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Hidden Markov models (HMM)

- Y def
= {Yt}t∈Z is the observation process and X def

= {Xt}t∈Z are the hidden states.

- The distribution of the HMM is specified by

- Distribution of X0 with probability density χθ.

- Transition kernels with density mθ on X×B(X) governing the transition of the hidden chain.

- Transition kernels with density gθ on X×B(Y), the conditional likelihood of the observations.
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Examples of hidden Markov models (HMM)

- Simultaneous localization and mapping (SLAM)

{Xk}k≥0 is the state (cartesian coordinates, bearing) of a mobile device.

- Transition model with input uk :

Xk = h(Xk−1, uk , εk ) .

- Environment represented by a set of landmarks : (θj )j∈J1,pK.
Observations received according to the model:

Yk,i = tk (θc i
k
,XK ) + δk,i .
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Power received from a WiFi access point. Device position.

Xk is the device position.

At each time k, the device observes the power of signals transmitted by ` antennas.

In this application, f? is the mean propagation model :

Yk ∼ N (f?(Xk), σ2I`) .
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Smoothing distributions

We are interested in estimating the joint smoothing distributions, defined, for any
measurable function h on Xt−s+1, T ≥ 0 and 0 ≤ s ≤ t ≤ T , by:

φs:t|T [h] =

∫
χ(x0)g0(x0)

∏T
u=1 m(xu−1, xu)gu(xu)h(xs:t)dx0:T∫

χ(x0)g0(x0)
∏T

u=1 m(xu−1, dxu)gu(xu)dx0:T

.

φs:t|T [h] = E [h(Xs:t)|Y0:T ] .

These distributions are crucial for Inference of HMM:

- Statistical inference for the distributions of the Xk ’s and the Yk ’s.

- Parameter estimation (EM algorithm, stochastic gradient, Particle MCMC).

The two-filter algorithms are designed to estimate φs|T = φs:s|T .
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Auxiliary particle filter, Pitt and Shephard, J. Am. Statist. Assoc. ’99

First step to estimate φs|T shared by common SMC smoothers.

φs|s [h] is approximated by particles and weights {(ξ`s , ω`s )}N`=1:

φN
s [h] =

1
ΩN

s

N∑
`=1

ω`s h(ξ`s ) .

- Initialisation:

1 (Initial states) {ξ`0}N`=1 i.i.d. distributed according to ρ0.

2 (Initial weights) ω`0 = χ(ξ`0) g0(ξ`0) /ρ0(ξ`0).

- Iterations for s ≥ 1:

1 (selection and propagation) Pairs {(I `s , ξ`s )}N`=1 of indices and particles are simulated
independently from:

πs(`, x) ∝ ω`s−1ϑs(ξ`s−1)ps(ξ`s−1, x) .

2 (weights) ξ`s is associated with the importance weight defined by:

ω`s =
m(ξ

I`s
s−1, ξ

`
s )gs(ξ`s )

ϑs(ξ
I`s
s−1)ps(ξ

I`s
s−1, ξ

`
s )
.
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Forward-backward smoothers

- Forward Filtering Backward Smoothing (FFBS), Doucet et al., Statist. and Comput. ’00:
- stores all filtering particles and weights discarding the genealogy of the particles.
- keeps all the particles fixed but modifies all importance weights during a backward pass.
- O(N2) complexity for marginal smoothing distributions.
- exponential deviation inequalities, CLT, Lq-mean error...
- forward only version for fixed smoothed expectations.

- Forward Filtering Backward Simulation (FFBSi), Godsill et al., J. Am. Statist. Assoc. ’04:

- stores all filtering particles and weights discarding the genealogy of the particles.
- samples trajectories backward among all the possible paths made of filtering particles.
- O(N2) complexity for all smoothing distributions.
- same results as the FFBS algorithm.
- may be implemented with O(N) complexity if m is upper bounded.

- PaRIS, Olsson and Westerborn, Bernoulli ’15:
- combines the forward only version of the FFBS with the sampling procedure of the FFBSi.
- may be implemented with O(N) complexity if m is upper bounded.
- same results as the FFBS algorithm.
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Auxiliary distribution
Kitagawa, J. Comput. Graph. Statist. ’96 and Briers et al, AISM, ’10

Let {γt}t≥0 be positive measurable functions such that, for all t ∈ {0, . . . ,T},∫
γt(xt) dxt

[
T∏

u=t+1

gu−1(xu−1)m(xu−1, xu)

]
gT (xT )dxt:T <∞ .

Then, the backward information filter is given by

ψγ,t|T [h] ∝
∫
γt(xt)

[
T∏

u=t+1

gu−1(xu−1)m(xu−1, xu)

]
gT (xT )h(xt)dxt:T .

If Xt has pdf γt , then ψγ,t|T is the conditional distribution of Xt given Yt:T .

The marginal smoothing distribution may be expressed as

φs|T [h] ∝
∫
φs−1(dxs−1)ψγ,s+1|T (dxs+1)m(xs−1, xs)gs(xs)

m(xs , xs+1)

γs+1(xs+1)
h(xs)dxs .
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Particle approximation of the backward information filter
ψγ,t|T [h] is approximated by particles and weights {(ξ̌`t , ω̌`t )}N`=1:

ψN
γ,t|T [h] =

1
Ω̌N

t

N∑
`=1

ω̌`t h(ξ̌`t ) .

- Initialisation:

1 (Initial states) {ξ̌i
T |T }

N
i=1 i.i.d. distributed according to ρ̌T .

2 (Initial weights) ω̌i
T |T = gT (ξ̌i

T |T )γT (ξ̌i
T |T )/ρ̌T (ξ̌i

T |T ).

- Iterations for t ≤ T − 1:

1 (selection and propagation) Pairs {(Ǐ it , ξ̌it|T )}Ni=1 of indices and particles are simulated
independently from:

πt|T (i , xt) ∝
ω̌i
t+1|Tϑt|T (ξ̌i

t+1|T )

γt+1(ξ̌i
t+1|T )

rt|T (ξ̌it+1|T , xt) .

2 (weights) ξ`s is associated with the importance weight defined by:

ω̌i
t|T

def
=

γt(ξ̌it|T )gt(ξ̌it|T )m(ξ̌i
t|T , ξ̌

Ǐ it
t+1|T )

ϑt|T (ξ̌
Ǐ it
t+1|T )rt|T (ξ̌

Ǐ it
t+1|T , ξ̌

i
t|T )

.
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The TwoFiltfwt algorithm, Fearnhead et al., Biometrika ’10
SMC approximations are plugged in

φs|T [h] ∝
∫
φs−1(dxs−1)ψγ,s+1|T (dxs+1)m(xs−1, xs)gs(xs)

m(xs , xs+1)

γs+1(xs+1)
h(xs)dxs ,

to obtain

φ̂tar
s|T (xs) ∝

N∑
i=1

N∑
j=1

ωi
s−1ω̌

j
s+1|T

γs+1(ξ̌js+1|T )
m(ξis−1, xs)gs(xs)q(xs , ξ̌

j
s+1|T ) .

1 (selection and propagation) Pairs {(I `s , Ǐ `s , ξ̃`s|T )}N`=1 of indices and particles are
simulated independently from:

πs|T (i , j , xs) ∝
ωi
s−1ϑ̃s|T (ξis−1, ξ̌

j
s+1|T )ω̌j

s+1|T

γs+1(ξ̌js+1|T )
r̃s|T (ξis−1, ξ̌

j
s+1|T ; xs) .

2 (weights) ξ̃`s|T is associated with the importance weight defined by:

ω̃`s|T
def
=

m(ξ
I`s
s−1, ξ̃

`
s|T )gs(ξ̃

`
s|T )m(ξ̃`s|T , ξ̌

Ǐ`s
s+1|T )

ϑ̃s|T (ξ
I`s
s−1, ξ̌

Ǐ`s
s+1|T )r̃s|T (ξ

I`s
s−1, ξ̌

Ǐ`s
s+1|T ; ξ̃`s|T )

.
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The TwoFiltbdm algorithm, Briers et al, AISM, ’10
Following instead Briers et al, AISM, ’10, we may consider one of the partial auxiliary
distributions:

φtar,f
s|T (i , xs) ∝ ωi

s−1m(ξis−1, xs)gs(xs)
N∑
j=1

ω̌j
s+1|T

γs+1(ξ̌js+1|T )
m(xs , ξ̌

j
s+1|T ) ,

φtar,b
s|T (j , xs) ∝

ω̌j
s+1|T

γs+1(ξ̌js+1|T )
m(xs , ξ̌

j
s+1|T )gs(xs)

N∑
i=1

ωi
s−1m(ξis−1, xs) .

1 (selection and propagation) Pairs {(I `s , ξ`s )}N`=1 or {(Ǐ `s , ξ̌`s|T )}N`=1 of indices and
particles are simulated independently from:

πf
s|T (i , xs) ∝ ωi

s−1ϑs(ξ
i
s−1)ps(ξ

i
s−1, xs) ,

πb
s|T (j , xs) ∝ ϑs|T (ξ̌js+1|T )ω̌j

s+1|T rs|T (ξ̌js+1|T , xs)/γs+1(ξ̌js+1|T ) .

2 (weights) ξ`s is associated with the importance weight defined by:

ω̃i,f
s|T

def
= ωi

s

N∑
j=1

ω̌j
s+1|Tm(ξis , ξ̌

j
s+1|T )/γs+1(ξ̌js+1|T ) ,

ω̃j,b
s|T

def
= ω̌j

s|T

N∑
i=1

ωi
s−1m(ξis−1, ξ̌

j
s|T )/γs(ξ̌

j
s|T ) .
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Exponential deviation inequality forTwoFiltfwt

We first show that the weighted sample {(ωi
s ω̌

j
t|T ), (ξis , ξ̌

j
t|T )}Ni,j=1 targets the product

distribution φs ⊗ ψγ,t|T .

For all 0 ≤ s < t ≤ T , there exist 0 < Bs,t|T ,Cs,t|T <∞ such that for all N ≥ 1, ε > 0
and all bounded function h,

P

(∣∣∣∣∣
N∑

i,j=1

ωi
s

Ωs

ω̌j
t|T

Ω̌t|T
h(ξis , ξ̌

j
t|T )− φs ⊗ ψγ,t|T [h]

∣∣∣∣∣ > ε

)
≤ Bs,t|T e−Cs,t|TNε2/ osc2(h) .

and there exist 0 < Bs|T ,Cs|T <∞ such that {(ω̃i
s|T , ξ̃

`
s|T )}N`=1 satisfies:

P

(∣∣∣∣∣
N∑
i=1

ω̃i
s|T

Ω̃s|T
h(ξ̃is|T )− φs|T [h]

∣∣∣∣∣ > ε

)
≤ Bs|T e−Cs|TNε2/ osc2(h) .
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Exponential deviation inequality for TwoFiltbdm

Similarly, we may derive an exponential inequality for the weighted samples
{(ξis , ω̃i,f

s|T )}Ni=1 and {(ξ̌is|T , ω̃
i,b
s|T )}Ni=1 produced by the TwoFiltbdm algorithm.

Then, for all 1 ≤ s ≤ T − 1, there exist 0 < Bs|T ,Cs|T <∞ such that for all N ≥ 1,
ε > 0 and all bounded function h,

P

(∣∣∣∣∣
N∑
i=1

ω̃i,f
s|T

Ω̃f
s|T

h(ξis)− φs|T [h]

∣∣∣∣∣ > ε

)
≤ Bs|T e−Cs|TNε2/ osc2(h) ,

P

(∣∣∣∣∣
N∑
i=1

ω̃i,b
s|T

Ω̃b
s|T

h(ξ̌is|T )− φs|T [h]

∣∣∣∣∣ > ε

)
≤ Bs|T e−Cs|TNε2/ osc2(h) .

Time uniform exponential inequalities may be obtained using strong mixing assumptions
which are standard in the SMC literature:
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A CLT may be derived for the weighted samples {(ξ`s , ω`s )}N`=1 and {(ξ̌it|T , ω̌i
t|T )}Ni=1 which

target respectively the filtering distribution φs and the backward information filter ψγ,t|T .

N1/2
N∑
i=1

ωi
s

Ωs

(
h(ξis)− φs [h]

)
D−→N→∞ N (0, Γs [h − φs [h]]) ,

N1/2
N∑
j=1

ω̌j
t|T

Ω̌t|T

(
h(ξ̌jt|T )− ψγ,t|T [h]

)
D−→N→∞ N

(
0, Γ̌γ,t|T

[
h − ψγ,t|T [h]

])
.

Then, for all 0 ≤ s < t ≤ T and all bounded function h,

√
N

(
N∑

i,j=1

ωi
s

Ωs

ω̌j
t|T

Ω̌t|T
h(ξis , ξ̌

j
t|T )− φs ⊗ ψγ,t|T [h]

)
D−→N→∞ N

(
0, Γ̃s,t|T

[
h − φs ⊗ ψγ,t|T [h]

])
,

where

Γ̃s,t|T [h]
def
= Γs

[∫
ψγ,t|T (dxt)h(·, xt)

]
+ Γ̌γ,t|T

[∫
φs(dxs)h(xs , ·)

]
.
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Asymptotic normality of TwoFiltbdm

√
N

(
N∑
i=1

ω̃i,f
s|T

Ω̃f
s|T

h(ξis)− φs|T [h]

)
D−→N→∞ N

(
0,∆f

s|T
[
h − φs|T [h]

])
,

where

∆f
s|T [h]

def
= Γ̃s,s+1|T

[
H f

s

]
/{φs ⊗ ψγ,s+1|T [q � γ−1

s+1]}2 ,

H f
s (x , x ′)

def
= h(x)q(x , x ′)γ−1

s+1(x ′) .

Similarly,

√
N

(
N∑
i=1

ω̃i,b
s|T

Ω̃b
s|T

h(ξis)− φs|T [h]

)
D−→N→∞ N

(
0,∆b

s|T
[
h − φs|T [h]

])
,

where

∆b
s|T [h]

def
= Γ̃s−1,s|T

[
Hb

s

]
/{φs−1 ⊗ ψγ,s|T [q � γ−1

s ]}2 ,

Hb
s (x , x ′)

def
= q(x , x ′)γ−1

s (x ′)h(x ′) .
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Asymptotic normality of TwoFiltbdm

- In the case where r̃s|T (xs , xs+1; xs) = ps(xs−1, xs) and ϑ̃s|T (x , x ′) = ϑs(x)ϑs|T (x ′), the
smoothing distribution approximation given by the TwoFiltfwt algorithm is obtained by
reweighting the particles obtained in the forward filtering pass.

- When ϑs|T = γs+1, the asymptotic variance Υs|T [h] of the TwoFiltfwt algorithm may be
compared to ∆f

s|T [h] as both approximations of φs|T [h] are based on the same particles
(associated with different importance weights):

Υs|T [h] ≥ ∆f
s|T [h] .

- Under the strong mixing assumptions, time uniform bounds for the asymptotic
variances of the two-filter approximations may be obtained.
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Particle filter variance estimation, Lee and Whiteley, ’15

- The asymptotic variance Γ̃s,t|T [h] is the sum of two variances: the forward filter
asymptotic variance Γs and the backward information filter asymptotic variance Γ̌γ,t|T .

- Lee and Whiteley, ’15 introduced a weakly consistent estimator ΓN
s [h] of the asymptotic

variance Γs [h] based on {(ξ`r , ω`r )}N`=1, 0 ≤ r ≤ s, and may be computed on-the-fly.

- This algorithm may also be used to obtain an estimator Γ̌N
γ,T |t [h] of Γ̌γ,t|T [h].

- Let (Er )0≤r≤s ∈ {1, . . . ,N}s+1 be such that for all i ∈ {1, . . . ,N} and all 0 ≤ r ≤ s, E i
r

is the index of the time 0 ancestor of ξir .

For all i ∈ {1, . . . ,N}, E i
0 = i and for all i ∈ {1, . . . ,N} and all 1 ≤ r ≤ s, E i

r ,

E i
r

def
= E

I ir
r−1 .
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Particle filter variance estimation, Lee and Whiteley, ’15

- For i = 1 to i = N, compute

ψi
0,s [h]

def
=

N∑
j=1
E j
s =i

ωj
s

[
h(ξjs)− φN

s [h]
]

and

ψ̌i
t,T [h]

def
=

N∑
j=1
Ě
j
t =i

ω̌j
t|T

[
h(ξ̌jt|T )− ψN

γ,t|T [h]
]
.

- Set αN = N/(N − 1).

- Set

ΓN
s [h − φs [h]]

def
= Nαs+1

N

N∑
i=1

(
ψi

0,s [h]/Ωs

)2

and

Γ̌N
γ,T |t

[
h − ψγ,t|T [h]

] def
= NαT−t+1

N

N∑
i=1

(
ψ̌i

t,T [h]/Ω̌t|T

)2
.
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TwoFiltbdm variance estimation

Weakly consistent estimator of the asymptotic variance of the TwoFiltbdm algorithm:

∆f
s|T [h]

def
= Γ̃s,s+1|T

[
H f

s

]
/{φs ⊗ ψγ,s+1|T [q � γ−1

s+1]}2 ,

H f
s (x , x ′)

def
= h(x)q(x , x ′)γ−1

s+1(x ′) .

Γ̃s,s+1|T [h]
def
= Γs

[∫
ψγ,s+1|T (dxs+1)h(·, xs+1)

]
+Γ̌γ,s+1|T

[∫
φs(dxs)h(xs , ·)

]
.

Define

H f,N
s,1 (x ′)

def
= Ω−1

s

N∑
`=1

ω`s {h(ξ`s )− φf,N
s|T [h]}q(ξ`s , x

′)γ−1
s+1(x ′) ,

H f,N
s+1,2(x)

def
= Ω̌−1

s+1|T

N∑
j=1

ω̌j
s+1|T{h(x)− φf,N

s|T [h]}q(x , ξ̌js+1|T )γ−1
s+1(ξ̌js+1|T ) ,
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Conclusions and extensions

- Extensions of the theoretical properties of the usual smoothers to the two-filter
algorithms (FFBS, FFBSi, PaRIS).

⇒ Nonasymptotic deviation inequalities, CLT, Lq-mean error.

- Asymptotic variance easier to estimate than variance of Forward-Backward smoothers.

- Theoretical analysis of sensitivity to the choice of the artificial distribution.

- Analysis of Rao blackwellised extensions of two-filer algorithms to regime switching
models (several regimes in commodity markets).
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