On the two-filter approximations of marginal smoothing distributions in general state space models

Sylvain Le Corff

based on joint work with Thi Ngoc Minh Nguyen and Eric Moulines

U. Paris-Sud and CNRS

July 5, 2016

S. Le Corff (U. Paris-Sud and CNRS)

イロト イポト イヨト イヨト

Framework

- Hidden Markov models (HMM)
- SMC to approximate smoothing distributions

2 Two-filter algorithms

- Forward filter
- Backward information filter
- Recombinations to approximate marginal smoothing distributions

3 Exponential deviation inequalities

Asymptotic normality

(日) (周) (日) (日)

Hidden Markov models (HMM)

- $\mathbf{Y} \stackrel{\mathrm{def}}{=} \{\mathbf{Y}_t\}_{t \in \mathbb{Z}}$ is the observation process and $\mathbf{X} \stackrel{\mathrm{def}}{=} \{\mathbf{X}_t\}_{t \in \mathbb{Z}}$ are the hidden states.

- The distribution of the HMM is specified by
 - Distribution of X_0 with probability density χ_{θ} .
 - Transition kernels with density m_{θ} on $\mathbb{X} \times \mathcal{B}(\mathbb{X})$ governing the transition of the hidden chain.
 - Transition kernels with density g_{θ} on $\mathbb{X} \times \mathcal{B}(\mathbb{Y})$, the conditional likelihood of the observations.

Examples of hidden Markov models (HMM)

- Simultaneous localization and mapping (SLAM)

 $\{X_k\}_{k\geq 0}$ is the state (cartesian coordinates, bearing) of a mobile device.

- Transition model with input *u_k*:

 $X_k = h(X_{k-1}, u_k, \varepsilon_k) .$

Environment represented by a set of landmarks : (θ_j)_{j∈[1,p]}.
 Observations received according to the model:

$$Y_{k,i} = t_k(heta_{c_k^i}, X_K) + \delta_{k,i}$$
.

Power received from a WiFi access point.

• At each time k, the device observes the power of signals transmitted by ℓ antennas.

Device position.

• In this application, f_{\star} is the mean propagation model :

$$Y_k \sim \mathcal{N}(f_\star(X_k), \sigma^2 I_\ell)$$
.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Smoothing distributions

We are interested in estimating the joint smoothing distributions, defined, for any measurable function h on \mathbb{X}^{t-s+1} , $T \ge 0$ and $0 \le s \le t \le T$, by:

$$\phi_{s:t|T}[h] = \frac{\int \chi(x_0) g_0(x_0) \prod_{u=1}^T m(x_{u-1}, x_u) g_u(x_u) h(x_{s:t}) dx_{0:T}}{\int \chi(x_0) g_0(x_0) \prod_{u=1}^T m(x_{u-1}, dx_u) g_u(x_u) dx_{0:T}} .$$

 $\phi_{s:t|T}[h] = \mathbb{E}\left[h(X_{s:t})|Y_{0:T}\right].$

These distributions are crucial for Inference of HMM:

- Statistical inference for the distributions of the X_k 's and the Y_k 's.
- Parameter estimation (EM algorithm, stochastic gradient, Particle MCMC).

The two-filter algorithms are designed to estimate $\phi_{s|T} = \phi_{s:s|T}$.

Auxiliary particle filter, Pitt and Shephard, J. Am. Statist. Assoc. '99 First step to estimate $\phi_{s|T}$ shared by common SMC smoothers. $\phi_{s|s}[h]$ is approximated by particles and weights $\{(\xi_s^{\ell}, \omega_s^{\ell})\}_{\ell=1}^N$:

$$\phi_s^N[h] = rac{1}{\Omega_s^N} \sum_{\ell=1}^N \omega_s^\ell h(\xi_s^\ell) \; .$$

- Initialisation:
 - (Initial states) $\{\xi_0^\ell\}_{\ell=1}^N$ i.i.d. distributed according to ρ_0 .
 - **2** (Initial weights) $\omega_0^{\ell} = \chi(\xi_0^{\ell}) g_0(\xi_0^{\ell}) / \rho_0(\xi_0^{\ell}).$
- Iterations for $s \ge 1$:
 - (selection and propagation) Pairs {(I^ℓ_s, ξ^ℓ_s)}^N_{ℓ=1} of indices and particles are simulated independently from:

$$\pi_s(\ell, x) \propto \omega_{s-1}^\ell \vartheta_s(\xi_{s-1}^\ell) p_s(\xi_{s-1}^\ell, x) .$$

2 (weights) ξ_s^{ℓ} is associated with the importance weight defined by:

$$\omega_s^{\ell} = \frac{m(\xi_{s-1}^{l_s^{\ell}}, \xi_s^{\ell})g_s(\xi_s^{\ell})}{\vartheta_s(\xi_{s-1}^{l_s^{\ell}})p_s(\xi_{s-1}^{l_s^{\ell}}, \xi_s^{\ell})}$$

イロト イポト イヨト イヨト

Forward-backward smoothers

- Forward Filtering Backward Smoothing (FFBS), Doucet et al., Statist. and Comput. '00:
 - stores all filtering particles and weights discarding the genealogy of the particles.
 - keeps all the particles fixed but modifies all importance weights during a backward pass.
 - $\mathcal{O}(N^2)$ complexity for marginal smoothing distributions.
 - exponential deviation inequalities, CLT, $\mathrm{L}_{\mathrm{q}}\text{-}\mathsf{mean}$ error...
 - forward only version for fixed smoothed expectations.
- Forward Filtering Backward Simulation (FFBSi), Godsill et al., J. Am. Statist. Assoc. '04:
 - stores all filtering particles and weights discarding the genealogy of the particles.
 - samples trajectories backward among all the possible paths made of filtering particles.
 - $\mathcal{O}(N^2)$ complexity for all smoothing distributions.
 - same results as the FFBS algorithm.
 - may be implemented with $\mathcal{O}(N)$ complexity if *m* is upper bounded.
- PaRIS, Olsson and Westerborn, Bernoulli '15:
 - combines the forward only version of the FFBS with the sampling procedure of the FFBSi.
 - may be implemented with $\mathcal{O}(N)$ complexity if *m* is upper bounded.
 - same results as the FFBS algorithm.

・ロト ・日下・ ・日下・ ・日下

Auxiliary distribution

Kitagawa, J. Comput. Graph. Statist. '96 and Briers et al, AISM, '10

Let $\{\gamma_t\}_{t\geq 0}$ be positive measurable functions such that, for all $t \in \{0, \dots, T\}$,

$$\int \gamma_t(x_t) \, \mathrm{d}x_t \left[\prod_{u=t+1}^T g_{u-1}(x_{u-1}) \, m(x_{u-1}, x_u) \right] g_T(x_T) \mathrm{d}x_{t:T} < \infty \; .$$

Then, the backward information filter is given by

$$\psi_{\gamma,t|T}[h] \propto \int \gamma_t(x_t) \left[\prod_{u=t+1}^T g_{u-1}(x_{u-1}) m(x_{u-1}, x_u)\right] g_T(x_T) h(x_t) \mathrm{d} x_{t:T} \;.$$

If X_t has pdf γ_t , then $\psi_{\gamma,t|T}$ is the conditional distribution of X_t given $Y_{t:T}$.

The marginal smoothing distribution may be expressed as

$$\phi_{s|T}[h] \propto \int \phi_{s-1}(\mathrm{d}x_{s-1}) \psi_{\gamma,s+1|T}(\mathrm{d}x_{s+1}) m(x_{s-1},x_s) g_s(x_s) \frac{m(x_s,x_{s+1})}{\gamma_{s+1}(x_{s+1})} h(x_s) \mathrm{d}x_s \ .$$

Particle approximation of the backward information filter $\psi_{\gamma,t|T}[h]$ is approximated by particles and weights $\{(\xi_t^\ell, \check{\omega}_t^\ell)\}_{\ell=1}^N$:

$$\psi_{\gamma,t|\mathcal{T}}^{\mathsf{N}}[h] = rac{1}{\check{\Omega}_t^{\mathsf{N}}} \sum_{\ell=1}^{\mathsf{N}} \check{\omega}_t^\ell h(\check{\xi}_t^\ell) \ .$$

- Initialisation:

- (Initial states) $\{\check{\xi}_{T|T}^i\}_{i=1}^N$ i.i.d. distributed according to $\check{\rho}_T$.
- $(\text{Initial weights}) \breve{\omega}^{i}_{T|T} = g_{T}(\check{\xi}^{i}_{T|T}) \gamma_{T}(\check{\xi}^{i}_{T|T}) / \check{\rho}_{T}(\check{\xi}^{i}_{T|T}).$
- Iterations for $t \leq T 1$:
 - (selection and propagation) Pairs {(Ĭ_tⁱ, š_{t|T}ⁱ)}^N_{i=1} of indices and particles are simulated independently from:

$$\pi_{t|T}(i, x_t) \propto \frac{\check{\omega}_{t+1|T}^i \vartheta_{t|T}(\check{\xi}_{t+1|T}^i)}{\gamma_{t+1}(\check{\xi}_{t+1|T}^i)} r_{t|T}(\check{\xi}_{t+1|T}^i, x_t) .$$

9 (weights) ξ_s^{ℓ} is associated with the importance weight defined by:

$$\check{\omega}_{t|T}^{i} \stackrel{\text{def}}{=} \frac{\gamma_{t}(\check{\xi}_{t|T}^{i})g_{t}(\check{\xi}_{t|T}^{i})m(\check{\xi}_{t|T}^{i},\check{\xi}_{t+1|T}^{l_{t}})}{\vartheta_{t|T}(\check{\xi}_{t+1|T}^{l_{t}})r_{t|T}(\check{\xi}_{t+1|T}^{l_{t}},\check{\xi}_{t|T}^{i})} \ .$$

The TwoFilt $_{fwt}$ algorithm, Fearnhead et al., Biometrika '10 SMC approximations are plugged in

$$\phi_{s|T}[h] \propto \int \phi_{s-1}(\mathrm{d} x_{s-1}) \psi_{\gamma,s+1|T}(\mathrm{d} x_{s+1}) m(x_{s-1},x_s) g_s(x_s) \frac{m(x_s,x_{s+1})}{\gamma_{s+1}(x_{s+1})} h(x_s) \mathrm{d} x_s ,$$

to obtain

$$\hat{\phi}_{s|T}^{\text{tar}}(x_s) \propto \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\omega_{s-1}^{i} \check{\omega}_{s+1|T}^{j}}{\gamma_{s+1}(\check{\xi}_{s+1|T}^{j})} m(\xi_{s-1}^{i}, x_s) g_s(x_s) q(x_s, \check{\xi}_{s+1|T}^{j}) \ .$$

(selection and propagation) Pairs {(I^ℓ_s, Ĭ^ℓ_s, ξ^ℓ_{s|T})}^N_{ℓ=1} of indices and particles are simulated independently from:

$$\pi_{s|T}(i,j,x_s) \propto \frac{\omega_{s-1}^i \tilde{\vartheta}_{s|T}(\xi_{s-1}^i, \check{\xi}_{s+1|T}^j) \check{\omega}_{s+1|T}^j}{\gamma_{s+1}(\check{\xi}_{s+1|T}^i)} \tilde{r}_{s|T}(\xi_{s-1}^i, \check{\xi}_{s+1|T}^j; x_s) \ .$$

(weights) $\tilde{\xi}^{\ell}_{s|T}$ is associated with the importance weight defined by:

$$\tilde{\omega}_{s|T}^{\ell} \stackrel{\text{def}}{=} \frac{m(\xi_{s-1}^{l_s^{\ell}}, \tilde{\xi}_{s|T}^{\ell})g_s(\tilde{\xi}_{s|T}^{\ell})m(\tilde{\xi}_{s|T}^{\ell}, \tilde{\xi}_{s+1|T}^{l_s})}{\tilde{\vartheta}_{s|T}(\xi_{s-1}^{l_s^{\ell}}, \tilde{\xi}_{s+1|T}^{l_s^{\ell}})\tilde{r}_{s|T}(\xi_{s-1}^{l_s^{\ell}}, \tilde{\xi}_{s+1|T}^{l_s})\tilde{r}_{s|T}(\xi_{s-1}^{l_s^{\ell}}, \tilde{\xi}_{s+1|T}^{l_s})} .$$

The TwoFilt_{bdm} algorithm, Briers et al, AISM, '10

Following instead Briers et al, AISM, '10, we may consider one of the *partial* auxiliary distributions:

$$\begin{split} \phi^{\mathrm{tar,f}}_{s|T}(i,x_s) &\propto \omega^i_{s-1} m(\xi^i_{s-1},x_s) g_s(x_s) \sum_{j=1}^N \frac{\check{\omega}^j_{s+1|T}}{\gamma_{s+1}(\check{\xi}^j_{s+1|T})} m(x_s,\check{\xi}^j_{s+1|T}) ,\\ \phi^{\mathrm{tar,b}}_{s|T}(j,x_s) &\propto \frac{\check{\omega}^j_{s+1|T}}{\gamma_{s+1}(\check{\xi}^j_{s+1|T})} m(x_s,\check{\xi}^j_{s+1|T}) g_s(x_s) \sum_{i=1}^N \omega^i_{s-1} m(\xi^i_{s-1},x_s) . \end{split}$$

(selection and propagation) Pairs {(I^ℓ_s, ξ^ℓ_s)}^N_{ℓ=1} or {(Ĭ^ℓ_s, ξ^ℓ_{s|T})}^N_{ℓ=1} of indices and particles are simulated independently from:

$$\begin{aligned} &\pi_{s|T}^{f}(i,x_{s}) \propto \omega_{s-1}^{i} \vartheta_{s}(\xi_{s-1}^{i}) p_{s}(\xi_{s-1}^{i},x_{s}) , \\ &\pi_{s|T}^{b}(j,x_{s}) \propto \vartheta_{s|T}(\xi_{s+1|T}^{i}) \tilde{\omega}_{s+1|T}^{j} r_{s|T}(\xi_{s+1|T}^{i},x_{s}) / \gamma_{s+1}(\xi_{s+1|T}^{j}) . \end{aligned}$$

(weights) ξ_s^{ℓ} is associated with the importance weight defined by:

$$\begin{split} \tilde{\omega}_{s|T}^{i,\mathrm{f}} &\stackrel{\mathrm{def}}{=} \omega_{s}^{i} \sum_{j=1}^{N} \tilde{\omega}_{s+1|T}^{j} m(\xi_{s}^{i}, \check{\xi}_{s+1|T}^{j}) / \gamma_{s+1}(\check{\xi}_{s+1|T}^{j}) ,\\ \tilde{\omega}_{s|T}^{j,\mathrm{b}} &\stackrel{\mathrm{def}}{=} \check{\omega}_{s|T}^{j} \sum_{i=1}^{N} \omega_{s-1}^{i} m(\xi_{s-1}^{i}, \check{\xi}_{s|T}^{j}) / \gamma_{s}(\check{\xi}_{s|T}^{j}) . \end{split}$$

Exponential deviation inequality for Two Filt_{fwt}

We first show that the weighted sample $\{(\omega_s^i \check{\omega}_{t|T}^j), (\xi_s^i, \check{\xi}_{t|T}^j)\}_{i,j=1}^N$ targets the product distribution $\phi_s \otimes \psi_{\gamma,t|T}$.

For all $0 \le s < t \le T$, there exist $0 < B_{s,t|T}, C_{s,t|T} < \infty$ such that for all $N \ge 1$, $\epsilon > 0$ and all bounded function h,

$$\mathbb{P}\left(\left|\sum_{i,j=1}^{N}\frac{\omega_{s}^{i}}{\Omega_{s}}\frac{\check{\omega}_{t|T}^{j}}{\check{\Omega}_{t|T}}h(\xi_{s}^{i},\check{\xi}_{t|T}^{j})-\phi_{s}\otimes\psi_{\gamma,t|T}[h]\right|>\varepsilon\right)\leq B_{s,t|T}\mathrm{e}^{-C_{s,t|T}N\epsilon^{2}/\operatorname{osc}^{2}(h)}.$$

and there exist $0 < B_{s|T}, C_{s|T} < \infty$ such that $\{(\tilde{\omega}_{s|T}^i, \tilde{\xi}_{s|T}^\ell)\}_{\ell=1}^N$ satisfies:

$$\mathbb{P}\left(\left|\sum_{i=1}^{N} \frac{\tilde{\omega}_{s|T}^{i}}{\tilde{\Omega}_{s|T}} h(\tilde{\xi}_{s|T}^{i}) - \phi_{s|T}[h]\right| > \epsilon\right) \le B_{s|T} \mathrm{e}^{-C_{s|T}N\epsilon^{2}/\operatorname{osc}^{2}(h)} .$$

<ロ> (四) (四) (三) (三) (三)

Exponential deviation inequality for TwoFilt_{bdm}

Similarly, we may derive an exponential inequality for the weighted samples $\{(\xi_s^i, \tilde{\omega}_{s|T}^{i,f})\}_{i=1}^N$ and $\{(\xi_{s|T}^i, \tilde{\omega}_{s|T}^{i,b})\}_{i=1}^N$ produced by the TwoFilt_{bdm} algorithm.

Then, for all $1 \le s \le T - 1$, there exist $0 < B_{s|T}$, $C_{s|T} < \infty$ such that for all $N \ge 1$, $\varepsilon > 0$ and all bounded function h,

$$\mathbb{P}\left(\left|\sum_{i=1}^{N} \frac{\tilde{\omega}_{s|T}^{i,f}}{\tilde{\Omega}_{s|T}^{f}} h(\xi_{s}^{i}) - \phi_{s|T}[h]\right| > \epsilon\right) \le B_{s|T} \mathrm{e}^{-C_{s|T}N\epsilon^{2}/\operatorname{osc}^{2}(h)} , \\ \mathbb{P}\left(\left|\sum_{i=1}^{N} \frac{\tilde{\omega}_{s|T}^{i,b}}{\tilde{\Omega}_{s|T}^{b}} h(\tilde{\xi}_{s|T}^{i}) - \phi_{s|T}[h]\right| > \epsilon\right) \le B_{s|T} \mathrm{e}^{-C_{s|T}N\epsilon^{2}/\operatorname{osc}^{2}(h)} .$$

Time uniform exponential inequalities may be obtained using *strong mixing* assumptions which are standard in the SMC literature:

イロト イポト イヨト イヨト

A CLT may be derived for the weighted samples $\{(\xi_s^{\ell}, \omega_s^{\ell})\}_{\ell=1}^N$ and $\{(\check{\xi}_{t|T}^{i}, \check{\omega}_{t|T}^{i})\}_{i=1}^N$ which target respectively the filtering distribution ϕ_s and the backward information filter $\psi_{\gamma,t|T}$.

$$\begin{split} N^{1/2} \sum_{i=1}^{N} \frac{\omega_{s}^{i}}{\Omega_{s}} \left(h(\xi_{s}^{i}) - \phi_{s}[h] \right) & \xrightarrow{\mathcal{D}}_{N \to \infty} \mathcal{N} \left(0, \Gamma_{s} \left[h - \phi_{s}[h] \right] \right) , \\ N^{1/2} \sum_{j=1}^{N} \frac{\check{\omega}_{t|T}^{j}}{\check{\Omega}_{t|T}} \left(h(\check{\xi}_{t|T}^{j}) - \psi_{\gamma,t|T}[h] \right) & \xrightarrow{\mathcal{D}}_{N \to \infty} \mathcal{N} \left(0, \check{\Gamma}_{\gamma,t|T} \left[h - \psi_{\gamma,t|T}[h] \right] \right) . \end{split}$$

Then, for all $0 \le s < t \le T$ and all bounded function h,

$$\begin{split} \sqrt{N} \left(\sum_{i,j=1}^{N} \frac{\omega_s^i}{\Omega_s} \frac{\check{\omega}_{t|T}^j}{\check{\Omega}_{t|T}} h(\xi_s^i, \check{\xi}_{t|T}^j) - \phi_s \otimes \psi_{\gamma,t|T}[h] \right) \\ \xrightarrow{\mathcal{D}}_{N \to \infty} \mathcal{N} \left(0, \tilde{\mathsf{\Gamma}}_{s,t|T} \left[h - \phi_s \otimes \psi_{\gamma,t|T}[h] \right] \right) \,, \end{split}$$

where

$$\tilde{\mathsf{\Gamma}}_{s,t|\mathcal{T}}\left[h\right] \stackrel{\text{def}}{=} \mathsf{\Gamma}_{s}\left[\int \psi_{\gamma,t|\mathcal{T}}(\mathrm{d} x_{t})h(\cdot,x_{t})\right] + \check{\mathsf{\Gamma}}_{\gamma,t|\mathcal{T}}\left[\int \phi_{s}(\mathrm{d} x_{s})h(x_{s},\cdot)\right] \ .$$

イロト 不通 と イヨト イヨト

Asymptotic normality of TwoFilt_{bdm}

$$\sqrt{N}\left(\sum_{i=1}^{N}\frac{\tilde{\omega}_{s|T}^{i,f}}{\tilde{\Omega}_{s|T}^{f}}h(\xi_{s}^{i})-\phi_{s|T}[h]\right)\stackrel{\mathcal{D}}{\longrightarrow}_{N\to\infty}\mathcal{N}\left(0,\Delta_{s|T}^{f}\left[h-\phi_{s|T}[h]\right]\right),$$

where

$$\begin{split} \Delta_{s|T}^{\mathrm{f}}\left[h\right] \stackrel{\mathrm{def}}{=} \tilde{\Gamma}_{s,s+1|T} \left[H_{s}^{\mathrm{f}}\right] / \{\phi_{s} \otimes \psi_{\gamma,s+1|T}[q \odot \gamma_{s+1}^{-1}]\}^{2} ,\\ H_{s}^{\mathrm{f}}(x,x') \stackrel{\mathrm{def}}{=} h(x)q(x,x')\gamma_{s+1}^{-1}(x') . \end{split}$$

Similarly,

$$\sqrt{N}\left(\sum_{i=1}^{N}\frac{\tilde{\omega}_{s|T}^{i,\mathrm{b}}}{\tilde{\Omega}_{s|T}^{\mathrm{b}}}h(\xi_{s}^{i})-\phi_{s|T}[h]\right)\xrightarrow{\mathcal{D}}_{N\to\infty}\mathcal{N}\left(0,\Delta_{s|T}^{\mathrm{b}}\left[h-\phi_{s|T}[h]\right]\right) ,$$

where

$$\begin{split} \Delta^{\mathbf{b}}_{s|T}\left[h\right] \stackrel{\text{def}}{=} \widetilde{\Gamma}_{s-1,s|T}\left[H^{\mathbf{b}}_{s}\right] / \{\phi_{s-1} \otimes \psi_{\gamma,s|T}[q \odot \gamma^{-1}_{s}]\}^{2} , \\ H^{\mathbf{b}}_{s}(x,x') \stackrel{\text{def}}{=} q(x,x')\gamma^{-1}_{s}(x')h(x') . \end{split}$$

Asymptotic normality of TwoFilt_{bdm}

- In the case where $\tilde{r}_{s|T}(x_s, x_{s+1}; x_s) = p_s(x_{s-1}, x_s)$ and $\tilde{\vartheta}_{s|T}(x, x') = \vartheta_s(x)\vartheta_{s|T}(x')$, the smoothing distribution approximation given by the TwoFilt_{fwt} algorithm is obtained by reweighting the particles obtained in the forward filtering pass.
- When $\vartheta_{s|T} = \gamma_{s+1}$, the asymptotic variance $\Upsilon_{s|T}[h]$ of the TwoFilt_{fwt} algorithm may be compared to $\Delta_{s|T}^{f}[h]$ as both approximations of $\phi_{s|T}[h]$ are based on the same particles (associated with different importance weights):

$$\Upsilon_{s|\mathcal{T}}\left[h
ight] \geq \Delta^{\mathrm{f}}_{s|\mathcal{T}}\left[h
ight] \;.$$

- Under the strong mixing assumptions, time uniform bounds for the asymptotic variances of the two-filter approximations may be obtained.

イロト イヨト イヨト イヨト

Particle filter variance estimation, Lee and Whiteley, '15

- The asymptotic variance Γ_{s,t|T} [h] is the sum of two variances: the forward filter asymptotic variance Γ_s and the backward information filter asymptotic variance Γ_{γ,t|T}.
- Lee and Whiteley, '15 introduced a weakly consistent estimator $\Gamma_s^N[h]$ of the asymptotic variance $\Gamma_s[h]$ based on $\{(\xi_r^\ell, \omega_r^\ell)\}_{\ell=1}^N$, $0 \le r \le s$, and may be computed on-the-fly.
- This algorithm may also be used to obtain an estimator $\check{\Gamma}^{N}_{\gamma,T|t}[h]$ of $\check{\Gamma}_{\gamma,t|T}[h]$.
- Let $(E_r)_{0 \le r \le s} \in \{1, \ldots, N\}^{s+1}$ be such that for all $i \in \{1, \ldots, N\}$ and all $0 \le r \le s$, E_r^i is the index of the time 0 ancestor of ξ_r^i .

For all $i \in \{1, \ldots, N\}$, $E_0^i = i$ and for all $i \in \{1, \ldots, N\}$ and all $1 \le r \le s$, E_r^i ,

$$E_r^i \stackrel{\text{def}}{=} E_{r-1}^{l_r^i}$$

Particle filter variance estimation, Lee and Whiteley, '15

- For i = 1 to i = N, compute

$$\psi_{\mathbf{0},s}^{i}[h] \stackrel{\text{def}}{=} \sum_{\substack{j=1\\E_{s}^{i}=i}}^{N} \omega_{s}^{j} \left[h(\xi_{s}^{j}) - \phi_{s}^{N}[h] \right]$$

and

$$\check{\psi}_{t,T}^{i}[h] \stackrel{\text{def}}{=} \sum_{\substack{j=1\\ \check{E}_{t}^{i}=i}}^{N} \check{\omega}_{t|T}^{j} \left[h(\check{\xi}_{t|T}^{j}) - \psi_{\gamma,t|T}^{N}[h] \right] \; .$$

- Set
$$\alpha_N = N/(N-1)$$
.

- Set

$$\Gamma_s^N \left[h - \phi_s[h]\right] \stackrel{\text{def}}{=} N \alpha_N^{s+1} \sum_{i=1}^N \left(\psi_{0,s}^i[h] / \Omega_s\right)^2$$

and

$$\check{\Gamma}^{N}_{\gamma,T|t}\left[h-\psi_{\gamma,t|T}[h]\right] \stackrel{\text{def}}{=} N\alpha_{N}^{T-t+1}\sum_{i=1}^{N}\left(\check{\psi}^{i}_{t,T}[h]/\check{\Omega}_{t|T}\right)^{2} \; .$$

S. Le Corff (U. Paris-Sud and CNRS)

TwoFilt_{bdm} variance estimation

Weakly consistent estimator of the asymptotic variance of the TwoFilt_{bdm} algorithm:

$$\begin{split} \Delta_{s|T}^{\mathrm{f}}\left[h\right] \stackrel{\mathrm{def}}{=} \widetilde{\Gamma}_{s,s+1|T}\left[H_{s}^{\mathrm{f}}\right] / \left\{\phi_{s} \otimes \psi_{\gamma,s+1|T}\left[q \odot \gamma_{s+1}^{-1}\right]\right\}^{2}, \\ H_{s}^{\mathrm{f}}(x,x') \stackrel{\mathrm{def}}{=} h(x)q(x,x')\gamma_{s+1}^{-1}(x') \,. \end{split}$$

$$\tilde{\mathsf{\Gamma}}_{s,s+1|\mathcal{T}}\left[h\right] \stackrel{\text{def}}{=} \mathsf{\Gamma}_{s}\left[\int \psi_{\gamma,s+1|\mathcal{T}}(\mathrm{d} x_{s+1})h(\cdot,x_{s+1})\right] + \check{\mathsf{\Gamma}}_{\gamma,s+1|\mathcal{T}}\left[\int \phi_{s}(\mathrm{d} x_{s})h(x_{s},\cdot)\right] \ .$$

Define

$$\begin{split} \mathcal{H}_{s,1}^{\mathrm{f},N}(x') &\stackrel{\mathrm{def}}{=} \Omega_s^{-1} \sum_{\ell=1}^N \omega_s^{\ell} \{h(\xi_s^{\ell}) - \phi_{s|T}^{\mathrm{f},N}[h] \} q(\xi_s^{\ell}, x') \gamma_{s+1}^{-1}(x') , \\ \mathcal{H}_{s+1,2}^{\mathrm{f},N}(x) &\stackrel{\mathrm{def}}{=} \check{\Omega}_{s+1|T}^{-1} \sum_{j=1}^N \check{\omega}_{s+1|T}^j \{h(x) - \phi_{s|T}^{\mathrm{f},N}[h] \} q(x, \check{\xi}_{s+1|T}^j) \gamma_{s+1}^{-1}(\check{\xi}_{s+1|T}^j) , \end{split}$$

S. Le Corff (U. Paris-Sud and CNRS)

イロト イロト イヨト イヨト

Conclusions and extensions

- Extensions of the theoretical properties of the usual smoothers to the two-filter algorithms (FFBS, FFBSi, PaRIS).
 - \Rightarrow Nonasymptotic deviation inequalities, CLT, L_q-mean error.
- Asymptotic variance easier to estimate than variance of Forward-Backward smoothers.
- Theoretical analysis of sensitivity to the choice of the artificial distribution.
- Analysis of Rao blackwellised extensions of two-filer algorithms to regime switching models (several regimes in commodity markets).