Community detection with the non-backtracking operator

Marc Lelarge ${ }^{1}$
Charles Bordenave ${ }^{2}$ Laurent Massoulié ${ }^{3}$

${ }^{1}$ INRIA-ENS
${ }^{2}$ CNRS Université de Toulouse
${ }^{3}$ INRIA-Microsoft Research Joint Centre
International Conference on Monte Carlo techniques, July 2016

Motivation

- Community detection in social or biological networks in the sparse regime with a small average degree.

Adamic Glance '05

- Performance analysis of spectral algorithms on a toy model (where the ground truth is known!).

Motivation

- Community detection in social or biological networks in the sparse regime with a small average degree.

Adamic Glance '05

■ Performance analysis of spectral algorithms on a toy model (where the ground truth is known!).

A model: the stochastic block model

The sparse stochastic block model

A random graph model on n nodes with two parameters, $a, b \geq 0$.

total population

The sparse stochastic block model

A random graph model on n nodes with two parameters, $a, b \geq 0$.

- Assign each vertex spin +1 or -1 uniformly at random.

The sparse stochastic block model

A random graph model on n nodes with two parameters, $a, b \geq 0$.

■ Independently for each pair (u, v) :

- if $\sigma_{u}=\sigma_{v}=+1$, draw
the edge w.p. a/n.
- if $\sigma_{u} \neq \sigma_{v}$, draw the edge w.p. b / n.
- if $\sigma_{u}=\sigma_{v}=-1$, draw the edge w.p. a / n.

Community detection problem

■ Reconstruct the underlying communities (i.e. spin configuration σ) based on one realization of the graph.

- Sparse graph: the parameters a, b are fixed.
- notion of
w.h.p. strictly less than half of the vertices are misclassified

Community detection problem

■ Reconstruct the underlying communities (i.e. spin configuration σ) based on one realization of the graph.
■ Asymptotics: $n \rightarrow \infty$

- Sparse graph: the parameters a, b are fixed.
- notion of
w.h.p. strictly less than half of the vertices are misclassified

Community detection problem

■ Reconstruct the underlying communities (i.e. spin configuration σ) based on one realization of the graph.
■ Asymptotics: $n \rightarrow \infty$
■ Sparse graph: the parameters a, b are fixed.

- notion of
w.h.p. strictly less than half of the vertices are misclassified

Community detection problem

■ Reconstruct the underlying communities (i.e. spin configuration σ) based on one realization of the graph.
■ Asymptotics: $n \rightarrow \infty$

- Sparse graph: the parameters a, b are fixed.
- notion of performance: w.h.p. strictly less than half of the vertices are misclassified = positively correlated partition.

Efficiency of Spectral Algorithms

Boppana '87, Condon, Karp '01, Carson, Impagliazzo '01, McSherry '01, Kannan, Vempala, Vetta '04...

Theorem

Suppose that for sufficiently large K and K^{\prime},

$$
\frac{(a-b)^{2}}{a+b} \geq(\succ) K+K^{\prime} \ln (a+b)
$$

then 'trimming+spectral+greedy improvement' outputs a positively correlated (almost exact) partition w.h.p.

Coja-Oghlan '10

Spectral algorithm with adjacency matrix

Take a finite, simple, non-oriented graph $G=(V, E)$. Adjacency matrix : symmetric, indexed on vertices, for $u, v \in V$,

$$
A_{u v}=1(\{u, v\} \in E)
$$

Low rank approximation of the adjacency matrix works as soon as

Spectral algorithm with adjacency matrix

Take a finite, simple, non-oriented graph $G=(V, E)$. Adjacency matrix : symmetric, indexed on vertices, for $u, v \in V$,

$$
A_{u v}=1(\{u, v\} \in E)
$$

Low rank approximation of the adjacency matrix works as soon as

$$
(a-b)^{2} \succ a+b
$$

Spectral analysis

Assume that $a \rightarrow \infty$, and $a-b \approx \sqrt{a+b}$ so that $a \sim b$.

$$
A=\frac{a+b}{2} \frac{1}{\sqrt{n}} \frac{\mathbf{1}^{T}}{\sqrt{n}}+\frac{a-b}{2} \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}}+A-\mathbb{E}[A]
$$

$\frac{a+b}{2}$ is the mean degree and degrees in the graph are very
concentrated if $a \succ \ln n$. We can construct

Spectral analysis

Assume that $a \rightarrow \infty$, and $a-b \approx \sqrt{a+b}$ so that $a \sim b$.

$$
A=\frac{a+b}{2} \frac{1}{\sqrt{n}} \frac{1^{T}}{\sqrt{n}}+\frac{a-b}{2} \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}}+A-\mathbb{E}[A]
$$

$\frac{a+b}{2}$ is the mean degree and degrees in the graph are very concentrated if $a \succ \ln n$. We can construct

$$
A-\frac{a+b}{2 n} J=\frac{a-b}{2} \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}}+A-\mathbb{E}[A]
$$

Spectrum of the noise matrix

The matrix $A-\mathbb{E}[A]$ is a symmetric random matrix with independent centered entries having variance $\sim \frac{a}{n}$.
To have convergence to the Wigner semicircle law, we need to normalize the variance to $\frac{1}{n}$.

$E S D\left(\frac{A-\mathbb{E}[A]}{\sqrt{a}}\right) \rightarrow \mu_{s c}(x)= \begin{cases}\frac{1}{2 \pi} \sqrt{4-x^{2}}, & \text { if }|x| \leq 2 ; \\ 0, & \text { otherwise } .\end{cases}$

Naive spectral analysis

To sum up, we can construct:

$$
\begin{aligned}
M & =\frac{1}{\sqrt{a}}\left(A-\frac{a+b}{2 n} J\right) \\
& =\theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}}+\frac{A-\mathbb{E}[A]}{\sqrt{a}}
\end{aligned}
$$

with $\theta=\frac{a-b}{\sqrt{2(a+b)}}$.
We should be able to detect signal as soon as

Naive spectral analysis

To sum up, we can construct:

$$
\begin{aligned}
M & =\frac{1}{\sqrt{a}}\left(A-\frac{a+b}{2 n} J\right) \\
& =\theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}}+\frac{A-\mathbb{E}[A]}{\sqrt{a}}
\end{aligned}
$$

with $\theta=\frac{a-b}{\sqrt{2(a+b)}}$.
We should be able to detect signal as soon as

$$
\theta>2 \Leftrightarrow \frac{(a-b)^{2}}{2(a+b)}>4
$$

We can do better!

A lower bound on the spectral radius of $M=\theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}}+W$:

$$
\lambda_{1}(M)=\sup _{\|x\|=1}\|M x\| \geq\left\|M \frac{\sigma}{\sqrt{n}}\right\|
$$

As a result, we get

$$
\lambda_{1}(M)>2 \Leftrightarrow \theta>1 \Leftrightarrow(a-b)^{2}>2(a+b)
$$

We can do better!

A lower bound on the spectral radius of $M=\theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{\top}}{\sqrt{n}}+W$:

$$
\lambda_{1}(M)=\sup _{\|x\|=1}\|M x\| \geq\left\|M \frac{\sigma}{\sqrt{n}}\right\|
$$

But

$$
\begin{aligned}
\left\|M \frac{\sigma}{\sqrt{n}}\right\|^{2} & =\theta^{2}+\left\|W \frac{\sigma}{\sqrt{n}}\right\|^{2}+2\left\langle W, \frac{\sigma}{\sqrt{n}}\right\rangle \\
& \approx \theta^{2}+\frac{1}{n} \sum_{i, j} W_{i j}^{2} \\
& \approx \theta^{2}+1
\end{aligned}
$$

As a result, we get

$$
\lambda_{1}(M)>2 \Leftrightarrow \theta>1 \Leftrightarrow(a-b)^{2}>2(a+b)
$$

We can do better!

A lower bound on the spectral radius of $M=\theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}}+W$:

$$
\lambda_{1}(M)=\sup _{\|x\|=1}\|M x\| \geq\left\|M \frac{\sigma}{\sqrt{n}}\right\|
$$

But

$$
\begin{aligned}
\left\|M \frac{\sigma}{\sqrt{n}}\right\|^{2} & =\theta^{2}+\left\|W \frac{\sigma}{\sqrt{n}}\right\|^{2}+2\left\langle W, \frac{\sigma}{\sqrt{n}}\right\rangle \\
& \approx \theta^{2}+\frac{1}{n} \sum_{i, j} W_{i j}^{2} \\
& \approx \theta^{2}+1
\end{aligned}
$$

As a result, we get

$$
\lambda_{1}(M)>2 \Leftrightarrow \theta>1 \Leftrightarrow(a-b)^{2}>2(a+b) .
$$

Baik, Ben Arous, Péché phase transition

Rank one perturbation of a Wigner matrix:

$$
\lambda_{1}\left(\theta \sigma \sigma^{T}+W\right) \xrightarrow{\text { a.s }} \begin{cases}\theta+\frac{1}{\theta} & \text { if } \theta>1 \\ 2 & \text { otherwise } .\end{cases}
$$

Let $\tilde{\sigma}$ be the eigenvector associated with $\lambda_{1}\left(\theta u u^{T}+W\right)$, then

$$
|\langle\tilde{\sigma}, \sigma\rangle|^{2} \xrightarrow{\text { a.s. }} \begin{cases}1-\frac{1}{\theta^{2}} & \text { if } \theta>1, \\ 0 & \text { otherwise. }\end{cases}
$$

Watkin Nadal '94, Baik, Ben Arous, Péché '05 Newman, Rao '14
For SBM with $a, b \rightarrow \infty$,

Baik, Ben Arous, Péché phase transition

Rank one perturbation of a Wigner matrix:

$$
\lambda_{1}\left(\theta \sigma \sigma^{T}+W\right) \xrightarrow{\text { a.s }} \begin{cases}\theta+\frac{1}{\theta} & \text { if } \theta>1 \\ 2 & \text { otherwise } .\end{cases}
$$

Let $\tilde{\sigma}$ be the eigenvector associated with $\lambda_{1}\left(\theta u u^{T}+W\right)$, then

$$
|\langle\tilde{\sigma}, \sigma\rangle|^{2} \xrightarrow{\text { a.s }} \begin{cases}1-\frac{1}{\theta^{2}} & \text { if } \theta>1, \\ 0 & \text { otherwise. }\end{cases}
$$

Watkin Nadal '94, Baik, Ben Arous, Péché '05
Newman, Rao '14
For SBM with $a, b \rightarrow \infty$,

$$
\theta^{2}=\frac{(a-b)^{2}}{2(a+b)}>1
$$

Benaych-Georges, Couillet, Lelarge '16

When $a, b \rightarrow \infty$ spectral is optimal

SBM with $n=2000$, average degree 50 and $\frac{(a-b)^{2}}{2(a+b)}=2$. Random matrix theory predicts $\lambda_{1}=51, \lambda_{2}=15$ and noise at $\left|\lambda_{3}\right|<14.14$

Decreasing the average degree

SBM with $n=2000$, average degree 10 and $\frac{(a-b)^{2}}{2(a+b)}=2$. Random matrix theory predicts $\lambda_{1}=11, \lambda_{2}=6.7$ and noise at $\left|\lambda_{3}\right|<6.3$

Problems when the average degree is small

SBM with $n=2000$, average degree 3 and $\frac{(a-b)^{2}}{2(a+b)}=2$. Random matrix theory predicts $\lambda_{1}=4, \lambda_{2}=3.67$ and noise at $\left|\lambda_{3}\right|<3.46$

Problems when the average degree is finite

■ High degree nodes: a star with degree d has eigenvalues $\{-\sqrt{d}, 0, \sqrt{d}\}$.
In the regime where a and b are finite, the degrees are asymptotically Poisson with mean $\frac{a+b}{2}$. The adjacency matrix has $\Omega\left(\sqrt{\frac{\ln n}{\ln \ln n}}\right)$ eigenvalues.
instead of the adjacency matrix, take
the (normalized) Laplacian but then isolated edges
produce spurious eigenvalues.

Problems when the average degree is finite

■ High degree nodes: a star with degree d has eigenvalues $\{-\sqrt{d}, 0, \sqrt{d}\}$.
In the regime where a and b are finite, the degrees are asymptotically Poisson with mean $\frac{a+b}{2}$. The adjacency matrix has $\Omega\left(\sqrt{\frac{\ln n}{\ln \ln n}}\right)$ eigenvalues.
■ Low degree nodes: instead of the adjacency matrix, take the (normalized) Laplacian but then isolated edges produce spurious eigenvalues.

Problems when the average degree is small

Same graph after trimming.

Phase transition for $a, b=O(1)$

Theorem

$$
\tau=\frac{(a-b)^{2}}{2(a+b)}
$$

If $\tau>1$, then positively correlated reconstruction is possible. If $\tau<1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova '11 based on statistical physics arguments.

- Non-reconstruction proved by Mossel, Neeman, Sly '12.
- Reconstruction proved by Massoulié '13 and Mossel Neeman, Sly '13.

Phase transition for $a, b=O(1)$

Theorem

$$
\tau=\frac{(a-b)^{2}}{2(a+b)}
$$

If $\tau>1$, then positively correlated reconstruction is possible. If $\tau<1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova '11 based on statistical physics arguments.

■ Non-reconstruction proved by Mossel, Neeman, Sly '12.

- Reconstruction proved by Massoulié '13 and Mossel Neeman, Sly '13.

Phase transition for $a, b=O(1)$

Theorem

$$
\tau=\frac{(a-b)^{2}}{2(a+b)}
$$

If $\tau>1$, then positively correlated reconstruction is possible. If $\tau<1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova '11 based on statistical physics arguments.

■ Non-reconstruction proved by Mossel, Neeman, Sly '12.
■ Reconstruction proved by Massoulié '13 and Mossel, Neeman, Sly '13.

Regularization through the non-backtracking matrix

Let $\vec{E}=\{u \rightarrow v ;\{u, v\} \in E\}$ be the set of oriented edges.
$m=|\vec{E}|$ is twice the number of unoriented edges.
The non-backtracking matrix is an $m \times m$ matrix defined by

$$
B_{u \rightarrow v, v \rightarrow w}=1(\{u, v\} \in E) 1(\{v, w\} \in E) 1(u \neq w)
$$

B is NOT symmetric: $B^{T} \neq B$. We denote its eigenvalues by $\lambda_{1}, \lambda_{2}, \ldots$ with $\lambda_{1} \geq \cdots \geq\left|\lambda_{m}\right|$.
Proposed by Krzakala et al. '13.

Simulation for Erdős-Rényi Graph

Eigenvalues of B for an Erdős-Rényi graph $G(n, \lambda / n)$ with $n=500$ and $\lambda=4$.

Erdős-Rényi Graph

Eigenvalues of $B: \lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots$.

Theorem

Let $\lambda>1$ and G with distribution $G(n, \lambda / n)$. With high probability,

$$
\begin{aligned}
\lambda_{1} & =\lambda+o(1) \\
\left|\lambda_{2}\right| & \leq \sqrt{\lambda}+o(1)
\end{aligned}
$$

Bordenave, Lelarge, Massoulié '15

Simulation for Stochastic Block Model

Eigenvalues of B for a Stochastic Block Model with $n=2000$, mean degree $\frac{a+b}{2}=3$ and $\frac{a-b}{2}=2.45$

Stochastic Block Model

Eigenvalues of $B: \lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots$.

Theorem

Let G be a Stochastic Block Model with parameters a, b. If $(a-b)^{2}>2(a+b)$, then with high probability,

$$
\begin{aligned}
\lambda_{1} & =\frac{a+b}{2}+o(1) \\
\lambda_{2} & =\frac{a-b}{2}+o(1) \\
\left|\lambda_{3}\right| & \leq \sqrt{\frac{a+b}{2}}+o(1)
\end{aligned}
$$

Bordenave, Lelarge, Massoulié '15

Test with real benchmarks

If you can't get it right on this network, then go home.

Test with real benchmarks

The Power Law Shop

The non-backtracking matrix on real data

from Krzakala, Moore, Mossel, Neeman, Sly, Zdeborovà '13

Back to political blogging network data

Non-backtracking vs adjacency

On the sparse stochastic block model with probability of intra-edge a / n and inter-edge b / n.

Spectrum of 50 Erdos Renyi random graphs ($n=5000$ and average degree $c=20$

Spectrum of 50 Erdos Renyi random graphs ($n=5000$ and average degree $c=2 \mid$

The problem: if $a, b \rightarrow \infty$, then Wigner's semi-circle law + BBP phase transition but if $a, b<\infty$ as $n \rightarrow \infty$, then Lifshitz tails.
The solution: the non-backtracking matrix on directed edges of the graph: $B_{u \rightarrow v, v \rightarrow w}=1(\{u, v\} \in E) 1(\{v, w\} \in E) 1(u \neq w)$ achieves optimal detection on the SBM.

Extensions

■ For the labeled stochastic block model, we also conjecture a phase transition. We have partial results and an optimal spectral algorithm.
J. Xu, M. Lelarge, L. Massoulié, ITW '13, COLT '14 A. Saade, F. Krzakala, M. Lelarge, L. Zdeborovà, ISIT'15-16

Extensions

■ For the labeled stochastic block model, we also conjecture a phase transition. We have partial results and an optimal spectral algorithm.
J. Xu, M. Lelarge, L. Massoulié, ITW '13, COLT '14 A. Saade, F. Krzakala, M. Lelarge, L. Zdeborovà, ISIT'15-16

Extensions

■ For the labeled stochastic block model, we also conjecture a phase transition. We have partial results and an optimal spectral algorithm.
J. Xu, M. Lelarge, L. Massoulié, ITW '13, COLT '14 A. Saade, F. Krzakala, M. Lelarge, L. Zdeborovà, ISIT'15-16

THANK YOU!

