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© Framework
@ Hidden Markov models (HMM)
@ SMC to approximate smoothing distributions

© Two-filter algorithms
@ Forward filter
o Backward information filter
@ Recombinations to approximate marginal smoothing distributions

© Exponential deviation inequalities

@ Asymptotic normality
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Hidden Markov models (HMM)

- {Y:}tez is the observation process and X Lof {X¢}tez are the hidden states.

- The distribution of the HMM is specified by
- Distribution of Xp with probability density xg.
- Transition kernels with density my on X x B(X) governing the transition of the hidden chain.

- Transition kernels with density gg on X x B(Y), the conditional likelihood of the observations.
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Examples of hidden Markov models (HMM)

- Simultaneous localization and mapping (SLAM)

{Xk} >0 is the state (cartesian coordinates, bearing) of a mobile device
- Transition model with input wuy:

Xy = h(Xy—1, ug, €x) -

- Environment represented by a set of landmarks : (6;)je[1,p]-
Observations received according to the model:

Y= fk(ec;‘(7 Xk) + Ok,
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Power received from a WiFi access point. Device position.

o
&

)
o~

-40

20

15

60

10

0 5 10 15 20 25 30

@ Xy is the device position.
@ At each time k, the device observes the power of signals transmitted by ¢ antennas.

@ In this application, f, is the mean propagation model :

Yi ~ N(£(Xi), 021e) .
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Smoothing distributions

We are interested in estimating the joint smoothing distributions, defined, for any
measurable function hon X!t T>0and 0<s<t< T, by:

IX(XO)gO(XO) Hz-:l m(Xll*laXu)gu(Xu)h(Xs:t)dXO:T .
J x(x0)go(x0) TT_; m(xu—1,dxu)gu(xu)dxo.7

¢s:t|T[h] =

¢s:ei7[h] = E[h(Xst)| Yo.7] -

These distributions are crucial for Inference of HMM:

- Statistical inference for the distributions of the X.'s and the Y}'s.

- Parameter estimation (EM algorithm, stochastic gradient, Particle MCMC).

The two-filter algorithms are designed to estimate ¢57 = ¢s.5 7.
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Auxiliary particle filter, Pitt and Shephard, J. Am. Statist. Assoc. '99

First step to estimate ¢ 7 shared by common SMC smoothers.

bs/s[h] is approximated by particles and weights {(££, w)}oly:

N
1
N 14 ¥4
¢s [h] = Qu E wsh(gs) .
- Initialisation:
© (Initial states) {£§})_, i.i.d. distributed according to po.

@ (Initial weights) wf = x(£§) £0(£§) /po(&6)-
- lterations for s > 1:

© (selection and propagation) Pairs {(/£,££)}Y | of indices and particles are simulated
independently from:

ms(€, x) o Wf—ﬂs(&f—l)l’s(&f—lax) :
© (weights) ¢£ is associated with the importance weight defined by:
/e
o m(ES 4, €8s (El)
we = e T
195(555_1).’-75(555_1755)
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Forward-backward smoothers

- Forward Filtering Backward Smoothing (FFBS), Doucet et al., Statist. and Comput. '00:
- stores all filtering particles and weights discarding the genealogy of the particles.
- keeps all the particles fixed but modifies all importance weights during a backward pass.
- O(N?) complexity for marginal smoothing distributions.
- exponential deviation inequalities, CLT, Ly-mean error...

- forward only version for fixed smoothed expectations.
- Forward Filtering Backward Simulation (FFBSI), Godsill et al., J. Am. Statist. Assoc. '04:

- stores all filtering particles and weights discarding the genealogy of the particles.

- samples trajectories backward among all the possible paths made of filtering particles.
- O(N?) complexity for all smoothing distributions.

- same results as the FFBS algorithm.

- may be implemented with O(/V) complexity if m is upper bounded.

- PaRIS, Olsson and Westerborn, Bernoulli '15:
- combines the forward only version of the FFBS with the sampling procedure of the FFBSi.
- may be implemented with O(/N) complexity if m is upper bounded.
- same results as the FFBS algorithm.
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Auxiliary distribution
Kitagawa, J. Comput. Graph. Statist. '96 and Briers et al, AISM, '10

Let {7:}+>0 be positive measurable functions such that, for all t € {0,..., T},
T
/%(xt)dxt [ H Gu—1(xu—1) m(xu1,xu)] gr(xr)dxer < 00 .
u=t+1

Then, the backward information filter is given by

a7 [h] o /%(xt) [ H gu1(xu1)m(xu1,xu)] gr(xr)h(xe)dxeT .

u=t+1

If X: has pdf 7¢, then ¢/, ;7 is the conditional distribution of X; given Yi.7.

The marginal smoothing distribution may be expressed as

‘ m(Xs, Xs
b7l o / Do (e ) w7 (i), ) 0) TS sy
’Ys+1(Xs+1)

S. Le Corff (U. Paris-Sud and CNRS) Two filter algorithms



Particle approximation of the backward information filter
. ¢ T[h] is approximated by particles and weights {(&, oy

N
1
Whrlhl = g5 D _oth(E
Qf =1
- Initialisation:
© (Initial states) {EV"T‘T},N:l i.i.d. distributed according to jt.

© (Initial weights) @ T‘T gT(giTlT)'YT(gHT)/ﬁT(fVHT)-

- lterations for t < T — 1:

@ (selection and propagation) Pairs {(7;’,5;'”)}}\’:1 of indices and particles are simulated
independently from:

i gi
Wit 70 T(5t+1| 7)

i e T(Svi 1 T:Xt) .
7t+1(§é+1|7’) | t+1]

7THT(”: Xt) x

© (weights) ¢£ is associated with the importance weight defined by:

g w8 E M E )
Oy = .

o o i
Uy T(gtt+1|T)rt|T(§tt+1|T7 ft\T)
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The TwoFilts,: algorithm, Fearnhead et al., Biometrika '10
SMC approximations are plugged in

m(Xs, Xs+1)

h(xs)dxs ,
’Ys+1(Xs+1) ( )

¢si7[h] 0</G‘“Jsfl((IXsfl)%,sﬂ\T(dXs+1)m(Xs—17Xs)gs(xs)

to obtain

ws I(AJJ

+1|T

¢s|T Xs) X ZZ

pa iy ’Ys+1(€s+1‘7—) (€s—17Xs)gS(Xs)q(X57§s+1|7—) .

© (selection and propagation) Pairs {(/Z, if,g"fw)}fv,":l of indices and particles are
simulated independently from:

wi_1 O 7 (& 17§s+1‘7) 1T
s\T(ES 1755 YXS) .
’Ys+1(§s+1\T) o

7T5|T(i7j7XS) X

Q (weights) Ef\r is associated with the importance weight defined by:

~g  def m(ﬁg;l, ff\r)gs(ff\r)m(€f|ry g}ilw)

Ws|T = = e Z e - :
= .l
ﬁs\T(éss—lv5511|T)rs|T(§ss—1»§ss+1‘-pfs\r)
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The TwoFiltpgm algorithm, Briers et al, AISM, '10
Following instead Briers et al, AISM, '10, we may consider one of the partial auxiliary
distributions:
N Gy ‘
f s+1|T Yi
G (i) o whym(€] 1 x)g(x0) S —— AT (e, & ).
i Ysra(Eeiayr)
~J | N
1T ¥i ; ;
> m(X57§é+1|T)g5(Xs)Zwéflm(é.;flaxs) .
Ys+1(§ s+1|T) i—1

z\a‘;’b(.h XS) X

@ (selection and propagation) Pairs {(/£,£5)})_; or {(F%, \T)}Z , of indices and
particles are simulated independently from:

£|T(l XS) X w; 119 (€; 1)p5(£;717X5) )
WSIT(JVXS) X 195\T(§S+I\T) s+1\Tr5\T(ngJrl\T’X5)/'Ys+1(gjs+1\T) .
© (weights) &f is associated with the importance weight defined by:

._,f def

Wer = ""SZ s+1|Tm(f;vg£+1|r)/75+1(€£+1\T)v

W}s\br def s\TZwS im fs 15 5|T)/’YS(§S|T)
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Exponential deviation inequality forTwoFilts,:

We first show that the weighted sample {(w.a tlT) (&, t|7-)}lj 1 targets the product
distribution ¢s ® 1. ¢ 7.

Forall0 <s <t < T, there exist 0 < B, ;7. C, ;7 < oo such that for all N >1, € >0
and all bounded function h,

N ,‘ a;l
Ws T —C, 1| 7Ne?/ osc
P( Z Qs t h(&s7 t|T) ¢5 ®1[)%t|7'[h] > 6) < Bs,t|Te G,y TNe®/ 2(h) .
ij=1

and there exist 0 < B; 7, C; 1 < oo such that {(®£|T,§~f|T)}Q’:1 satisfies:
]P) (

S. Le Corff (U. Paris-Sud and CNRS) Two filter algorithms

N ~i

Z ‘;st h(&q) — /7]

i=1 *s|T

> E) < BS‘Tesz‘TNez/oscz(h) )




Exponential deviation inequality for TwoFiltpgm

Similarly, we may derive an exponential inequality for the weighted samples
{(& ~;‘fT)}Nl and {(§S|T, ~;’lT)}, 1 produced by the TwoFiltpg, algorithm.

Then, forall 1 <s < T —1, there exist 0 < By|7, C;j7 < oo such that for all N > 1,
€ > 0 and all bounded function h,

N ~i,f
s i = €2/ osc
P ( Z flT (gs) - ¢S|T[h] > 6) < leTe ColTNe/ ) 5
i=1 Qs|T
N ~i,b
s = €2/ osc?
P(Zng h(&y7) — ¢ 7[h] >6> < Byre” GiTNe /oseith)
i=1 S| T

Time uniform exponential inequalities may be obtained using strong mixing assumptions
which are standard in the SMC literature:
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A CLT may be derived for the weighted samples { (<. w!)})"; and {( ;. @} 1)}/.; which
target respectively the filtering distribution ¢, and the backward information filter ¢, ;7.

N2 Z w; ( ¢s[h]) i),\,_,oo N (0,Fs [h— ¢s[h]]) ,

v g
N2y tw( 2 ) = Yyarlhl) Donooo N (0o [h = byrlHl]) -
Jj=1

Then, for all 0 < s < t < T and all bounded function h,

N i
\/N <Z Qz Qj‘T h(gsa t|T) d)s ® ’l:b'y,tT[h]>

ij=1
i>N—>o<> N (07 rs,t|T [h — s ® w%t\T[hH) ’

where

Foe7 [h] Er |:/1/J%t‘7-(dxt)h(-’xt):| +T 07 {/ ¢s(dxs)h(xs,-)} . }
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Asymptotic normality of TwoFiltpgm

N ~if
VN (Z gi” h(el) - <z>s.r[h1) Lo N (0,857 [h— duirH]])
i=1 4| T
where
Ag\T [h] e Mo si1T [ sf] [H{ds ® Yy si17[q O 7;11]}2 ,
HE(x, ) h()q(x, X )i () -
Similarly,
- ‘:);It; D I
\/N <Z Qb (€s) - ¢s|T[h]> —N—oo N (0, A;‘T [h = C)S‘T[hn) ,
i=1 s|T
where

Al [0 Foar [H)] Agemr @ v arla © 95112
HY (5, X')2 qlx,x )57 (A -
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Asymptotic normality of TwoFiltpgm

- In the case where 77 (%, xci1; %) = pe(xs1, %) and U 7(x, x) = U.(x)0, 7(x"), the
smoothing distribution approximation given by the TwoFilts,: algorithm is obtained by
reweighting the particles obtained in the forward filtering pass.

- When 97 = 7511, the asymptotic variance T 7 [h] of the TwoFilts, algorithm may be

compared to A‘;lT [h] as both approximations of ¢ r[h] are based on the same particles
(associated with different importance weights):

Ty 1] > Al [h] J

- Under the strong mixing assumptions, time uniform bounds for the asymptotic
variances of the two-filter approximations may be obtained.
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Particle filter variance estimation, Lee and Whiteley, '15

- The asymptotic variance Izs,t‘r [h] is the sum of two variances: the forward filter
asymptotic variance I's and the backward information filter asymptotic variance I',, ;7.

- Lee and Whiteley, '15 introduced a weakly consistent estimator 'Y [h] of the asymptotic
variance s [h] based on {(¢£,wf)}) 1, 0 < r <'s, and may be computed on-the-fly.

- This algorithm may also be used to obtain an estimator I\, [A] of I, .+ [A].

- Let (E/)o<r<s € {1,...,N}*"" be such that for all i € {1,...,N} and all 0< r <'s, E/
is the index of the time 0 ancestor of &;.

Forallie{1,...,N}, Ef=iandforallie {1,...,N}andall1<r<s, E/,

i def I
E/=E",.
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Particle filter variance estimation, Lee and Whiteley, '15

- Fori=1toi= N, compute

Vol < Z i [h(E) - o 1]

and

1[& T[] = = Z tT [ \T) wgl,tIT[h]} :
- Set ay = N/(N — 1).
- Set

N

™ T — 6ulAl] < N S (v0/2:)°

i=1

and

EY 71e [h— vy qr[h] = e XI_V: (lefi,r[’7]/§'2t|T)2
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TwoFiltpgm variance estimation

Weakly consistent estimator of the asymptotic variance of the TwoFiltpym, algorithm:

def = _
= losi17 [ sf] [{ds @Yy s117[q © S

HE (¢, ') h(x)q(x, X Y s (X)) -

Al [h]

Fosrnyr [M TS [ / ¢7,s+1|r(dxs+1)h(-,xs+1)]+F7,5+1|T [ / ¢s(dxs)h(xs,~)]

Define

HEY () & IZ wi{h(€) — oS IA Y ael, X rsh (X) |

(=1

HEN () & ﬁsmzwgm{h(x) oy A a(x, €y e €y )
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Conclusions and extensions

- Extensions of the theoretical properties of the usual smoothers to the two-filter
algorithms (FFBS, FFBSi, PaRIS).

= Nonasymptotic deviation inequalities, CLT, Lg-mean error.
- Asymptotic variance easier to estimate than variance of Forward-Backward smoothers.
- Theoretical analysis of sensitivity to the choice of the artificial distribution.

- Analysis of Rao blackwellised extensions of two-filer algorithms to regime switching
models (several regimes in commodity markets).
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