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Applications of Multi-armed Bandit

I Recommendation systems

I Clinical trials

I Packet routing, cognitive radios

I Trading

I Education

I ...
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Solving Bandit with Optimism

Solving Bandit with Randomization (and a bit of optimism)

Perspectives
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Linear Bandit Framework

The Linear Bandit Framework

The setting:

I Set of arms X ⊂ Rd

I Reward of arm x ∈ X

r(x) = xTθ? + ξ (standard linear regression model)

with θ? ∈ Rd unknown and ξ a zero-mean, sub-Gaussian noise

I Best arm and best value for any parameter θ

x?(θ) = arg max
x∈X

xTθ; J(θ) = max
x∈X

xTθ

I Optimal strategy : select arm x?(θ∗) (constrained linear optimization)
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Linear Bandit Framework

The Linear Bandit Framework
The learning problem:

I Finite horizon T

I Select an arm xt at each step t = 1, . . . ,T

I Cumulate as much reward as possible

T∑

t=1
xT

t θ
∗ (explore-exploit trade-off)

I Equivalently : minimize the regret

R(T ) =
T∑

t=1

(
x?(θ?)Tθ? − xT

t θ
?
)

⇒ a good learning algorithm should have o(T ) regret!
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Linear Bandit Framework

The Linear Bandit Framework

The core ingredient: regularized least-squares estimator
I Given samples {(x1, r1), (x2, r2), . . . , (xt−1, rt−1)} compute

θ̂t = arg min
θ∈Rd

t−1∑

s=1

(
rs − xT

s θ
)2

+ λ‖θ‖ (λ regularization parameter)

I In closed form

Vt = λI +
t−1∑

s=1
xsxT

s (design matrix) θ̂t = V−1
t

t−1∑

s=1
xs rs (RLS estimator)

I Guarantees (w.h.p.) (Gauss-Markov confidence interval for martinagales)

I (estimation) ‖θ̂t − θ?‖Vt ≤
√

d log(t/δ)

I (prediction) |xT(θ̂t − θ?)| ≤ ‖x‖V −1
t

√
d log(t/δ)
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Linear Bandit Framework

Confidence Ellipsoid

ERLS
t

θ⋆

θ̂t

ERLS
t =

{
θ ∈ Rd | ||θ − θ̂t ||Vt ≤

√
d log(1/δ)

}
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Solving Bandit with Optimism
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Solving Bandit with Optimism

Optimism in Face of Uncertainty

I Exploit: given past observations, compute θ̂t and confidence
ellipsoid ERLS

t

I Explore: given past observations, any θ ∈ ERLS
t could be θ?

I Optimism: trade-off exploration and exploitation by taking the most
“optimistic” θ compatible with current estimates

θ̃t = arg max
θ∈ERLS

t

J(θ) = arg max
θ∈ERLS

t

max
x∈X

xTθ

I Act as-if θ̃t was the true parameter

xt = arg max
x∈X

xTθ̃t

⇒ the resulting algorithm is called LinUCB or OFUL
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Solving Bandit with Optimism

How It Works

High-level intuition
I The arm choice can be written as (by def. of ERLS

t )

xt = arg max
x∈X

xTθ̃t = arg max
x∈X

(
xTθ̂t︸︷︷︸
exploit

+ ‖x‖V −1
t

√
d log(t/δ)

︸ ︷︷ ︸
explore

)

I Case 1 : xt = x?(θ?) ⇒ no regret

I Case 2 : xt 6= x?(θ?) ⇒ the confidence ellipsoid is tightened along
the direction whose uncertainty had the largest impact in the
decision of xt

⇒ either instantaneous regret is small or useful information is obtained
and future regret will be small
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Solving Bandit with Optimism

How It Works

Proof sketch
I Regret decomposition

R(T ) =
T∑

t=1

(
x?(θ?)Tθ? − xT

t θ
?
)

=
T∑

t=1

(
x?(θ?)Tθ? − xT

t θ̃t
)
+

T∑
t=1

(
xT

t θ̃t − xT
t θ

?
)

=
T∑

t=1

(
J(θ?)− J(θ̃t)

)
︸ ︷︷ ︸

R1(T )

+
T∑

t=1

(
xT

t θ̃t − xT
t θ

?
)

︸ ︷︷ ︸
R2(T )

I R1(T ) ≤ 0 by construction (recall θ̃t = arg maxθ∈ERLS
t

J(θ))

I R2(T ) is the prediction error on points xt used to estimate θ̂t and θ̃t is in ERLS
t

⇒ cumulatively small
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Solving Bandit with Optimism

How It Works

Theorem (Abbasi-Yadkori et al., 2011)
If OFUL is run over T steps on arms in X ⊂ Rd , then it suffers a
cumulative regret

R(T ) = Õ
(
d
√

T
)

with high probability.
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Solving Bandit with Optimism

Main Issue

Computing θ̃t requires solving a doubly-linear optimization problem

θ̃t = arg max
θ∈ERLS

t

J(θ) = arg max
θ∈ERLS

t

max
x∈X

xTθ

⇒ computational expensive for non-trivial arm sets X
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Solving Bandit with Randomization (and a bit of optimism)

Outline

Linear Bandit Framework
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Solving Bandit with Randomization (and a bit of optimism)

Thompson Sampling

A Bayesian algorithm (dating back to [Thompson, 1933])

I Define a prior on parameter p(θ) (e.g., θ ∼ N (0, I))

I At each step t = 1, . . . ,T
I Draw θ̃t from posterior p(θ|x1, r1, . . . , xt−1, rt−1) (e.g., θ ∼ N (θ̂t ,V−1

t ))

I Select arm xt = arg maxx∈X xTθ̃t

⇒ sampling θ̃t from the posterior implements an exploration-exploitation
trade-off
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Solving Bandit with Randomization (and a bit of optimism)

How It Works

I Regret decomposition

R(T ) =
T∑

t=1

(
x?(θ?)Tθ? − xT

t θ
?
)

=
T∑

t=1

(
J(θ?)− J(θ̃t)

)

︸ ︷︷ ︸
R1(T )

+
T∑

t=1

(
xT

t θ̃t − xT
t θ

?
)

︸ ︷︷ ︸
R2(T )

I R2(T ) is the same as before

I θ̃OFUL
t = arg maxθ∈ERLS

t
J(θ) vs θ̃TS

t ∼ p(θ|x1, r1, . . . , xt−1, rt−1)

⇒ J(θ̃TS
t ) =?? ⇒ R1(T ) � 0
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Solving Bandit with Randomization (and a bit of optimism)

The Importance of Being Optimistic

Let RTS
t = J(θ?)− J(θ̃t)

I At step τ , θ̃τ is optimistic (i.e., J(θ̃τ ) ≥ J(θ?)), then RTS
τ ≤ 0

I At any other subsequent (non-optimistic) step t

RTS
t ≤ J(θ̃τ )− J(θ̂t) J(θ̃τ ) ≥ J(θ?)

≤ ∇J(θ̃τ )T(θ̃τ − θ̃t) J(θ) is convex

≤ xτT(θ̃τ − θ̃t) ∇J(θ) = x?(θ) by def.

≤ ‖xτ‖V −1
τ
‖θ̃τ − θ̃t‖Vt by Cauchy-Schwarz
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Solving Bandit with Randomization (and a bit of optimism)

The Importance of Being Optimistic

I Summing up (νk time between any two optimistic choices, τk optimistic
times)

T∑

t=1
RTS

t ≤
√

dT
K∑

k=1
νk‖xτk‖V −1

τk

I If θ̃t is optimistic with probability p, then E[νk ] = 1/p and

R(T ) ≤ Õ
(
d/p
√

T
)
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Solving Bandit with Randomization (and a bit of optimism)

How It Works

θ∗

O

x⋆X

Consider X = B(0, 1), then x?(θ) = θ/‖θ‖ and J(θ) = ‖θ‖
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Solving Bandit with Randomization (and a bit of optimism)

How It Works

θ∗

θ̂t

ERLS
t

Θopt

O

x⋆X

Consider X = B(0, 1), then x?(θ) = θ/‖θ‖ and J(θ) = ‖θ‖
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Solving Bandit with Randomization (and a bit of optimism)

How It Works

ETS
t

ERLS
t

θ̂t

p

θ∗

θ̃t

O

xt = x⋆(θ̃t)

Θopt

x⋆X

Consider X = B(0, 1), then x?(θ) = θ/‖θ‖ and J(θ) = ‖θ‖
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Solving Bandit with Randomization (and a bit of optimism)

How It Works

Theorem (Agrawal & Goyal, 2012; Abeille & L., 2016)
If TS is run over T steps on arms in X ⊂ Rd , then it suffers a
cumulative regret

R(T ) = Õ
(
d3/2
√

T
)

with high probability.
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Solving Bandit with Randomization (and a bit of optimism)

Discussion

+ TS is computationally faster than OFUL
+ TS often performs better than OFUL

− the need for optimism worsens the bound by
√

d
− the Bayesian design requires choosing appropriate priors
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Perspectives

Thompson Sampling as a Stochastic Algorithm?

Probability matching algorithm

I Define a prior on parameter p(θ)

I At each step t = 1, . . . ,T

I For any arm x ∈ X , compute

πt(x) = P(x = x?|x1, r1, . . . , xt−1, rt−1)

I Select arm xt ∼ πt

⇒ TS is an efficient implementation of probability matching
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Perspectives

Thompson Sampling as a Stochastic Algorithm?

I In some cases we can explicitly write the Bayesian update as (πt being a
distribution over X )

πt+1 = πt + ∆t

I The Narendra-Shapiro algorithm is a stochastic algorithm updating a
distribution over arms as

πt+1 = πt + γt∆′t

I The (over-penalized)-Narendra-Shapiro is shown [Gadat et al., 2016]

I to converge to the stationary distribution of a piecewise deterministic
Markov process

I to suffer from a worst-case regret Õ(
√

T ) (in the 2-arm independent
Bernoulli case)

⇒ If TS can be seen as a stochastic algorithm, we could have a much better
understanding of the dynamics and behavior of bandit algorithms
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Perspectives

Thank you!

Alessandro Lazaric
alessandro.lazaric@inria.fr

sequel.lille.inria.fr
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