

Usually this price is lower than the bid price offered on the regular
market.

So one can model the impact of the existence of N dark pools (N ≥ 2) on
a given transaction as follows:

Let V > 0 be the random volume to be executed,

Let θi ∈ (0, 1) be the discount factor proposed by the dark pool i .

Let ri denote the percentage of V sent to the dark pool i for
execution.

Let Di ≥ 0 be the quantity of securities that can be delivered (or
mase available) by the dark pool i at price θiS .



Cost of the executed order

The reminder of the order is to be executed on the regular market, at price
S .

Then the cost C of the whole executed order is given by

C = S
N∑
i=1

θi min (riV ,Di ) + S

(
V −

N∑
i=1

min (riV ,Di )

)

= S

(
V −

N∑
i=1

ρi min (riV ,Di )

)

where
ρi = 1− θi ∈ (0, 1), i = 1, . . . ,N.

Set PN :=
{
r = (ri )1≤i≤N ∈ RN

+ |
∑N

i=1 ri = 1
}

.



Design of the stochastic algorithm
We us a Lagrangian approach to solve this maximization problem under
constraints. We obtain that

r∗ ∈ arg minPN
C

m
∀i ∈ IN , E

[
V
(
ρi1{r∗i V<Di} −

1
N

∑N
j=1 ρj1{r∗j V<Dj}

)]
= 0.

Consequently, this leads to the following recursive zero search procedure

rn+1
i = rni + γn+1Hi (r

n,Y n+1), r0 ∈ PN , 1 ≤ i ≤ N, (2)

where Y n := (V n,Dn
1 , . . . ,D

n
N) and

Hi (r ,Y ) = V

ρi1{riV<Di} −
1

N

N∑
j=1

ρj1{rjV<Dj}


with (Y n)n≥1 is a sequence of random vectors with non negative
components such that, for every n ≥ 1 and 1 ≤ i ≤ N,

(V n,Dn
i )

d
= (V ,Di ).



Long-term optimization
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Daily resetting of the procedure

We reset the step γn at the beginning of each day and the satisfaction
parameters and we keep the allocation coefficients of the preceding day.
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Modeling and design of the algorithm

We consider on a short period T a Poisson process of “execution” of
buy orders(

N
(δ)
t

)
0≤t≤T

with intensity ΛT (δ, S) :=

∫ T

0
λ(St − (S0 − δ))dt (3)

where

• 0 ≤ δ ≤ δmax with δmax ∈ (0,S0) denotes the depth of the limit order
book,

• (St)t≥0 is a stochastic process modeling the dynamic of the fair price
of a security stock,

• the function λ is defined on the whole real line as a finite non
increasing convex function.



Optimization Problem

Then we introduce a market impact penalization function Φ : R 7→ R+,
nondecreasing and convex, with Φ(0) = 0 to model the additional cost of
the execution of the remaining quantity.

Then the resulting cost of execution on a period [0,T ] reads

C (δ) := E
[

(S0 − δ)
(
QT ∧ N

(δ)
T

)
+ κSTΦ

((
QT − N

(δ)
T

)
+

)]
(4)

where κ > 0.

Our aim is then to minimize this cost, namely to solve the following
optimization problem

min
0≤δ≤δmax

C (δ). (5)

To solve this optimization problem, we will devise a stochastic algorithm
constrained to stay in [0, δmax].



Design of the algorithm
Once the two points are checked, we can devise the algorithm following
the standard stochastic approximation with projection, namely

δn+1 = Proj[0,δmax]

(
δn − γn+1H

(
δn,
(
S̄

(n+1)
ti

)
0≤i≤m

))
, δ0 ∈ [0, δmax],

(6)
where

• Proj[0,δmax] denotes the projection on [0, δmax],

• the positive step sequence (γn)n≥1 satisfies at least the minimal
decreasing step assumption∑

n≥1

γn = +∞ and γn → 0, (7)

•
{(

S̄
(n)
ti

)
0≤i≤m, n ≥ 0

}
is either a sequence of i.i.d. copies of the true

underlying dynamics of (Sti )0≤i≤m or at least of its Euler scheme or a
sequence sharing some averaging properties (e.g . stationary
α-mixing).



δ and posting price obtained by SA
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Framework and Modelling

Assume that a trader wants to buy a volume V of an asset across N
lit pools with limit orders.

She has to determinate the proportions r = (r i )1≤i≤N to sent to each
lit pools and the posting prices (S − δ) = (S − δi )1≤i≤N ∈ [0, δmax]N .

The execution flow at the distance δi of the reference price S is
modelled by a random variable Q i (δi ) = Q̄ ie−k

iδi where Q̄ i is a
positive random variable modeling the executed quantity at the first
limit an k i > 0.

If she is not fully executed, she sends a market order of the remaining
quantity.



Mean Execution Cost

The mean resulting cost of execution is the sum of each mean
execution costs on the lit pools, namely it reads

C (r , δ) :=
N∑
i=1

E
[
(S − δi )(r iV ∧ Q i (δi )) + κS(r iV − Q i (δi ))+

]
, (8)

where κ > 0 is a free tuning parameter.

Our aim is then to minimize this cost by choosing the proportions and
the distances to post at, namely to solve the following optimization
problem

min
r∈PN ,δ∈[0,δmax]N

C (r , δ). (9)

We take advantage of the representation of C and its first two derivatives
as expectations to devise a recursive stochastic algorithm.



Design of the stochastic algorithm
Based on a Lagrangian approach for the optimal proportions and on the
representations as expectations for C ′ and C ′′, we can formally devise a
recursive stochastic gradient descent

rn+1 = ProjP
N

(
rn − γn+1H(rn, δn, Q̄ne

−kδn)
)
, n ≥ 0,

δn+1 = Proj[0,δmax]N

(
δn − γn+1G (rn, δn, Q̄ne

−kδn)
)
, n ≥ 0,

where, for every i ∈ {1, . . . ,N},

H(r in, δ
i
n, Q̄

i
ne
−k iδin) = V

(
(S − δin)1{r inV≤Q̄ i

ne
−ki δin} + κS1{r inV≥Q̄ i

ne
−ki δin}

)
− 1

N

∑N
j=1 V

(
(S − δjn)1

{r jnV≤Q̄ j
ne−kj δ

j
n}

+ κS1
{r jnV≥Q̄ j

ne−kj δ
j
n}

)
,

and

G (r in, δ
i
n, Q̄

i
ne
−k iδin) = −r inV ∧ Q̄ i

ne
−k iδin + k i (κS − (S − δin))1{r inV≤Q̄ i

ne
−ki δin}.



Convergence of the SA procedure
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