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BS and SDE models

Consider SDE-model (m + 1-dimensional)

dSt = b(t,St)dt + a(t,St)dWt , t ∈ [0,T ],

S0 = s0

S0 . . . riskless asset S1, . . . ,Sk risky assets

Special case: Black-Scholes model:

Bond: S0
t = S0

0 exp(rt)

Share: S1
t = S1

0 exp
((
µ− σ2

2

)
t + σWt

)
, t ∈ [0,T ],

Popular example: “Heston model”

S0 . . . bond

S1 . . . share

S2 . . . volatility
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Pricing European claims

A European contingent claim is a contract that pays its owner an
amount of money that depends on the price processes up to T

E.g. Asian Call option on S1 pays max
(

1
T−T0

∫ T
T0

S1
t dt − K , 0

)
at

time T

for our purpose: any (reasonable) function on the set of paths of the
price process

Value of a claim C with payoff ψ

π0(C ) = EQ

( S0
0

S0
T

ψ(S1, . . . ,Sk)
)

where Q is a pricing measure, S0 the riskless asset.

Compute π0(C ) by (quasi-) Monte Carlo
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Prices as integrals

Compute paths with some method

(Euler Maruyama, Milstein, . . . )

from increments of Brownian motion

i.e. from d-dimensional standard normal input

where d can be a rather large number

That means:

π0(C ) =

∫
Rd

ψ̂(x)φ(x)dx

where φ is d-dimensional standard normal density and ψ̂ is a suitable
reformulation of payoff ψ

Frequently this integral is transformed into one on the d-dimensional
unitcube (but we won’t)
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High-dimensional integration

Suppose f : (0, 1)d −→ R is integrable and we want to know

I =

∫
(0,1)d

f (x)dx .

Approximate

I ≈ 1

N

N∑
k=1

f (xk) ,

Monte Carlo: uniformly random points x1, . . . , xN ∈ (0, 1)d

Quasi-Monte Carlo: well-distributed points x1, . . . , xN ∈ (0, 1)d
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High-dimensional integration, II

Typical error-estimate for QMC∣∣∣∣∣
∫
(0,1)d

f (x)dx− 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ ‖f ‖D ((xk)Nk=1

)

where

‖.‖ is some norm (or semi-) on a function space measuring the
variability of a function e.g. total variation in the sense of Hardy &
Krause

D is some measure of equi-distribution of N points in the unit cube,
e.g. the star discrepancy D∗

“Koksma-Hlawka type error bound”
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High-dimensional integration, III

Without going into details . . .

the best constructions for uniformly
distributed points give

D∗N ≤ C
log(N)d−1

N

(For large N this convergence would be much faster than N−
1
2 .)
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High-dimensional integration, IV

Double logarithmic plot of N 7→ log(N)d−1

N :

10 20 30 40

-40

-20

20 N-1

N-1/2

log2(N)2/N

log2(N)5/N

log2(N)8/N

log2(N)12/N
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High-dimensional integration, V

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

Asian option

Random
Halton
Sobol

N^(-1/2)

Asian Option d = 128
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High-dimensional integration, VI

This phenomenon frequently occured in applications from mathematical
finance, or, more concretely, in derivative pricing.

Where does this apparent superiority come from?
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Classical constructions

Three classical constructions of discrete Brownian paths from standard
normal input Z1, . . . ,Zd :

the forward method, a.k.a. step-by-step method or piecewise method

B k+1
d

is computed by adding
√

1
dZk+1 to B k

d

the Brownian bridge construction or Lévy-Ciesielski construction
Compute first B1 using Z1, then B1/2 using Z2 and B1, then B1/4,
B3/4, . . . , using already constructed neighbors

the principal component analysis construction (PCA construction)
optimal `2 approximation of paths
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Why we need more than one construction
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Why we need more than one construction, II

Can we explain this behavior?

QMC seems to perform better if some of the variables are more
important than the others

alternative path constructions often help to put more weight on the
first few of the variables Z1,Z2, . . . ,Zd
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Why we need more than one construction, III

All variables but the first left constant:
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Why we need more than one construction, IV

All variables but the seventh left constant:
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Introduction of weights

Idea

Consider weighted Korobov- or Sobolev spaces

(Sloan and Woźniakowski, 1998)

give Koksma-Hlawka type inequalities with weighted
norm/discrepancy

sequence need not be as well-distributed in coordinates that are less
important
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Orthogonal transforms

Papageorgiou (2002) oberved, that the classical constructions correspond
to orthogonal transforms of the standard Gaussian input to forward
construction

Forward construction corresponds to identity

Brownian bridge corresponds to inverse Haar transform

PCA corresponds to (fast) sine transform

L.(2012) provides a number of alternative constructions with cost
proportional to log(d)d per path

However: Whether a path construction is ”good” or not depends on the
payoff as well
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1 Derivative pricing

2 QMC methods

3 Generation of Brownian paths

4 Hermite spaces
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Hermite space on R

φ(x) := 1√
2π

exp(− x2

2 ), x ∈ R

L2(R, φ) = {f : measurable and
∫
R |f |

2φ <∞}
(H̄k)k . . . sequence of normalized Hermite polynomials

(i.e. H̄0, H̄1, H̄2, . . . is the Gram-Schmidt

orthogonalization of 1, x , x2, . . . in L2(R, φ)

(H̄k)k . . . forms Hilbert space basis of L2(R, φ), i.e.

f =
∑
k≥0

f̂ (k)H̄k in L2(R, φ)

f̂ (k) =
∫
R f (x)H̄k(x)φ(x)dx
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Hermite space on R, II

Theorem (Irrgeher & L. (?) (2015) )

Let (rk)k≥0 be a sequence with

rk > 0

∑
k≥0 rk <∞

If f : R→ R is continuous,
∫
R f (x)2φ(x)dx <∞, and∑

k≥0 r
−1
k |f̂ (k)|2 <∞ then

f (x) =
∑
k≥0

f̂ (k)H̄k(x) for all x ∈ R
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Hermite space on R, III

Fix some positive summable sequence r = (rk)k≥0

Introdude the norm

‖f ‖2her :=
∞∑
k=0

r−1k f̂ (k)2

and inner product:

〈f , g〉her :=
∞∑
k=0

r−1k f̂ (k)ĝ(k)
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Hermite space on R, IV

Theorem (Irrgeher & L.(2015))

The Hilbert space

Hher(R) := {f ∈ L2(R, φ) ∩ C (R) : ‖f ‖her <∞}

is a reproducing kernel Hilbert space with reproducing kernel

Kher(x , y) =
∑
k∈N0

r(k)H̄k(x)H̄k(y)

“one-dimensional” Hermite space
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Hermite space on R, V

There are indeed some interesting functions in Hher(R):

Irrgeher & L.(2015): For rk = k−α, f ∈Hher(R) contains all
functions for which derivatives up to order β > α+ 1 exist and satisfy
an integrability and growth condition

Newer result: Dick, Irrgeher, L., Pillichshammer (2016): For every
α ≥ 1 there exists a (unique) sequence (rα,k)k∈N0 with
limk→∞ rα,kk

α = 1 and

‖f ‖2her =
∞∑
k=0

r−1α,k |f̂ (k)|2 =
α∑

j=0

∫
R
|f (j)(x)|2φ(x)dx

That is, for this sequence the Hermite-space is isometrically
isomorphic to a certain classical Sobolev space
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Hermite spaces on Rd

For a d-multi-index k = (k1, . . . , kd) define

H̄k(x1, . . . , xd) :=
d∏

j=1

H̄kj (xj)

defines Hilbert space basis of L2(Rd , φ)

φ(x) :=
d∏

j=1

φ(xj)

write f̂ (k) := 〈f , H̄k〉 =
∫
Rd f (x)H̄k(x)φ(x)dx
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Hermite spaces on Rd , II
Fix a positive summable sequence (rk)k∈N0

For given coordinate weights γ1 ≥ γ2 ≥ · · · > 0 let the function
r(γ, .) : Nd

0 −→ R be given by

r(γ, k) =
d∏

j=1

r̃(γj , kj)

where

r̃(γ, k) :=

{
1 k = 0

γ−1rk k ≥ 1

And consider the inner product

〈f , g〉her,γ =
∑
k∈Nd

0

r(γ, k)−1f̂ (k)ĝ(k)

Let Hher,γ(Rd) be the corresponding Hilbert space
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Hermite spaces on Rd , III

Irrgeher & L.(2015): Integration in the RKHS Hher,γ(Rd) is

strongly tractable if
∑∞

j=1 γj <∞,

tractable if lim supd
1

log d

∑d
j=1 γj <∞.

I.e., integration does not necessarily suffer from curse of dimension

Why are we interested in this particular space?

Let f ∈Hher,γ and let U : Rd −→ Rd some orthogonal transform,
U>U = 1Rd

then f ◦ U ∈Hher,γ

also
∫
Rd f ◦ U(x)φ(x)dx =

∫
Rd f (x)φ(x)dx

but in general ‖f ◦ U‖her,γ 6= ‖f ‖her,γ
note difference to Monte Carlo
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Hermite spaces on Rd , IV

norm of ‖f ◦ U‖ depends on U in a continuous fashion.

We can – in principle – use optimization techniques to find best
transform

An earlier result/method by Irrgeher & L. (2012) is better understood
in the context of Hermite spaces

instead of minimizing the weighted norm of ‖f ◦ U‖, minimize a
seminorm which does not take into account all Hermite coefficients

for example, only consider order one coefficients

method is termed linear regression method and generates paths in
linear time
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Examples regression algorithm

Average value option
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Examples regression algorithm, II

Average value basket option
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Examples regression algorithm, III

Average value barrier option
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Hermite spaces
Conclusion

We have provided a potential approach to explaining the effectiveness
of QMC for high-dimensional financial applications

the approach enabled us to find a method that is practically the best
available at the moment

different lines of research:

construct point sets/sequences for those spaces
generalize regression method to higher oder approximations
deal with “kinks”
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Thank you !
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