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Our problem

d𝑋𝑡 = 𝜎(𝑡, 𝑋𝑡) d𝐵𝑡 + 𝑏(𝑡, 𝑋𝑡) d𝑡

∙ 𝜎 uniformly elliptic, bounded, “regular enough”
∙ 𝑏 bounded but discontinuous

How to construct an approximation of 𝑋𝑇
with a control on the error?

The Euler-Maruyama scheme is
∙ Simple to set-up, whatever the dimension
∙ Efficient in general
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Euler-Maruyama (EM) scheme

∙ Time horizon 𝑇 > 0
∙ Time step 𝑇/𝑛
∙ 𝑡𝑖 = 𝑖𝑇/𝑛 and 𝜙(𝑡) = 𝑡𝑖 with 𝑡𝑖 6 𝑡 < 𝑡𝑖+1
∙ 𝜉𝑖 ∼ 𝒩 (0, 1), iid.

EM scheme: Compute recursively ̂︀𝑋0 = 0 and̂︀𝑋𝑖+1 = ̂︀𝑋𝑖 + 𝜎(𝑡𝑖 , ̂︀𝑋𝑖)√︂𝑇
𝑛
𝜉𝑖 + 𝑏(𝑡𝑖 , ̂︀𝑋𝑖)𝑇

𝑛

For the theory: continuous EM scheme

𝑋𝑡 = 𝑥 +

∫︁ 𝑡
0

𝜎(𝜙(𝑠), 𝑋𝜙(𝑠)) d𝐵𝑠 +

∫︁ 𝑡
0

𝑏(𝜙(𝑠), 𝑋𝜙(𝑠)) d𝑠

so that 𝑋 and 𝑋 are on the same probability space and
( ̂︀𝑋𝑖)𝑖=0,...,𝑛 dist.= (𝑋𝑡𝑖 )𝑖=0,...,𝑛
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Rate of convergence of the EM scheme

The number of steps 𝑛 is the parameter to adjust.
⋆ strong convergence at rate 𝛿 if

E[|𝑋𝑇 −𝑋𝑇 |2]1/2 6
𝐶

𝑛𝛿
,

⋆ weak convergence at rate 𝛿 if

|E[𝑓 (𝑋𝑇 )]− E[𝑓 (𝑋𝑇 )]| 6
𝐶(𝑓 )

𝑛𝛿
for 𝑓 ∈ F, a class of test functions.
∙ Strong conv =⇒ weak conv with F =Lipschitz functions
∙ Weak rate is more difficult to establish than strong rate.

But
, Gives better rate than strong rates
, Corresponds to what is actually computed (think to

option prices)
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Traditional approach for the weak rate of convergence

ℒ is the infinitesimal generator of 𝑋
=⇒ 𝑢(0, 𝑥) = E𝑥 [𝑓 (𝑋𝑇 )] with

ℒ =
1

2
𝑎𝑖 ,𝑗(𝑡, 𝑥)

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝑏𝑖(𝑡, 𝑥)

𝜕

𝜕𝑥𝑖
, 𝑎 = 𝜎𝜎𝑇⎧⎨⎩

𝜕𝑢(𝑡, 𝑥)

𝜕𝑡
+ ℒ𝑢(𝑡, 𝑥) = 0

𝑢(𝑇, 𝑥) = 𝑓 (𝑥)

Write

E𝑥 [𝑓 (𝑋𝑇 )]− E𝑥 [𝑓 (𝑋𝑇 )] = E[𝑓 (𝑋𝑇 )]− 𝑢(0, 𝑋0)

=

𝑛−1∑︁
𝑖=0

E[𝑢(𝑡𝑖+1, 𝑋𝑡𝑖+1)− 𝑢(𝑡𝑖 , 𝑋𝑡𝑖 )]
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Traditional approach for the weak rate of convergence

E[𝑓 (𝑋𝑇 )]− E[𝑓 (𝑋𝑇 )]

=

𝑛−1∑︁
𝑖=0

E

[︂ ∫︁ 𝑡𝑖+1
𝑡𝑖

1

2
(𝑎𝑖 ,𝑗(𝑠, 𝑋𝑠)− 𝑎𝑖 ,𝑗(𝑡𝑖 , 𝑋𝑡𝑖 ))𝜕2𝑖 𝑗𝑢(𝑟, 𝑋𝑟) d𝑟

]︂

+

𝑛−1∑︁
𝑖=0

E

[︂ ∫︁ 𝑡𝑖+1
𝑡𝑖

1

2
(𝑏𝑖(𝑠, 𝑋𝑠)− 𝑏𝑖(𝑡𝑖 , 𝑋𝑡𝑖 ))𝜕𝑖𝑢(𝑟, 𝑋𝑟) d𝑟

]︂
Perform Taylor development up to order 4 to approximate
the integrals. �

Theorem (Talay, ...) If 𝑓 , 𝑎 and 𝑏 are 𝒞4, the weak rate of
convergence is of order 1.

Rem. The strong rate of convergence is of order 1/2.
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Extension to Hölder continuous coefficients

Fix 𝛼 ∈ (0, 3) ∖ {1, 2}.

H𝛼/2,𝛼 space of Hölder continuous functions 𝑓 on
[0, 𝑇 ]× R𝑑 which are
∙ 𝜕𝑟𝑡𝜕𝑠𝑥 𝑓 is (𝛼− ⌊𝛼⌋)-Hölder continuous in space for
2𝑟 + 𝑠 = ⌊𝛼⌋
∙ 𝜕𝑟𝑡𝜕𝑠𝑥 𝑓 is bounded for 2𝑟 + 𝑠 6 𝛼
∙ 𝜕𝑟𝑡𝜕𝑠𝑥 𝑓 is (𝛼− 2𝑟 − 𝑠)/2-Hölder continuous in time for
0 < 𝛼− 2𝑟 − 𝑠 < 2

Theorem. Let 𝑎, 𝑏 ∈ H𝛼/2,𝛼, 𝑓 ∈ H2+𝛼, and 𝑢 solution to
𝜕𝑡𝑢(𝑡, 𝑥) + ℒ𝑢(𝑡, 𝑥) = 0 with 𝑢(𝑇, 𝑥) = 𝑓 (𝑥).
Then 𝑢 ∈ H1+𝛼/2,2+𝛼.
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Weak rate of convergence with Hölder coefficients

Theorem (Mikulevicius & Platen)
If 𝑎, 𝑏 ∈ H𝛼/2,𝛼 and 𝑓 ∈ H2+𝛼, then

|E[𝑓 (𝑋𝑇 )]− E[𝑓 (𝑋𝑇 )]| 6
𝐾

𝑛𝐸(𝛼)

𝐸(𝛼) =

⎧⎨⎩
𝛼

2
𝛼 ∈ (0, 1) ∪ (1, 2)

1 𝛼 ∈ (2, 3)
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Our approach

∙ The previous approaches require 𝑎 and 𝑏 to be regular
enough, and to share the same regularity.
∙ They do not apply when 𝑏 is discontinuous
∙ We do not consider applying EM scheme to 𝑋 but to an

approximation of 𝑋 with a regularized drift 𝑏𝜀 ∈M

d𝑋𝜀𝑡 = 𝜎(𝑡, 𝑋
𝜀
𝑡 ) d𝐵𝑡 + 𝑏𝜀(𝑡, 𝑋

𝜀
𝑡 ) d𝑡 (1)

∙ We consider statements of type

|E[𝑓 (𝑋𝑇 )]− E[𝑓 (𝑋
𝜀

𝑇 )]| 6
𝐶

𝑛𝛿
, ∀𝑓 ∈ F

∙ When 𝜎 is constant

∙ we consider |E[𝑓 (𝑋𝑇 )]− E[𝑓 (𝑋𝑇 )]| using 𝑋𝜀 and 𝑋
𝜀
.

∙ we use the fact that Law(𝑋
𝜀
) ≡ Law(𝑋) (false when 𝜎 ̸≡

constant)
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Works on simulation of SDE with discontinuous drift

. S. Menozzi & V. Konakov (2016), densities.

. PhD thesis L. Lenôtre (2015), 𝑎 and 𝑏 both discont.

. P. Przybyłowicz (2013), optimal rate of convergence and
adaptive algo (𝑑 = 1, localized discontinuities)

. PhD thesis S. Niklitschek-Soto (2013), local study around
one discontinuity

. PhD thesis S. Arnold (2006), Zvonkin transform (𝑑 = 1)

. N. Halidias & P. Kloeden (2006): Heaviside drift

. PhD thesis L. Yan (2002), convergence but no rate

. K.S. Chan & O. Stramer (1998), discontinuity on polygons,
no rate

. R. Janssen (1984), discontinuity on a surface, no rate
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The difficulties

∙ The regularity of 𝑢 is determined by the regularity of 𝑎, 𝑏
and 𝑓 ∈ F.

∙ Even if 𝑏 is discontinuous, 𝑢 belongs to some Sobolev
space.

∙ Regularized drift in M allows one to use “classical results”
yet with exploding constants.

∙ The rate of convergence depends on 𝑏𝜀 − 𝑏 in a given
norm, the regularity of 𝑎 and F, the class of test
functions.

How to “separate” the effects of M and F?
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Perturbation formula

ℒ =
1

2
𝑎𝑖 𝑗𝜕

2
𝑖 𝑗 + 𝑏𝑖𝜕𝑖 with semi-group (𝑃𝑡)𝑡>0

ℳ =
1

2
𝑎𝑖 𝑗𝜕

2
𝑖 𝑗 + 𝑐𝑖𝜕𝑖 with semi-group (𝑄𝑡)𝑡>0

Perturbation formula

𝑄𝑡 = 𝑃𝑡 +

∫︁ 𝑡
0

𝑄𝑠(ℳ−ℒ)𝑃𝑡−𝑠 d𝑠

= 𝑃𝑡 +

∫︁ 𝑡
0

𝑄𝑠(𝑏 − 𝑐)∇𝑃𝑡−𝑠 d𝑠

Proof.

𝑄𝑡−𝑃𝑡 =
∫︁ 𝑡
0

d(𝑄𝑠𝑃𝑡−𝑠) =

∫︁ 𝑡
0

𝑄𝑠ℳ𝑃𝑡−𝑠 d𝑠−
∫︁ 𝑡
0

𝑄𝑠ℒ𝑃𝑡−𝑠 d𝑠.
�
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Perturbation formula: stochastic version

∙ A stochastic version is

E𝑐 [𝑓 (𝑋𝑡)] = E𝑏[𝑓 (𝑋𝑡)]+E𝑏
[︂∫︁ 𝑡
0

(𝑏 − 𝑐)(𝑠, 𝑋𝑠)∇𝑢(𝑠, 𝑋𝑠) d𝑠
]︂

with
𝜕𝑡𝑢(𝑡, 𝑥) + ℒ𝑢(𝑡, 𝑥) = 0, 𝑢(𝑇, 𝑥) = 𝑓 (𝑥)

∙ Another version is (𝑍 Doléan exponential 0; 𝑏)

E𝑐 [𝑓 (𝑋𝑡)]− E𝑏[𝑓 (𝑋𝑡)] = E

[︂∫︁ 𝑡
0

𝑍𝑠(𝑏 − 𝑐)⊤∇𝑢(𝑠, 𝑋𝑠) d𝑠
]︂

+ E

[︂
(𝑍𝑇 − 1)

∫︁ 𝑡
0

𝑏⊤∇𝑣(𝑠, 𝑋𝑠) d𝑠
]︂

with
𝜕𝑡𝑣 +

1

2
𝑎𝑖 𝑗𝜕

2
𝑖 𝑗𝑣(𝑡, 𝑥) = 0, 𝑣(𝑇, 𝑥) = 𝑓 (𝑥)
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A control using a perturbation formula

∙ For a process 𝑋 and 𝑝 > 1,

‖𝑔‖𝑋,𝑝
def
= E

[︂∫︁ 𝑇
0

|𝑔(𝑠, 𝑋𝑠)|𝑝
]︂1/𝑝

∙ 𝑋𝑏 def= process generated by 1
2
𝑎𝑖 𝑗𝜕

2
𝑖 𝑗 + 𝑏𝑖𝜕𝑖

∙ 𝒞sl
def
= set of continuous functions with “slow growth”:

lim𝑥→0 |𝑓 (𝑥)|𝑒−𝑘|𝑥 |
2
= 0 for all 𝑘 > 0

∙ 𝑎 continuous, bounded, uniformly elliptic:
0 < 𝜆|𝜉|2 6 𝑎𝜉 · 𝜉 6 Λ|𝜉|2 ∀𝜉 ∈ R𝑑

∙ 𝑏 bounded
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Prop. If 𝑓 ∈ 𝒞sl and ‖∇𝑣‖𝑋0,𝑞 < +∞ for 1 < 𝑞 6∞, then

|E[𝑓 (𝑋𝑏𝑇 )]− E[𝑓 (𝑋𝑐𝑇 )]| 6 𝐶‖𝑏 − 𝑐‖𝑋0,𝑝‖∇𝑣‖𝑋0,𝑞
with 𝑝−1 + 𝑞−1 < 1 and 2 6 𝑝.
𝑣 sol. to the parabolic PDE without drift.

Prop’. If 𝑓 ∈ 𝒞sl and ‖∇𝑢‖𝑋,𝑞 < +∞ for 1 < 𝑞 6∞, then

|E[𝑓 (𝑋𝑏𝑇 )]− E[𝑓 (𝑋𝑐𝑇 )]| 6 𝐶‖𝑏 − 𝑐‖𝑋0,𝑝‖∇𝑢‖𝑋,𝑞
with 𝑝−1 + 𝑞−1 < 1 and 1 6 𝑝.
𝑢 sol. to the parabolic PDE with drift.

Proofs. Combine Girsanov and repetition of Hölder
inequalities. �
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Reason of this formula

∙ Choice of F (regularity of 𝑓 )
=⇒ ‖∇𝑣‖𝑋0,𝑞 < +∞ for some 𝑞.

∙ The distance ‖𝑏 − 𝑐‖𝑋0,𝑝 depends on F through 𝑞 since
𝑝 > 𝑞

𝑞−1 .

∙ Gaussian control on the density transition of 𝑋0

(e.g. if 𝑎 ∈ H𝛼/2,𝛼) =⇒

E

[︂∫︁ 𝑇
0

|(𝑏 − 𝑐)(𝑠, 𝑋𝑠)|𝑝 d𝑠
]︂1/𝑝

6 𝐶

(︃∫︁ 𝑇
0

(︂∫︁
R𝑑
|(𝑏 − 𝑐)(𝑠, 𝑥)|𝑞 d𝑥

)︂𝑟/𝑞
d𝑠

)︃1/𝑟
with 𝑑

2𝑞
+ 1
𝑟
< 1
𝑝

, or with Krylov estimates.
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General heuristic

¬ Choose F, the space of terminal conditions
=⇒ choice of 𝑞 =⇒ choice of 𝑝

 Choose M, the space of regularized drift, so that
â For some 𝛾 > 0,

‖𝑏 − 𝑏𝜀‖𝑋0,𝑝 6 O(𝜀𝛾)
â For 𝑏𝜀 ∈M and 𝑓 ∈ F.

|E[𝑓 (𝑋𝑏𝜀𝑇 )]− E[𝑓 (𝑋
𝑏𝜀
𝑇 )]| 6

𝐶

𝜀𝛽𝑛𝛿

® Optimize over the choice of 𝜀
=⇒ 𝜀 = O(𝑛−𝛿/(𝛾+𝛽))

=⇒ |E[𝑓 (𝑋𝑏𝑇 )]− E[𝑓 (𝑋
𝑏𝜀
𝑇 )]| = O(𝑛−𝛿𝛾/(𝛾+𝛽)).
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General heuristic

E[𝑓 (𝑋
𝑏𝜀
)]

E[𝑓 (𝑋𝑏)]

E[𝑓 (𝑋𝑏𝜀)]

O(𝜀𝛾)𝜀↘ 0

O(𝜀−𝛽𝑛−𝛿)

𝑛 ↗∞

O(𝑛−𝛿
𝛾
𝛾+𝛽 )

with 𝜀 = O(𝑛−𝛿/(𝛾+𝛽))
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Examples of terminal condition

P If 𝑓 ∈ 𝒞sl then

‖∇𝑣‖𝑋0,2 6 𝐶
√︁
Var 𝑓 (𝑋0𝑇 )

P If 𝑑 = 1, 𝑓 ∈ 𝒞sl ∩ 𝒞1, ∇𝑓 bounded then
‖∇𝑢‖𝑋𝑏,∞ 6 𝐶‖∇𝑓 ‖∞.

P Using the notion of fractional derivative (Geiss & Gobet),
one may consider various values of 𝑞, even for 𝑓
discontinuous.
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Rate of convergence with smooth coefficients
Theorem. If 𝑓 ∈ 𝒞3 with polynomial growth, 𝜎, 𝑏 ∈ 𝒞1,3 then

E[𝑓 (𝑋𝑇 )]− E[𝑓 (𝑋𝑇 )] 6
𝐶

𝑛

𝐶 depends polynomially on the sup-norm of the derivatives
of 𝑏 (up to degree 4),

Rem. 𝑏 bounded and 𝑏𝜀 = 𝑏 ⋆ 𝜌𝜀 (mollifiers)
=⇒ ‖∇𝑘𝑏𝜀‖∞ 6 𝐾𝜀−𝑘 .

We need to keep track of the dependence in the derivatives
of 𝑏 (gives the 𝜀−𝛽 in the rate of conv. of the EM scheme
with 𝑏𝜀)

The proof relies on some idea introduced in E. Clément,
A. Kohatsu-Higa, D. Lamberton (2006).
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Rate of convergence with smooth coefficients

Central idea of the proof.
Without drift terms, the idea is to write

E[𝑓 (𝑋𝑇 )] − E[𝑓 (𝑋𝑇 )] = E
[︀
∇𝑓 (𝜃𝑋𝑇 + (1− 𝜃)𝑋𝑇 )𝐸𝑇

]︀
where 𝜃 is a uniform in [0, 1] and

𝐸𝑇 =

∫︁ 𝑡
0

∇
(︂∫︁ 1
0

𝜎(𝑠, 𝜏𝑋𝑠 + (1− 𝜏)𝑋𝑠) d𝜏
)︂
𝐸𝑠 d𝑊𝑠

+

∫︁ 𝑡
0

(𝜎(𝑠, 𝑋𝑠)− 𝜎(𝜙(𝑠), 𝑋𝜙(𝑠))) d𝑠.
Then use repeatedly the duality formula of Malliavin
calculus to transform

E

[︂
𝐻

∫︁ 𝑡
0

𝑢𝑠 d𝑊𝑠

]︂
= E

[︂∫︁ 𝑡
0

𝐷𝑠𝐻 · 𝑢𝑠 d𝑠
]︂

and get the desired control (long computations).
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Rate of convergence with smooth coefficients

With a drift term, use Girsanov formula to write

E[𝑓 (𝑋𝑇 )]− E[𝑓 (𝑋𝑇 )]

= E[exp(𝐿𝑇 )𝑓 (𝑋𝑇 )]− E[exp(𝐿𝑇 )𝑓 (𝑋𝑇 )]

with

𝐿𝑡 =

∫︁ 𝑡
0

𝑏⊤𝜎−1(𝑠, 𝑋𝑠) d𝑊𝑠 −
1

2

∫︁ 𝑡
0

𝑏⊤𝑎−1𝑏(𝑠, 𝑋𝑠) d𝑠

𝐿𝑡 =

∫︁ 𝑡
0

𝑏⊤𝜎−1(𝜙(𝑠), 𝑋𝜙(𝑠)) d𝑊𝑠 −
1

2

∫︁ 𝑡
0

𝑏⊤𝑎−1𝑏(𝜙(𝑠), 𝑋𝜙(𝑠)) d𝑠

and apply the same kind of computations.

�
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Examples

P 𝜎 ∈M = 𝒞1,3b , F = 𝒞3p
=⇒ rate at most 𝑛−𝛾/(𝛾+4) when ‖𝑏 − 𝑏𝜀‖𝑋0,𝑝 6 𝐶𝜀−𝛾.

P 𝑑 = 1, 𝑏 = , 𝜎 ∈M = 𝒞1,3b , F = 𝒞3p
=⇒ rate at most 𝑛−1/5+𝜀.

P 𝜎 ∈M = 𝐻𝛼/2,𝛼, F = 𝐻2+𝛼

=⇒ rate at most 𝑛−𝐸(𝛼)𝛾/(𝛼+𝛾) when ‖𝑏 − 𝑏𝜀‖𝑋0,𝑝 6 𝐶𝜀−𝛾.

P 𝑑 = 1, 𝑏 = , 𝜎 ∈M = 𝐻𝛼/2,𝛼, F = 𝐻2+𝛼

=⇒ rate at most 𝑛−𝐸(𝛼)/(𝛼+1)+𝜀

23



Case of constant diffusivity

𝑋𝑏𝑡 = 𝑥 + 𝐵𝑡 +

∫︁ 𝑡
0

𝑏(𝑋𝑏𝑠 ) d𝑠.

Thanks to Girsanov theorem,
the distributions of 𝑋𝑏, 𝑋𝑏𝜀, 𝑋

𝑏
and 𝑋

𝑏𝜀

are absolutely continuous wrt Wiener measure.

The perturbation formula may be adapted to
|E[𝑓 (𝑋𝑏𝑇 )]− E[𝑓 (𝑋

𝑏𝜀
𝑇 )]| 6 𝐶(𝑓 )‖𝑏 − 𝑏𝜀‖L𝑝 , 𝑝 > 𝑑 ∨ 2.

Various results may be given on
|E[𝑓 (𝑋𝑏𝑇 )]− E[𝑓 (𝑋

𝑏

𝑇 )]|
and not only on

|E[𝑓 (𝑋𝑏𝑇 )]− E[𝑓 (𝑋
𝑏𝜀
𝑇 )]|
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Constant diffusivity

E[𝑓 (𝑋
𝑏𝜀
)]

E[𝑓 (𝑋𝑏)]

E[𝑓 (𝑋𝑏𝜀)]

E[𝑓 (𝑋
𝑏
)]

O(𝜀𝛾)𝜀↘ 0O(𝜀𝛾) 𝜀↘ 0

O(𝜀−𝛽𝑛−𝛿)

𝑛 ↗∞

O(𝑛−𝛿
𝛾
𝛾+𝛽 )

with 𝜀 = O(𝑛−𝛿/(𝛾+𝛽))
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Yet, this approach is sub-optimal

∙ A weak rate of order 1 could be achieved.

d𝑋𝑡 = d𝐵𝑡 +

⎧⎪⎨⎪⎩
−𝜃 if 𝑋𝑡 > 0

0 if 𝑋𝑡 = 0

𝜃 if 𝑋𝑡 < 0

|E0[𝑓 (𝑋𝑇 )]− E0[𝑓 (𝑋𝑇 )]| 6
𝐶

𝑛

Proof. A lot of Taylor expansions and long computations. �
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Conclusions

ë Our approach relies on a perturbation formula and is then a
“global” approach (̸= local analysis around the discontinuity)

ë It is flexible and allows to combine various results

ë Allows to “separate” the effects of F and M

ë Mixes stochastic analysis and PDE arguments

ë But provides only sub-optimal rates

ë Still a lot of works to perform...
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