Pricing American options using martingale bases

Jérôme Lelong
Grenoble Alpes University
International Monte Carlo Conference, Paris - July 8, 2016

Outline

(1) American Options
(2) An optimization point of view
(3) How to effectively solve the optimization problem
(4) Numerical experiments

Framework (1)

- Consider a d^{\prime}-dimensional financial market driven by a d-dimensional Brownian motion B, with $d^{\prime} \leq d$.
- The discounted payoff process writes $\left(Z_{t}=\mathrm{e}^{-\int_{0}^{t} r_{s} d s} \phi\left(S_{t}\right)\right)_{t \leq T}$. Assume $\mathbb{E}\left[\sup _{t} Z_{t}^{2}\right]<\infty$.
- Consider an American option. Its time- t discounted price is given by

$$
U_{t}=\operatorname{esssup}_{\tau \in \mathcal{T}_{t}} \mathbb{E}\left[Z_{\tau} \mid \mathcal{F}_{t}\right]
$$

where \mathcal{T}_{t} is the set of all \mathcal{F} - stopping times with values in $[t, T]$.

Dual price (1)

The Snell envelope process $\left(U_{t}\right)_{0 \leq t \leq T}$ admits a Doob-Meyer decomposition

$$
U_{t}=U_{0}+M_{t}^{\star}-A_{t}^{\star} .
$$

[Rogers, 2002]: $\quad U_{0}=\inf _{M \in H_{0}^{1}} \mathbb{E}\left[\sup _{0 \leq t \leq T}\left(Z_{t}-M_{t}\right)\right]=\mathbb{E}\left[\sup _{0 \leq t \leq T}\left(Z_{t}-M_{t}^{\star}\right)\right]$

- This problem admits more than a single solution.
- For any stopping time τ smaller than the largest optimal strategy,

$$
U_{0}=\inf _{M \in H_{0}^{1}} \mathbb{E}\left[\sup _{\tau \leq t \leq T}\left(Z_{t}-M_{t}\right)\right]=\mathbb{E}\left[\sup _{\tau \leq t \leq T}\left(Z_{t}-M_{t}^{\star}\right)\right] .
$$

Dual price (2)

- Some of the martingales M attaining the infimum are surely optimal

$$
U_{0}=\sup _{0 \leq t \leq T}\left(Z_{t}-M_{t}\right) \quad \text { a.s. }
$$

- From [Schoenmakers et al., 2013], any martingale satisfying

$$
\operatorname{Var}\left(\sup _{0 \leq t \leq T}\left(Z_{t}-M_{t}\right)\right)=0
$$

is surely optimal.

- From [Jamshidian, 2007], for any optimal stopping time τ and any surely optimal martingale M,

$$
\left(M_{t \wedge \tau}\right)_{t}=\left(M_{t \wedge \tau}^{\star}\right)_{t} .
$$

Dual price (3)

With our square integrability assumption, we can rewrite the minimization problem as

$$
\begin{aligned}
& U_{0}=\inf _{X \in L^{2}\left(\Omega, \mathcal{F}_{T}, \mathbb{P}\right)} \mathbb{E}\left[\sup _{0 \leq t \leq T}\left(Z_{t}-\mathbb{E}\left[X \mid \mathcal{F}_{t}\right]\right)\right] . \\
& \text { s.t. } \mathbb{E}[X]=0
\end{aligned}
$$

How to approximate $L^{2}\left(\Omega, \mathcal{F}_{T}, \mathbb{P}\right)$ by a finite dimensional vector space in which conditional expectations are tractable in a closed form?

Wiener chaos expansion $(d=1)$

Let H_{i} be the $i-t h$ Hermite polynomial defined by

$$
H_{0}(x)=1 ; \quad H_{i}(x)=(-1)^{i} \mathrm{e}^{x^{2} / 2} \frac{d^{i}}{d x^{i}}\left(\mathrm{e}^{-x^{2} / 2}\right), \text { for } i \geq 1 .
$$

- $H_{i}^{\prime}=H_{i-1}$ with the convention $H_{-1}=0$.
- If $X, Y \sim \mathcal{N}(0,1)$ and form a Gaussian vector,

$$
\mathbb{E}\left[H_{i}(X) H_{j}(Y)\right]=i!(\mathbb{E}[X Y])^{i} \mathbf{1}_{\{i=j\}} .
$$

Truncated Wiener chaos expansion $(d=1)$

Take a regular grid $0=t_{0}<t_{1}<\cdots<t_{n}$ with step h.
Define the truncated Wiener chaos space of order p

$$
\mathcal{H}_{p}=\operatorname{span}\left\{\prod_{i=1}^{n} H_{\alpha_{i}}\left(G_{i}\right): \alpha \in \mathbb{N}^{n},\|\alpha\|_{1}=p\right\}
$$

with $G_{i}=\frac{B_{t_{i}}-B_{t_{i-1}}}{\sqrt{h}}$.
For $F \in L^{2}\left(\Omega, \mathcal{F}_{T}\right)$, we introduce the truncated chaos expansion of order p

$$
C_{p, n}(F)=\sum_{\alpha \in A_{p, n}} \lambda_{\alpha} \prod_{i \geq 1} H_{\alpha_{i}}\left(G_{i}\right)
$$

where $A_{p, n}=\left\{\alpha \in \mathbb{N}^{n}:\|\alpha\|_{1} \leq p\right\}$ with $\|\alpha\|_{1}=\sum_{i \geq 0} \alpha_{i}$.
In the following we write,

$$
C_{p, n}(F)=\sum_{\alpha \in A_{p, n}} \lambda_{\alpha} \widehat{H}_{\alpha}\left(G_{1}, \ldots, G_{n}\right)
$$

Key property of the truncated Wiener chaos expansion

For $k \leq n$,

$$
\mathbb{E}\left[C_{p, n}(F) \mid \mathcal{F}_{t_{k}}\right]=\sum_{\alpha \in A_{p, n}^{k}} \lambda_{\alpha} \widehat{H}_{\alpha}\left(G_{1}, \ldots, G_{n}\right)
$$

with $A_{p, n}^{k}=\left\{\alpha \in \mathbb{N}^{n}:\|\alpha\|_{1} \leq p, \alpha_{\ell}=0 \forall \ell>k\right\}$.
"Computing $\mathbb{E}\left[\cdot \mid \mathcal{F}_{t_{k}}\right] " \Leftrightarrow$ "Dropping all non $\mathcal{F}_{t_{k}}-$ measurable terms"

Extension to the multi-dimensional case

The truncated Wiener chaos of order $p \geq 0$ is given by

$$
\left\{\prod_{j=1}^{d} \widehat{H}_{\alpha^{i}}\left(G_{1}^{j}, \ldots, G_{n}^{j}\right): \alpha \in\left(\mathbb{N}^{n}\right)^{d},\|\alpha\|_{1} \leq p\right\} .
$$

We introduce the truncated chaos expansion of order p of $F \in L^{2}\left(\Omega, \mathcal{F}_{T}\right)$

$$
C_{p, n}(F)=\sum_{\alpha \in A_{p, n}^{\otimes \otimes d}} \lambda_{\alpha} \widehat{H}_{\alpha}^{\otimes d}\left(G_{1}, \ldots, G_{n}\right)=C_{p, n}(\lambda)
$$

where

$$
\begin{aligned}
& A_{p, n}^{\otimes d}=\left\{\alpha \in\left(\mathbb{N}^{n}\right)^{d}:\|\alpha\|_{1} \leq p\right\}, \\
& \widehat{H}_{\alpha}^{\otimes d}\left(G_{1}, \ldots, G_{n}\right)=\prod_{j=1}^{d} \widehat{H}_{\alpha_{j}}\left(G_{1}^{j}, \ldots, G_{n}^{j}\right) \quad \forall \alpha \in\left(\mathbb{N}^{n}\right)^{d} .
\end{aligned}
$$

Return to the American option price

We approximate the original problem

$$
\begin{aligned}
& \inf _{X \in L^{2}\left(\Omega, \mathcal{F}_{T}, \mathbb{P}\right)} \mathbb{E}\left[\sup _{0 \leq t \leq T}\left(Z_{t}-\mathbb{E}\left[X \mid \mathcal{F}_{t}\right]\right)\right] \\
& \text { s.t. } \mathbb{E}[X]=0
\end{aligned}
$$

by

$$
\begin{aligned}
& \inf _{\lambda \in \mathbb{R}^{A_{p, n}^{\otimes n}}} \quad V_{p, n}(\lambda) \\
& \text { s.t. } \lambda_{0}=0
\end{aligned}
$$

with

$$
V_{p, n}(\lambda)=\mathbb{E}\left[\max _{0 \leq k \leq n}\left(Z_{t_{k}}-\mathbb{E}\left[C_{p, n}(\lambda) \mid \mathcal{F}_{t_{k}}\right)\right] .\right.
$$

Properties of the minimization problem (1)

Proposition 1

The minimization problem (1) has at least one solution.

- The function $V_{p, n}$ is clearly convex (maximum of affine functions).
- Not strongly convex but,

$$
V_{p, n}(\lambda) \geq \frac{|\lambda|}{2} \inf _{\mu \in \mathbb{R}^{A} p, n, n} \mathbb{E}\left[\left|C_{p, n}(\mu)\right|\right] .
$$

Properties of the minimization problem (2)

$\mathcal{I}(\lambda, Z, G)=\{0 \leq k \leq n$: the pathwise maximum is attained at time $k\}$.

Proposition 2

Let $p \geq 1$. Assume that

$$
\begin{aligned}
& \forall 1 \leq r \leq k \leq n, \forall F \mathcal{F}_{t_{k}}-\text { measurable, } F \in \mathcal{C}_{p-1, n}, F \neq 0, \\
& \left.\left.\quad \exists 1 \leq q \leq d \text { s.t. } \mathbb{P}(\forall t \in] t_{r-1}, t_{r}\right], D_{t}^{q} Z_{t_{k}}+F=0 \mid Z_{t_{k}}>0\right)=0 .
\end{aligned}
$$

Then, the function $V_{p, n}$ is differentiable at all points $\lambda \in \mathbb{R}^{Q_{p, n}^{\otimes d}}$ with no zero component and its gradient $\nabla V_{p, n}$ is given by

$$
\nabla V_{p, n}(\lambda)=\mathbb{E}\left[\mathbb{E}\left[\widehat{H}^{\otimes d}\left(G_{1}, \ldots, G_{n}\right) \mid \mathcal{F}_{t_{i}}\right]_{\mid i=\mathcal{I}(\lambda, z, G)}\right]
$$

Properties of the minimization problem (3)

- Differentiability is ensured as soon as $\mathcal{I}(\lambda, Z, G)$ is a.s. reduced to a unique element: purpose of the blue condition.
- Alternative approach by [Belomestny, 2013]: use smoothing techniques instead (see [Nesterov, 2004]). General idea:

$$
\text { Replace } \max _{k} a_{k} \text { by } p^{-1} \log \left(\sum_{k} \exp \left(p a_{k}\right)\right)
$$

- Let λ^{\sharp} be a solution, $V_{p, n}\left(\lambda_{p, n}^{\sharp}\right)=\inf _{\lambda} V_{p, n}(\lambda)$. Then $\nabla V_{p, n}\left(\lambda_{p, n}^{\sharp}\right)=0$.

Convergence to the true solution (1)

Proposition 3

The solution of the minimization problem (1), $V_{p, n}\left(\lambda_{p, n}^{\sharp}\right)$, converges to the price of the American options when both p and n go to infinity and moreover

$$
0 \leq V_{p, n}\left(\lambda_{p, n}^{\sharp}\right)-U_{0} \leq 2\left\|M_{T}^{\star}-C_{p, n}\left(M_{T}^{\star}\right)\right\|_{2} .
$$

- Consider a Bermudan option with exercising dates t_{0}, \cdots, t_{n} and discounted payoff $\left(Z_{t_{k}}\right)_{k}$ adapted to the discrete time filtration generated by the Brownian increments only. Then, $V_{p, n}\left(\lambda_{p, n}^{\sharp}\right)$ converges to the price of the Bermudan option when p only goes to infinity.

Practically solving the optimization problem (1)

We approximate the solution of

$$
V_{p, n}\left(\lambda_{p, n}^{\sharp}\right)=\inf _{\lambda \in A_{p, n}^{\otimes, n}} V_{p, n}(\lambda)=\inf _{\lambda \in A_{p, n}^{\otimes \otimes, n}} \mathbb{E}\left[\max _{0 \leq k \leq n}\left(Z_{t_{k}}-\mathbb{E}\left[C_{p, n}(\lambda) \mid \mathcal{F}_{t_{k}}\right]\right)\right]
$$

by introducing the well-known Sample Average Approximation (see [Rubinstein and Shapiro, 1993]) of $V_{p, n}$ defined by

$$
V_{p, n}^{m}(\lambda)=\frac{1}{m} \sum_{i=1}^{m} \max _{0 \leq k \leq n}\left(Z_{t_{k}}^{(i)}-\mathbb{E}\left[C_{p, n}^{(i)}(\lambda) \mid \mathcal{F}_{t_{k}}\right]\right) .
$$

Note that the conditional expectation boils down to truncating the chaos expansion and hence is tractable in a closed form.

Practically solving the optimization problem (2)

For large enough $m, V_{p, N}^{m}$ is convex, a.s. differentiable and tends to infinity at infinity. Then, there exits $\lambda_{p, n}^{m}$ such that

$$
V_{p, n}^{m}\left(\lambda_{p, n}^{m}\right)=\inf _{\lambda \in \mathbb{R}_{p, n}^{\otimes} \otimes d} V_{p, n}^{m}(\lambda)
$$

Proposition 4

$V_{p, n}^{m}\left(\lambda_{p, n}^{m}\right)$ converges a.s. to $V_{p, n}\left(\lambda_{p, N}^{\sharp}\right)$ when $m \rightarrow \infty$.
The distance from $\lambda_{p, n}^{m}$ to the set of minimizers of $V_{p, n}$ converges to zero as m goes to infinity.

Practically solving the optimization problem (3)

Write $M_{k}(\lambda)=\mathbb{E}\left[C_{p, n}(\lambda) \mid \mathcal{F}_{t_{k}}\right]$ for $0 \leq k \leq n$.

Proposition 5

Assume $\lambda_{p, n}^{\sharp}$ is unique. Then,

$$
\frac{1}{m} \sum_{i=1}^{m}\left(\max _{0 \leq k \leq n} Z_{t_{k}}^{(i)}-M_{k}^{(i)}\left(\lambda_{p, n}^{m}\right)^{2}-V_{p, n}^{m}\left(\lambda_{p, n}^{m}\right)^{2}\right.
$$

is a convergent estimator of $\operatorname{Var}\left(\max _{k \leq 0 \leq n} Z_{t_{k}}-M_{k}\left(\lambda_{p, n}^{\sharp}\right)\right)$ and moreover, if $\lambda_{p, n}^{m}$ is bounded,

$$
\lim _{m \rightarrow \infty} m \operatorname{Var}\left(V_{p, n}^{m}\left(\lambda_{p, n}^{m}\right)\right)=\operatorname{Var}\left(\max _{k \leq 0 \leq n} Z_{t_{k}}-M_{k}\left(\lambda_{p, n}^{\sharp}\right)\right) .
$$

The algorithm: bespoke martingales

Define the first time the option goes in the money by

$$
\tau_{0}=\inf \left\{k \geq 0: Z_{t_{k}}>0\right\} \wedge n
$$

Consider martingales only starting once the option has been in the money

$$
N_{k}(\lambda)=M_{k}(\lambda)-M_{k \wedge \tau_{0}}(\lambda) .
$$

In the dual price, " $\max _{0 \leq k \leq n}$ " can be shrunk to " $\max _{\tau_{0} \leq k \leq n " \text { ". }}$
Using Doob's stopping theorem, we have

$$
\mathbb{E}\left[\max _{\tau_{0} \leq k \leq n}\left(Z_{t_{k}}-M_{k}(\lambda)\right)\right]=\mathbb{E}\left[\max _{\tau_{0} \leq k \leq n}\left(Z_{t_{k}}-\left(M_{k}(\lambda)-M_{\tau_{0}}(\lambda)\right)\right)\right]
$$

The martingales $M(\lambda)$ or $N(\lambda)$ lead to the same minimum value.
The set of martingales N^{λ} is far more efficient from a practical point of view.

The algorithm: a gradient descent with line search

$x_{0} \leftarrow 0, k \leftarrow 0, \gamma \leftarrow 1, d_{0} \leftarrow 0, v_{0} \leftarrow \infty ;$
while True do
Compute $v_{k+1 / 2} \leftarrow \tilde{V}_{p, n}^{m}\left(x_{k}-\gamma \alpha_{k} d_{k}\right) ;$
if $v_{k+1 / 2}<v_{k}$ then
$x_{k+1} \leftarrow x_{k}-\gamma \alpha_{k} d_{k} ;$
$v_{k+1} \leftarrow v_{k+1 / 2}$;
$d_{k+1} \leftarrow \nabla \tilde{V}_{p, n}^{m}\left(x_{k+1}\right) ;$
if $\frac{\left|v_{k+1}-v_{k}\right|}{v_{k}} \leq \varepsilon$ then return;
else
$\gamma \leftarrow \gamma / 2 ;$
end
end

The algorithm: a gradient descent with line search

$x_{0} \leftarrow 0, k \leftarrow 0, \gamma \leftarrow 1, d_{0} \leftarrow 0, v_{0} \leftarrow \infty ;$
while True do
Compute $v_{k+1 / 2} \leftarrow \tilde{V}_{p, n}^{m}\left(x_{k}-\gamma \alpha_{k} d_{k}\right) ;$ if $v_{k+1 / 2}<v_{k}$ then
$x_{k+1} \leftarrow x_{k}-\gamma \alpha_{k} d_{k} ;$
$v_{k+1} \leftarrow v_{k+1 / 2}$;
$d_{k+1} \leftarrow \nabla \tilde{V}_{p, n}^{m}\left(x_{k+1}\right)$;
if $\frac{\left|v_{k+1}-v_{k}\right|}{v_{k}} \leq \varepsilon$ then return;
else
$\gamma \leftarrow \gamma / 2 ;$
end
end
Take $\alpha_{\ell}=\frac{\tilde{V}_{p, n}^{m}\left(x_{\ell}\right)-v^{\sharp}}{\left\|\nabla \tilde{V}_{p, n}^{m}\left(x_{\ell}\right)\right\|^{2}}$, see [Polyak, 1987], but with the European price
instead of the American one for v^{\sharp}.

Some remarks on the algorithm

- Given the expression of $V_{p, n}^{m}$, both the value function and its gradient are computed at the same time without extra cost.

$$
\begin{aligned}
V_{p, n}(\lambda) & =\mathbb{E}\left[\max _{\tau_{0} \leq k \leq n}\left(Z_{t_{k}}-\mathbb{E}\left[\lambda \cdot H^{\otimes d}\left(G_{1}, \cdots, G_{n}\right) \mid \mathcal{F}_{t_{k}}\right)\right],\right. \\
& =\mathbb{E}\left[Z_{t_{\mathcal{I}}(\lambda, Z, G)}\right]-\lambda \cdot \nabla \tilde{V}_{p, n}(\lambda) .
\end{aligned}
$$

- Checking the admissibility of a step γ costs as much as updating x_{k}.
- The algorithm is almost embarrassingly parallel:
- Few iterations of the gradient descent are required (≈ 10).
- Each iteration is fully parallel: each process treats its bunch of paths.
- No demanding centralized computations
- Very little communication: a few broadcasts only.

Parallel implementation

```
In parallel Generate \(\left(G^{(1)}, Z^{(1)}\right), \ldots,\left(G^{(m)}, Z^{(m)}\right) m x_{0} \leftarrow 0 \in \mathbb{R}_{p, n}^{A^{\otimes d}} ;\)
while True do
    Broadcast \(x_{\ell}, d_{\ell}, \gamma, \alpha_{\ell}\);
    In parallel Compute \(\max _{\tau_{0} \leq k \leq n}\left(Z_{t_{k}}^{(i)}-N_{k}^{(i)}\left(x_{\ell}-\gamma \alpha_{\ell} d_{\ell}\right)\right)\);
    Make a reduction of the above contributions to obtain \(\tilde{V}_{p, n}^{m}\left(x_{\ell+1 / 2}\right)\) and
    \(\nabla \tilde{V}_{p, n}^{m}\left(x_{\ell+1 / 2}\right)\);
    \(v_{\ell+1 / 2} \leftarrow \tilde{V}_{p, n}^{m}\left(x_{\ell}-\gamma \alpha_{\ell} d_{\ell}\right) ;\)
    if \(v_{\ell+1 / 2}<v_{\ell}\) then
        \(x_{\ell+1} \leftarrow x_{\ell}-\gamma \alpha_{\ell} d_{\ell} ;\)
        \(v_{\ell+1} \leftarrow v_{\ell+1 / 2} ; \quad d_{\ell+1} \leftarrow \nabla \tilde{V}_{p, n}^{m}\left(x_{\ell+1}\right) ;\)
        if \(\frac{\left|v_{\ell+1}-v_{\ell}\right|}{v_{\ell}} \leq \varepsilon\) then return;
    else
        \(\gamma \leftarrow \gamma / 2 ;\)
    end
end
```


Basket option in the BS model

p	n	S_{0}	price	Stdev	time (sec.)	reference price
2	3	100	2.27	0.029	0.17	2.17
3	3	100	2.23	0.025	0.9	2.17
2	3	110	0.56	0.014	0.07	0.55
3	3	110	0.53	0.012	0.048	0.55
2	6	100	2.62	0.021	0.91	2.43
3	6	100	2.42	0.021	14	2.43
2	6	110	0.61	0.012	0.33	0.61
3	6	110	0.55	0.008	10	0.61

TAB.: Prices for the put basket option with parameters $T=3, r=0.05, K=100$, $\rho=0, \sigma^{j}=0.2, \delta^{j}=0, d=5, \omega^{j}=1 / d, m=20,000$.

Call option on the maximum of a basket

d	p	m	S_{0}	price	Stdev	time (sec.)	reference price
2	2	20,000	90	10.18	0.07	0.4	8.15
2	3	20,000	90	8.5	0.05	4.1	8.15
2	2	20,000	100	16.2	0.06	0.54	14.01
2	3	20,000	100	14.4	0.06	5.6	14.01
5	2	20,000	90	21.2	0.09	2	16.77
5	3	40,000	90	16.3	0.05	210	16.77
5	2	20,000	100	30.7	0.09	3.4	26.34
5	3	40,000	100	26.0	0.05	207	26.34

TAB.: Prices for the call option on the maximum of d assets with parameters $T=3$, $r=0.05, K=100, \rho=0, \sigma^{j}=0.2, \delta^{j}=0.1, n=9$.

Scalability of the parallel algorithm

The tests were run on a BullX DLC supercomputer containing 3204 cores.

\#processes	time (sec.)	efficiency
1	4365	1
2	2481	0.99
4	1362	0.90
16	282	0.84
32	272	0.75
64	87	0.78
128	52	0.73
256	34	0.69
512	10.7	0.59

TAB.: Scalability of the parallel algorithm on the 40 -dimensional geometric put option described above with $T=1, r=0.0488, K=100, \sigma^{j}=0.3, \rho=0.1$, $\delta^{j}=0, n=9, p=2, m=200,000$.

Conclusion

- Purely optimization approach. No need of an optimal strategy.
- The problem is in large dimension but convex.
- Almost embarrassingly parallel and scales very well.
- Can deal with path dependent options
- Belomestny, D. (2013). Solving optimal stopping problems via empirical dual optimization. Ann. Appl. Probab., 23(5):1988-2019.
- Jamshidian, F. (2007).

The duality of optimal exercise and domineering claims: a Doob-Meyer decomposition approach to the Snell envelope.
Stochastics, 79(1-2):27-60.

- Nesterov, Y. (2004).

Smooth minimization of non-smooth functions.
Mathematical Programming, 103(1):127-152.

- Polyak, B. T. (1987).

Introduction to optimization.
Optimization Software.

- Rogers, L. C. G. (2002).

Monte Carlo valuation of American options.
Math. Finance, 12(3):271-286.

- Rubinstein, R. Y. and Shapiro, A. (1993).

Discrete event systems.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley \& Sons Ltd., Chichester. Sensitivity analysis and stochastic optimization by the score function method.

- Schoenmakers, J., Zhang, J., and Huang, J. (2013). Optimal dual martingales, their analysis, and application to new algorithms for bermudan products.
SIAM Journal on Financial Mathematics, 4(1):86-116.

