Pricing American options using martingale bases

Jérôme Lelong

Grenoble Alpes University

International Monte Carlo Conference, Paris – July 8, 2016

Outline

- American Options
- 2 An optimization point of view
- 3 How to effectively solve the optimization problem
- 4 Numerical experiments

- American Options

Framework (1)

- Consider a d'-dimensional financial market driven by a d-dimensional Brownian motion B, with $d' \le d$.
- ► The discounted payoff process writes $\left(Z_t = \mathrm{e}^{-\int_0^t r_s ds} \, \phi(S_t)\right)_{t \leq T}$. Assume $\mathbb{E}\left[\sup_t Z_t^2\right] < \infty$.
- ► Consider an American option. Its time–*t* discounted price is given by

$$U_t = \operatorname{esssup}_{\tau \in \mathcal{T}_t} \mathbb{E}[Z_\tau | \mathcal{F}_t]$$

where \mathcal{T}_t is the set of all \mathcal{F} – stopping times with values in [t, T].

American Options

How to effectively solve the optimization problem

Dual price (1)

The Snell envelope process $(U_t)_{0 \le t \le T}$ admits a Doob–Meyer decomposition

$$U_t = U_0 + M_t^{\star} - A_t^{\star}.$$

[Rogers, 2002]:
$$U_0 = \inf_{M \in H_0^1} \mathbb{E} \left[\sup_{0 \le t \le T} (Z_t - M_t) \right] = \mathbb{E} \left[\sup_{0 \le t \le T} (Z_t - M_t^*) \right]$$

- ▶ This problem admits more than a single solution.
- \triangleright For any stopping time τ smaller than the largest optimal strategy,

$$U_0 = \inf_{M \in H_0^1} \mathbb{E}\left[\sup_{ au \leq t \leq T} (Z_t - M_t)
ight] = \mathbb{E}\left[\sup_{ au \leq t \leq T} (Z_t - M_t^\star)
ight].$$

Dual price (2)

► Some of the martingales *M* attaining the infimum are surely optimal

$$U_0 = \sup_{0 \le t \le T} (Z_t - M_t) \quad a.s.$$

American Options

► From [Schoenmakers et al., 2013], any martingale satisfying

$$\operatorname{Var}\left(\sup_{0\leq t\leq T}(Z_t-M_t)\right)=0$$

is surely optimal.

From [Jamshidian, 2007], for any optimal stopping time τ and any surely optimal martingale M,

$$(M_{t\wedge\tau})_t=(M_{t\wedge\tau}^{\star})_t.$$

— American Options

Dual price (3)

With our square integrability assumption, we can rewrite the minimization problem as

$$U_0 = \inf_{\substack{X \in L^2(\Omega, \mathcal{F}_T, \mathbb{P}) \ ext{s.t. } \mathbb{E}[X] = 0}} \mathbb{E}\left[\sup_{0 \le t \le T} (Z_t - \mathbb{E}[X|\mathcal{F}_t])
ight].$$

How to approximate $L^2(\Omega, \mathcal{F}_T, \mathbb{P})$ by a finite dimensional vector space in which conditional expectations are tractable in a closed form?

Wiener chaos expansion (d = 1)

Let H_i be the i - th Hermite polynomial defined by

$$H_0(x) = 1;$$
 $H_i(x) = (-1)^i e^{x^2/2} \frac{d^i}{dx^i} (e^{-x^2/2}), \text{ for } i \ge 1.$

- $H'_i = H_{i-1}$ with the convention $H_{-1} = 0$.
- ▶ If $X, Y \sim \mathcal{N}(0, 1)$ and form a Gaussian vector,

$$\mathbb{E}[H_i(X)H_j(Y)] = i! (\mathbb{E}[XY])^i \mathbf{1}_{\{i=j\}}.$$

Truncated Wiener chaos expansion (d = 1)

Take a regular grid $0 = t_0 < t_1 < \cdots < t_n$ with step h. Define the truncated Wiener chaos space of order p

$$\mathcal{H}_p = \operatorname{span} \left\{ \prod_{i=1}^n H_{\alpha_i}(G_i) : \alpha \in \mathbb{N}^n, \|\alpha\|_1 = p \right\}$$

with $G_i = \frac{B_{t_i} - B_{t_{i-1}}}{\sqrt{h}}$.

For $F \in L^2(\Omega, \mathcal{F}_T)$, we introduce the truncated chaos expansion of order p

$$C_{p,n}(F) = \sum_{\alpha \in A_{p,n}} \lambda_{\alpha} \prod_{i \geq 1} H_{\alpha_i}(G_i)$$

where $A_{p,n} = \{ \alpha \in \mathbb{N}^n : \|\alpha\|_1 \le p \}$ with $\|\alpha\|_1 = \sum_{i \ge 0} \alpha_i$. In the following we write,

$$C_{p,n}(F) = \sum_{\alpha \in A_{n,n}} \lambda_{\alpha} \widehat{H}_{\alpha}(G_1, \dots, G_n)$$

Key property of the truncated Wiener chaos expansion

For $k \leq n$,

$$\mathbb{E}[C_{p,n}(F)|\mathcal{F}_{t_k}] = \sum_{lpha \in A_{p,n}^k} \lambda_lpha \, \widehat{H}_lpha(G_1,\ldots,G_n)$$

with
$$A_{p,n}^k = \{ \alpha \in \mathbb{N}^n : \|\alpha\|_1 \le p, \ \alpha_\ell = 0 \ \forall \ell > k \}.$$

"Computing $\mathbb{E}[\cdot|\mathcal{F}_{t_k}]$ " \Leftrightarrow "Dropping all non \mathcal{F}_{t_k} — measurable terms"

Extension to the multi-dimensional case

The truncated Wiener chaos of order $p \ge 0$ is given by

$$\left\{\prod_{j=1}^d \widehat{H}_{\alpha^j}(G_1^j,\ldots,G_n^j) : \alpha \in (\mathbb{N}^n)^d, \|\alpha\|_1 \leq p\right\}.$$

We introduce the truncated chaos expansion of order p of $F \in L^2(\Omega, \mathcal{F}_T)$

$$C_{p,n}(F) = \sum_{\alpha \in A_{p,n}^{\otimes d}} \lambda_{\alpha} \widehat{H}_{\alpha}^{\otimes d}(G_1, \dots, G_n) = C_{p,n}(\lambda)$$

where

$$A_{p,n}^{\otimes d} = \left\{ \alpha \in (\mathbb{N}^n)^d : \|\alpha\|_1 \leq p \right\},$$

$$\widehat{H}_{\alpha}^{\otimes d}(G_1, \dots, G_n) = \prod_{i=1}^d \widehat{H}_{\alpha_j}(G_1^j, \dots, G_n^j) \quad \forall \alpha \in (\mathbb{N}^n)^d.$$

Return to the American option price

We approximate the original problem

$$\inf_{\substack{X \in L^2(\Omega, \mathcal{F}_T, \mathbb{P}) \ ext{s.t. } \mathbb{E}[X] = 0}} \mathbb{E}\left[\sup_{0 \leq t \leq T} (Z_t - \mathbb{E}[X|\mathcal{F}_t])\right]$$

by

$$\inf_{\lambda \in \mathbb{R}^{A_{p,n}^{\otimes d}}} V_{p,n}(\lambda)$$
s.t. $\lambda_0 = 0$ (1)

with

$$V_{p,n}(\lambda) = \mathbb{E}\left[\max_{0 \leq k \leq n} (Z_{t_k} - \mathbb{E}[C_{p,n}(\lambda)|\mathcal{F}_{t_k}])
ight].$$

Properties of the minimization problem (1)

Proposition 1

The minimization problem (1) *has at least one solution.*

- ▶ The function $V_{p,n}$ is clearly convex (maximum of affine functions).
- ▶ Not strongly convex but,

$$V_{p,n}(\lambda) \geq rac{|\lambda|}{2} \inf_{\mu \in \mathbb{R}^{A_{p,n}^{\otimes d}}, |\mu|=1} \mathbb{E}\left[|C_{p,n}(\mu)|\right].$$

Properties of the minimization problem (2)

 $\mathcal{I}(\lambda, Z, G) = \{0 \le k \le n : \text{ the pathwise maximum is attained at time } k\}$.

Proposition 2

Let $p \geq 1$. Assume that

$$\forall 1 \leq r \leq k \leq n, \ \forall F \ \mathcal{F}_{t_k} - measurable, \ F \in \mathcal{C}_{p-1,n}, \ F \neq 0,$$
$$\exists \ 1 \leq q \leq d \ s.t. \ \mathbb{P}\left(\forall t \in]t_{r-1}, t_r], \ D_t^q Z_{t_k} + F = 0 \ \big| \ Z_{t_k} > 0\right) = 0.$$

Then, the function $V_{p,n}$ is differentiable at all points $\lambda \in \mathbb{R}^{A_{p,n}^{\otimes d}}$ with no zero component and its gradient $\nabla V_{p,n}$ is given by

$$abla V_{p,n}(\lambda) = \mathbb{E}\left[\mathbb{E}\left[\widehat{H}^{\otimes d}(G_1,\ldots,G_n) \mid \mathcal{F}_{t_i}
ight]_{|i=\mathcal{I}(\lambda,Z,G)}
ight].$$

Properties of the minimization problem (3)

- ▶ Differentiability is ensured as soon as $\mathcal{I}(\lambda, Z, G)$ is a.s. reduced to a unique element: purpose of the blue condition.
- ▶ Alternative approach by [Belomestny, 2013]: use smoothing techniques instead (see [Nesterov, 2004]). General idea:

Replace
$$\max_{k} a_k$$
 by $p^{-1} \log \left(\sum_{k} \exp(p \ a_k) \right)$.

Let λ^{\sharp} be a solution, $V_{p,n}(\lambda_{p,n}^{\sharp}) = \inf_{\lambda} V_{p,n}(\lambda)$. Then $\nabla V_{p,n}(\lambda_{p,n}^{\sharp}) = 0$.

Convergence to the true solution (1)

Proposition 3

The solution of the minimization problem (1), $V_{p,n}(\lambda_{p,n}^{\sharp})$, converges to the price of the American options when both p and n go to infinity and moreover

$$0 \le V_{p,n}(\lambda_{p,n}^{\sharp}) - U_0 \le 2 \|M_T^{\star} - C_{p,n}(M_T^{\star})\|_2.$$

Consider a Bermudan option with exercising dates t_0, \dots, t_n and discounted payoff $(Z_{t_k})_k$ adapted to the discrete time filtration generated by the Brownian increments only. Then, $V_{p,n}(\lambda_{p,n}^{\sharp})$ converges to the price of the Bermudan option when p only goes to infinity.

Practically solving the optimization problem (1)

We approximate the solution of

$$V_{p,n}(\lambda_{p,n}^\sharp) = \inf_{\lambda \in A_{p,n}^{\otimes d}} V_{p,n}(\lambda) = \inf_{\lambda \in A_{p,n}^{\otimes d}} \mathbb{E}\left[\max_{0 \leq k \leq n} (Z_{t_k} - \mathbb{E}[C_{p,n}(\lambda)|\mathcal{F}_{t_k}])
ight]$$

by introducing the well–known Sample Average Approximation (see [Rubinstein and Shapiro, 1993]) of $V_{p,n}$ defined by

$$V_{p,n}^m(\lambda) = \frac{1}{m} \sum_{i=1}^m \max_{0 \le k \le n} \left(Z_{t_k}^{(i)} - \mathbb{E}[C_{p,n}^{(i)}(\lambda)|\mathcal{F}_{t_k}] \right).$$

Note that the conditional expectation boils down to truncating the chaos expansion and hence is tractable in a closed form.

Practically solving the optimization problem (2)

For large enough m, $V_{p,N}^m$ is convex, a.s. differentiable and tends to infinity at infinity. Then, there exits $\lambda_{p,n}^m$ such that

$$V_{p,n}^m(\lambda_{p,n}^m) = \inf_{\lambda \in \mathbb{R}^{A_{p,n}^{\otimes d}}} V_{p,n}^m(\lambda).$$

Proposition 4

 $V_{p,n}^m(\lambda_{p,n}^m)$ converges a.s. to $V_{p,n}(\lambda_{p,N}^\sharp)$ when $m \to \infty$. The distance from $\lambda_{p,n}^m$ to the set of minimizers of $V_{p,n}$ converges to zero as m goes to infinity.

Practically solving the optimization problem (3)

Write $M_k(\lambda) = \mathbb{E}[C_{p,n}(\lambda)|\mathcal{F}_{t_k}]$ for $0 \le k \le n$.

Proposition 5

Assume $\lambda_{p,n}^{\sharp}$ is unique. Then,

$$\frac{1}{m} \sum_{i=1}^{m} \left(\max_{0 \leq k \leq n} Z_{t_k}^{(i)} - M_k^{(i)}(\lambda_{p,n}^m) \right)^2 - V_{p,n}^m(\lambda_{p,n}^m)^2$$

is a convergent estimator of $Var(\max_{k \leq 0 \leq n} Z_{t_k} - M_k(\lambda_{p,n}^{\sharp}))$ and moreover, if $\lambda_{p,n}^m$ is bounded,

$$\lim_{m\to\infty} \frac{m}{\text{Var}}\left(V_{p,n}^m(\lambda_{p,n}^m)\right) = \text{Var}(\max_{k\leq 0\leq n} Z_{t_k} - M_k(\lambda_{p,n}^\sharp)).$$

The algorithm: bespoke martingales

Define the first time the option goes in the money by

$$\tau_0 = \inf\{k \geq 0 : Z_{t_k} > 0\} \wedge n.$$

Consider martingales only starting once the option has been in the money

$$N_k(\lambda) = M_k(\lambda) - M_{k \wedge \tau_0}(\lambda).$$

In the dual price, " $\max_{0 \le k \le n}$ " can be shrunk to " $\max_{\tau_0 \le k \le n}$ ". Using Doob's stopping theorem, we have

$$\mathbb{E}\left[\max_{\tau_0 \leq k \leq n} (Z_{t_k} - M_k(\lambda))\right] = \mathbb{E}\left[\max_{\tau_0 \leq k \leq n} (Z_{t_k} - (M_k(\lambda) - M_{\tau_0}(\lambda)))\right]$$

The martingales $M(\lambda)$ or $N(\lambda)$ lead to the same minimum value. The set of martingales N^{λ} is far more efficient from a practical point of view.

How to effectively solve the optimization problem

The algorithm: a gradient descent with line search

```
x_0 \leftarrow 0, k \leftarrow 0, \gamma \leftarrow 1, d_0 \leftarrow 0, v_0 \leftarrow \infty;
while True do
       Compute v_{k+1/2} \leftarrow V_{n,n}^m(x_k - \gamma \alpha_k d_k);
      if v_{k+1/2} < v_k then
             x_{k+1} \leftarrow x_k - \gamma \alpha_k d_k;
             v_{k+1} \leftarrow v_{k+1/2};
          d_{k+1} \leftarrow \nabla \tilde{V}_{p,n}^m(x_{k+1});
             if \frac{|\nu_{k+1}-\nu_k|}{\cdots} \leq \varepsilon then return;
       else
       \gamma \leftarrow \gamma/2;
       end
end
```

The algorithm: a gradient descent with line search

```
x_0 \leftarrow 0, k \leftarrow 0, \gamma \leftarrow 1, d_0 \leftarrow 0, v_0 \leftarrow \infty:
while True do
       Compute v_{k+1/2} \leftarrow V_{n,n}^m(x_k - \gamma \alpha_k d_k);
       if v_{k+1/2} < v_k then
            x_{k+1} \leftarrow x_k - \gamma \alpha_k d_k;
       v_{k+1} \leftarrow v_{k+1/2};
d_{k+1} \leftarrow \nabla \tilde{V}_{p,n}^m(x_{k+1});
             if \frac{|v_{k+1}-v_k|}{v_k} \leq \varepsilon then return;
       else
       \gamma \leftarrow \gamma/2;
       end
end
```

Take $\alpha_{\ell} = \frac{V_{p,n}^{m}(x_{\ell}) - v^{\sharp}}{\left\|\nabla \tilde{V}_{p,n}^{m}(x_{\ell})\right\|^{2}}$, see [Polyak, 1987], but with the European price

instead of the American one for v^{\sharp} .

Some remarks on the algorithm

▶ Given the expression of $V_{p,n}^m$, both the value function and its gradient are computed at the same time without extra cost.

$$egin{aligned} V_{p,n}(\lambda) &= \mathbb{E}\left[\max_{ au_0 \leq k \leq n} \left(Z_{t_k} - \mathbb{E}[\lambda \cdot H^{\otimes d}(G_1, \cdots, G_n) | \mathcal{F}_{t_k}]
ight)
ight], \ &= \mathbb{E}[Z_{t_{\mathcal{I}(\lambda, \mathbb{Z}, G)}}] - \lambda \cdot
abla ilde{V}_{p,n}(\lambda). \end{aligned}$$

- ▶ Checking the admissibility of a step γ costs as much as updating x_k .
- ► The algorithm is *almost* embarrassingly parallel:
 - ▶ Few iterations of the gradient descent are required (≈ 10).
 - ► Each iteration is fully parallel: each process treats its bunch of paths.
 - No demanding centralized computations
 - Very little communication: a few broadcasts only.

Parallel implementation

```
In parallel Generate (G^{(1)}, Z^{(1)}), \dots, (G^{(m)}, Z^{(m)}) m x_0 \leftarrow 0 \in \mathbb{R}^{A_{p,n}^{\otimes d}};
while True do
       Broadcast x_{\ell}, d_{\ell}, \gamma, \alpha_{\ell};
       In parallel Compute \max_{\tau_0 < k < n} (Z_{t_k}^{(i)} - N_{k}^{(i)}(x_{\ell} - \gamma \alpha_{\ell} d_{\ell}));
       Make a reduction of the above contributions to obtain \tilde{V}_{n,n}^m(x_{\ell+1/2}) and
         \nabla V_{n,n}^m(x_{\ell+1/2});
       v_{\ell+1/2} \leftarrow \tilde{V}_{n,n}^m(x_{\ell} - \gamma \alpha_{\ell} d_{\ell});
       if v_{\ell+1/2} < v_{\ell} then
           x_{\ell+1} \leftarrow x_{\ell} - \gamma \alpha_{\ell} d_{\ell};
            v_{\ell+1} \leftarrow v_{\ell+1/2}; \quad d_{\ell+1} \leftarrow \nabla \tilde{V}_{p,n}^{m}(x_{\ell+1});
             if \frac{|v_{\ell+1}-v_{\ell}|}{v_{\ell}} \leq \varepsilon then return;
       else
       \gamma \leftarrow \gamma/2;
```

end

Basket option in the BS model

p	n	S_0	price	Stdev	time (sec.)	reference price
2	3	100	2.27	0.029	0.17	2.17
3	3	100	2.23	0.025	0.9	2.17
2	3	110	0.56	0.014	0.07	0.55
3	3	110	0.53	0.012	0.048	0.55
2	6	100	2.62	0.021	0.91	2.43
3	6	100	2.42	0.021	14	2.43
2	6	110	0.61	0.012	0.33	0.61
3	6	110	0.55	0.008	10	0.61

TAB.: Prices for the put basket option with parameters T = 3, r = 0.05, K = 100, $\rho = 0$, $\sigma^{j} = 0.2$, $\delta^{j} = 0$, d = 5, $\omega^{j} = 1/d$, m = 20,000.

Call option on the maximum of a basket

d	p	m	S_0	price	Stdev	time (sec.)	reference price
2	2	20,000	90	10.18	0.07	0.4	8.15
2	3	20,000	90	8.5	0.05	4.1	8.15
2	2	20,000	100	16.2	0.06	0.54	14.01
2	3	20,000	100	14.4	0.06	5.6	14.01
5	2	20,000	90	21.2	0.09	2	16.77
5	3	40,000	90	16.3	0.05	210	16.77
5	2	20,000	100	30.7	0.09	3.4	26.34
5	3	40,000	100	26.0	0.05	207	26.34

TAB.: Prices for the call option on the maximum of d assets with parameters T=3, r=0.05, K=100, $\rho=0$, $\sigma^j=0.2$, $\delta^j=0.1$, n=9.

Scalability of the parallel algorithm

The tests were run on a BullX DLC supercomputer containing 3204 cores.

#processes	time (sec.)	efficiency
1	4365	1
2	2481	0.99
4	1362	0.90
16	282	0.84
32	272	0.75
64	87	0.78
128	52	0.73
256	34	0.69
512	10.7	0.59

TAB.: Scalability of the parallel algorithm on the 40—dimensional geometric put option described above with $T=1, r=0.0488, K=100, \sigma^j=0.3, \rho=0.1,$ $\delta^j=0, n=9, p=2, m=200,000.$

Conclusion

- ▶ Purely optimization approach. No need of an optimal strategy.
- ▶ The problem is in large dimension but convex.
- ► *Almost* embarrassingly parallel and scales very well.
- Can deal with path dependent options

- Belomestny, D. (2013).
 Solving optimal stopping problems via empirical dual optimization.
 Ann. Appl. Probab., 23(5):1988–2019.
- Jamshidian, F. (2007). The duality of optimal exercise and domineering claims: a Doob-Meyer decomposition approach to the Snell envelope. Stochastics, 79(1-2):27–60.
- ► Nesterov, Y. (2004). Smooth minimization of non-smooth functions. *Mathematical Programming*, 103(1):127–152.
- Polyak, B. T. (1987). Introduction to optimization. Optimization Software.
- ➤ Rogers, L. C. G. (2002).

 Monte Carlo valuation of American options.

 Math. Finance, 12(3):271–286.

- ► Rubinstein, R. Y. and Shapiro, A. (1993). Discrete event systems.
 - Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Ltd., Chichester. Sensitivity analysis and stochastic optimization by the score function method.
- Schoenmakers, J., Zhang, J., and Huang, J. (2013).
 Optimal dual martingales, their analysis, and application to new algorithms for bermudan products.
 - *SIAM Journal on Financial Mathematics*, 4(1):86–116.