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American Options

Framework (1)

I Consider a d′−dimensional financial market driven by a
d−dimensional Brownian motion B, with d′ ≤ d.

I The discounted payoff process writes
(

Zt = e−
∫ t

0 rsds φ(St)
)

t≤T
.

Assume E
[
supt Z2

t

]
<∞.

I Consider an American option. Its time–t discounted price is given by

Ut = esssupτ∈Tt
E[Zτ |Ft]

where Tt is the set of all F− stopping times with values in [t,T].
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American Options

Dual price (1)

The Snell envelope process (Ut)0≤t≤T admits a Doob–Meyer decomposition

Ut = U0 + M?
t − A?t .

[Rogers, 2002]: U0 = inf
M∈H1

0

E

[
sup

0≤t≤T
(Zt −Mt)

]
= E

[
sup

0≤t≤T
(Zt −M?

t )

]

I This problem admits more than a single solution.
I For any stopping time τ smaller than the largest optimal strategy,

U0 = inf
M∈H1

0

E

[
sup
τ≤t≤T

(Zt −Mt)

]
= E

[
sup
τ≤t≤T

(Zt −M?
t )

]
.
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American Options

Dual price (2)
I Some of the martingales M attaining the infimum are surely optimal

U0 = sup
0≤t≤T

(Zt −Mt) a.s.

I From [Schoenmakers et al., 2013], any martingale satisfying

Var

(
sup

0≤t≤T
(Zt −Mt)

)
= 0

is surely optimal.
I From [Jamshidian, 2007], for any optimal stopping time τ and any

surely optimal martingale M,

(Mt∧τ )t = (M?
t∧τ )t.
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American Options

Dual price (3)

With our square integrability assumption, we can rewrite the minimization
problem as

U0 = inf
X ∈ L2(Ω,FT ,P)

s.t. E[X] = 0

E

[
sup

0≤t≤T
(Zt − E[X|Ft])

]
.

How to approximate L2(Ω,FT ,P) by a finite dimensional vector space in
which conditional expectations are tractable in a closed form?
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An optimization point of view

Wiener chaos expansion (d = 1)

Let Hi be the i− th Hermite polynomial defined by

H0(x) = 1; Hi(x) = (−1)i ex2/2 di

dxi (e−x2/2), for i ≥ 1.

I H′i = Hi−1 with the convention H−1 = 0.
I If X,Y ∼ N (0, 1) and form a Gaussian vector,

E[Hi(X)Hj(Y)] = i! (E[XY])
i 1{i=j}.
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An optimization point of view

Truncated Wiener chaos expansion (d = 1)
Take a regular grid 0 = t0 < t1 < · · · < tn with step h.
Define the truncated Wiener chaos space of order p

Hp = span

{
n∏

i=1

Hαi(Gi) : α ∈ Nn, ‖α‖1 = p

}

with Gi =
Bti−Bti−1√

h
.

For F ∈ L2(Ω,FT), we introduce the truncated chaos expansion of order p

Cp,n(F) =
∑
α∈Ap,n

λα
∏
i≥1

Hαi(Gi)

where Ap,n = {α ∈ Nn : ‖α‖1 ≤ p} with ‖α‖1 =
∑

i≥0 αi.
In the following we write,

Cp,n(F) =
∑
α∈Ap,n

λαĤα(G1, . . . ,Gn)
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An optimization point of view

Key property of the truncated Wiener chaos expansion

For k ≤ n,

E[Cp,n(F)|Ftk ] =
∑
α∈Ak

p,n

λα Ĥα(G1, . . . ,Gn)

with Ak
p,n = {α ∈ Nn : ‖α‖1 ≤ p, α` = 0 ∀` > k}.

“Computing E[·|Ftk ]”⇔ “Dropping all non Ftk− measurable terms”
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An optimization point of view

Extension to the multi–dimensional case
The truncated Wiener chaos of order p ≥ 0 is given by

d∏
j=1

Ĥαj(Gj
1, . . . ,G

j
n) : α ∈ (Nn)d, ‖α‖1 ≤ p

 .

We introduce the truncated chaos expansion of order p of F ∈ L2(Ω,FT)

Cp,n(F) =
∑
α∈A⊗d

p,n

λαĤ⊗d
α (G1, . . . ,Gn) = Cp,n(λ)

where

A⊗d
p,n =

{
α ∈ (Nn)d : ‖α‖1 ≤ p

}
,

Ĥ⊗d
α (G1, . . . ,Gn) =

d∏
j=1

Ĥαj(Gj
1, . . . ,G

j
n) ∀α ∈ (Nn)d.
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An optimization point of view

Return to the American option price
We approximate the original problem

inf
X ∈ L2(Ω,FT ,P)

s.t. E[X] = 0

E

[
sup

0≤t≤T
(Zt − E[X|Ft])

]

by
inf

λ ∈ RA⊗d
p,n

s.t. λ0 = 0

Vp,n(λ) (1)

with

Vp,n(λ) = E
[

max
0≤k≤n

(Ztk − E[Cp,n(λ)|Ftk ])

]
.
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An optimization point of view

Properties of the minimization problem (1)

Proposition 1
The minimization problem (1) has at least one solution.

I The function Vp,n is clearly convex (maximum of affine functions).
I Not strongly convex but,

Vp,n(λ) ≥ |λ|
2

inf
µ∈RA⊗d

p,n ,|µ|=1

E [|Cp,n(µ)|] .
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An optimization point of view

Properties of the minimization problem (2)

I(λ,Z,G) = {0 ≤ k ≤ n : the pathwise maximum is attained at time k} .

Proposition 2
Let p ≥ 1. Assume that

∀1 ≤ r ≤ k ≤ n, ∀F Ftk − measurable, F ∈ Cp−1,n, F 6= 0,

∃ 1 ≤ q ≤ d s.t. P
(
∀t ∈]tr−1, tr], Dq

t Ztk + F = 0
∣∣ Ztk > 0

)
= 0.

Then, the function Vp,n is differentiable at all points λ ∈ RA⊗d
p,n with no zero

component and its gradient ∇Vp,n is given by

∇Vp,n(λ) = E
[
E
[
Ĥ⊗d(G1, . . . ,Gn)

∣∣ Fti

]
|i=I(λ,Z,G)

]
.
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An optimization point of view

Properties of the minimization problem (3)

I Differentiability is ensured as soon as I(λ,Z,G) is a.s. reduced to a
unique element: purpose of the blue condition.

I Alternative approach by [Belomestny, 2013]: use smoothing techniques
instead (see [Nesterov, 2004]). General idea:

Replace max
k

ak by p−1 log

(∑
k

exp(p ak)

)
.

I Let λ] be a solution, Vp,n(λ]p,n) = infλ Vp,n(λ). Then∇Vp,n(λ]p,n) = 0.
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An optimization point of view

Convergence to the true solution (1)

Proposition 3
The solution of the minimization problem (1), Vp,n(λ]p,n), converges to the
price of the American options when both p and n go to infinity and moreover

0 ≤ Vp,n(λ]p,n)− U0 ≤ 2 ‖M?
T − Cp,n(M?

T)‖2 .

I Consider a Bermudan option with exercising dates t0, · · · , tn and
discounted payoff (Ztk )k adapted to the discrete time filtration generated
by the Brownian increments only. Then, Vp,n(λ]p,n) converges to the
price of the Bermudan option when p only goes to infinity.
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How to effectively solve the optimization problem

Practically solving the optimization problem (1)

We approximate the solution of

Vp,n(λ]p,n) = inf
λ∈A⊗d

p,n

Vp,n(λ) = inf
λ∈A⊗d

p,n

E
[

max
0≤k≤n

(Ztk − E[Cp,n(λ)|Ftk ])

]
by introducing the well–known Sample Average Approximation (see
[Rubinstein and Shapiro, 1993]) of Vp,n defined by

Vm
p,n(λ) =

1
m

m∑
i=1

max
0≤k≤n

(
Z(i)

tk − E[C(i)
p,n(λ)|Ftk ]

)
.

Note that the conditional expectation boils down to truncating the chaos
expansion and hence is tractable in a closed form.
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How to effectively solve the optimization problem

Practically solving the optimization problem (2)

For large enough m, Vm
p,N is convex, a.s. differentiable and tends to infinity at

infinity. Then, there exits λm
p,n such that

Vm
p,n(λm

p,n) = inf
λ∈RA⊗d

p,n

Vm
p,n(λ).

Proposition 4

Vm
p,n(λm

p,n) converges a.s. to Vp,n(λ]p,N) when m→∞.
The distance from λm

p,n to the set of minimizers of Vp,n converges to zero as m
goes to infinity.
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How to effectively solve the optimization problem

Practically solving the optimization problem (3)

Write Mk(λ) = E[Cp,n(λ)|Ftk ] for 0 ≤ k ≤ n.

Proposition 5

Assume λ]p,n is unique. Then,

1
m

m∑
i=1

(
max

0≤k≤n
Z(i)

tk −M(i)
k (λm

p,n)

)2

− Vm
p,n(λm

p,n)2

is a convergent estimator of Var(maxk≤0≤n Ztk −Mk(λ
]
p,n)) and moreover, if

λm
p,n is bounded,

lim
m→∞

m Var
(
Vm

p,n(λm
p,n)
)

= Var( max
k≤0≤n

Ztk −Mk(λ
]
p,n)).
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How to effectively solve the optimization problem

The algorithm: bespoke martingales
Define the first time the option goes in the money by

τ0 = inf{k ≥ 0 : Ztk > 0} ∧ n.

Consider martingales only starting once the option has been in the money

Nk(λ) = Mk(λ)−Mk∧τ0(λ).

In the dual price, “max0≤k≤n” can be shrunk to “maxτ0≤k≤n”.
Using Doob’s stopping theorem, we have

E
[

max
τ0≤k≤n

(Ztk −Mk(λ))

]
= E

[
max
τ0≤k≤n

(Ztk − (Mk(λ)−Mτ0(λ)))

]
The martingales M(λ) or N(λ) lead to the same minimum value.
The set of martingales Nλ is far more efficient from a practical point of view.
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How to effectively solve the optimization problem

The algorithm: a gradient descent with line search
x0 ← 0, k← 0, γ ← 1, d0 ← 0, v0 ←∞ ;
while True do

Compute vk+1/2 ← Ṽm
p,n(xk − γαkdk) ;

if vk+1/2 < vk then
xk+1 ← xk − γαkdk ;
vk+1 ← vk+1/2 ;
dk+1 ← ∇Ṽm

p,n(xk+1) ;

if |vk+1−vk|
vk

≤ ε then return;
else

γ ← γ/2 ;
end

end

Take α` =
Ṽm

p,n(x`)− v]∥∥∇Ṽm
p,n(x`)

∥∥2 , see [Polyak, 1987], but with the European price

instead of the American one for v].
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How to effectively solve the optimization problem

Some remarks on the algorithm

I Given the expression of Vm
p,n, both the value function and its gradient

are computed at the same time without extra cost.

Vp,n(λ) = E
[

max
τ0≤k≤n

(
Ztk − E[λ · H⊗d(G1, · · · ,Gn)|Ftk ]

)]
,

= E[ZtI(λ,Z,G)
]− λ · ∇Ṽp,n(λ).

I Checking the admissibility of a step γ costs as much as updating xk.
I The algorithm is almost embarrassingly parallel:

I Few iterations of the gradient descent are required (≈ 10).
I Each iteration is fully parallel: each process treats its bunch of paths.
I No demanding centralized computations
I Very little communication: a few broadcasts only.
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How to effectively solve the optimization problem

Parallel implementation
In parallel Generate (G(1),Z(1)), . . . , (G(m),Z(m)) m x0 ← 0 ∈ RA⊗d

p,n ;
while True do

Broadcast x`, d`, γ, α`;
In parallel Compute maxτ0≤k≤n(Z(i)

tk − N(i)
k (x` − γα`d`));

Make a reduction of the above contributions to obtain Ṽm
p,n(x`+1/2) and

∇Ṽm
p,n(x`+1/2);

v`+1/2 ← Ṽm
p,n(x` − γα`d`) ;

if v`+1/2 < v` then
x`+1 ← x` − γα`d` ;
v`+1 ← v`+1/2; d`+1 ← ∇Ṽm

p,n(x`+1) ;

if |v`+1−v`|
v`

≤ ε then return;
else

γ ← γ/2 ;
end

end
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Numerical experiments

Basket option in the BS model

p n S0 price Stdev time (sec.) reference price
2 3 100 2.27 0.029 0.17 2.17
3 3 100 2.23 0.025 0.9 2.17
2 3 110 0.56 0.014 0.07 0.55
3 3 110 0.53 0.012 0.048 0.55
2 6 100 2.62 0.021 0.91 2.43
3 6 100 2.42 0.021 14 2.43
2 6 110 0.61 0.012 0.33 0.61
3 6 110 0.55 0.008 10 0.61

TAB.: Prices for the put basket option with parameters T = 3, r = 0.05, K = 100,
ρ = 0, σj = 0.2, δj = 0, d = 5, ωj = 1/d, m = 20, 000.

J. Lelong (Grenoble Alpes University) Int. MC Conf., July 8, 2016 23 / 26



American Options
An optimization point of view

How to effectively solve the optimization problem
Numerical experiments

Pricing American options using martingale bases

Numerical experiments

Call option on the maximum of a basket

d p m S0 price Stdev time (sec.) reference price
2 2 20, 000 90 10.18 0.07 0.4 8.15
2 3 20, 000 90 8.5 0.05 4.1 8.15
2 2 20, 000 100 16.2 0.06 0.54 14.01
2 3 20, 000 100 14.4 0.06 5.6 14.01
5 2 20, 000 90 21.2 0.09 2 16.77
5 3 40, 000 90 16.3 0.05 210 16.77
5 2 20, 000 100 30.7 0.09 3.4 26.34
5 3 40, 000 100 26.0 0.05 207 26.34

TAB.: Prices for the call option on the maximum of d assets with parameters T = 3,
r = 0.05, K = 100, ρ = 0, σj = 0.2, δj = 0.1, n = 9.
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Numerical experiments

Scalability of the parallel algorithm
The tests were run on a BullX DLC supercomputer containing 3204 cores.

#processes time (sec.) efficiency
1 4365 1
2 2481 0.99
4 1362 0.90

16 282 0.84
32 272 0.75
64 87 0.78
128 52 0.73
256 34 0.69
512 10.7 0.59

TAB.: Scalability of the parallel algorithm on the 40−dimensional geometric put
option described above with T = 1, r = 0.0488, K = 100, σj = 0.3, ρ = 0.1,
δj = 0, n = 9, p = 2, m = 200, 000.

J. Lelong (Grenoble Alpes University) Int. MC Conf., July 8, 2016 25 / 26



American Options
An optimization point of view

How to effectively solve the optimization problem
Numerical experiments

Pricing American options using martingale bases

Numerical experiments

Conclusion

I Purely optimization approach. No need of an optimal strategy.
I The problem is in large dimension but convex.
I Almost embarrassingly parallel and scales very well.
I Can deal with path dependent options
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Numerical experiments
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