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Motivation

I Typically we fix the number of samples to draw, n, and allow the
time taken to draw these, T (n) to be a random variable.

I Instead, we wish to fix the time, t, and allow the number of
samples drawn in this time, N (t), to be the random variable.

I Why? Real-time deadlines, cloud computing budgets,
synchronisation and fault tolerance in a distributed computing
environment, fair computational comparison of methods.
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Existing work

I P. W. Glynn and P. Heidelberger. Bias properties of budget
constraint simulations.
Operations Research, 38(5):801–814, 1990.

I P. W. Glynn and P. Heidelberger. Analysis of parallel replicated
simulations under a completion time constraint.
ACM Transactions on Modeling and Computer Simulations, 1
(1):3–23, 1991.

I B. Paige, F. Wood, A. Doucet, and Y. W. Teh. Asynchronous
anytime sequential Monte Carlo.
In Advances in Neural Information Processing Systems 27, pages
3410–3418. 2014.
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Framework

I Consider a Markov chain (Xn)∞n=0 with transition kernel
κ(xn+1 | xn) and invariant distribution π(x).

I A computer takes some real time Hn to complete the
computations necessary to transition from Xn to Xn+1.

I Hn is the hold time of Xn, distributed according to τ(hn | xn).

I We can write:

κ(xn+1 | xn) =

∫
κ(xn+1 | xn,hn)τ(hn | xn) dhn.
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Framework

I Intercept the running process at some time t.

I The state at that time, X(t), is not—in general—distributed
according to π(x). It is length-biased with respect to compute
time.

I For t sufficiently large, X(t) is distributed according to α(x), with

α(x) ∝ π(x)Eτ[H | x].

I We refer to α(x) as the anytime distribution.
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Sketch of Proofs

I Construct a real-time Markov process (X,L)(t), with L ∈ R,
L ≥ 0, the lag time since the last jump.

I Assume E[H | x] is finite and H ≥ ε .

I Define:

x := x(t)

l := l(t)

x+ := x(t + ε )

l+ := l(t + ε ).
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Sketch of Proofs
The transition kernel is:

λ(x+, l+ | x, l) = γ(x)λ1(x+, l+ | x, l) + (1 − γ(x)) λ0(x+, l+ | x, l),

where
γ(x) =

Pτ[l < H ≤ l + ε | x]
Pτ[H > l | x]

is the probability of a jump occurring in the time interval (t, t + ε],

λ1(x+, l+ | x, l) = κ(x+ | x,H = l+ε− l+)
τ(H = l + ε − l+ | x)I[0,ε) (l+)
Pτ[l < H ≤ l + ε | x]

the transition kernel if one does, and

λ0(x+, l+ | x, l) := δx(x+)δl+ε (l+)

the transition kernel if one does not. As H > ε , at most one jump can
occur.
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Sketch of Proofs

I We now have a Markov chain to study.

I The invariant distribution is

α(x, l) =
Pτ[H > l | x]
Eτ[H]

π(x),

with marginal
α(x) ∝ π(x)Eτ[H | x],

i.e. the anytime distribution previously identified.

I The original Markov chain is recovered by recognising
α(x | l = 0) = π(x).
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Anytime Monte Carlo

I We want the anytime distribution to instead be π(x).

I A sufficient condition to establish this is for the expected hold
time to be independent of X, i.e.

Eτ[H | x] = Eτ[H]

so that α(x) = π(x).

I For iid sampling, this is trivial. Have κ(xn+1 | xn) = π(xn+1) and
τ(hn | xn) = τ(hn).
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Anytime Monte Carlo

I For non-iid sampling, consider modifying the transition of the
Markov chain to

Xn ∼ κ(dxn | xn−2).

I This interleaves two independent Markov chains, where the hold
times of each chain depend only on the states of the other chain.

I Generalise this to K ≥ 2 number of chains. Using a single
processor, repeatedly choose one at random (or systematically)
and advance it forward one step.
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Anytime Monte Carlo

I While for one chain we have an anytime distribution of:

α(x) ∝ π(x)Eτ[H | x],

for K ≥ 2 chains, we have an anytime distribution of:

β(x1:K ) = α(xk)
K∏

i=1,i,k

π(xi),

where k is the index of the currently advancing chain.

I That is, only the kth chain is length-biased, and can simply be
discarded. The remaining K − 1 states are distributed according
to π(x).
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Toy Case Study

I Consider the model

X ∼ Gamma(k, θ)

H | x ∼ Gamma(xp/θ, θ),

with shape parameter k, scale parameter θ, and polynomial
degree p.

I The two distributions correspond to the target distribution π(x)
and hold-time distribution τ(h | x), respectively, yielding an
anytime distribution α(x) of Gamma(k + p, θ).
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Toy Case Study

I 10000 Markov chains targeting π(x) for 100 units of virtual time.

I At each virtual time, take the state of all chains and evaluate the
probability plot (Q-Q plot) correlation coefficient comparing the
empirical distribution of these samples with π(x).

I Compare four sampling regimes:
1. K = 2 chains, with X1:K (0) ∼ α(dx1:K ) and lag,
2. K = 2 chains, with X1:K (0) ∼ π(dx1:K ) and no lag,
3. K = 1 chain, with X(0) ∼ α(dx) and lag,
4. K = 1 chain, with X(0) ∼ π(dx) and no lag.
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Toy Case Study
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Toy Case Study
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Sequential Monte Carlo Case Study

I D-dimensional Lorenz ’96 model given by the equations:

dxd

dt
= xd−1 (xd+1 − xd−2) − xd + F,

where subscripts are interpreted cyclically, so that
xd−D ≡ xd ≡ xd+D, and F is a parameter.

I Use an 8-dimensional model here, discretised with an adaptive
time-step Runge—Kutta across intervals of 0.05. Gaussian noise
of variance 10−4

I Prior distribution F ∼ U ([0,7]).

Lawrence Murray 17 / 31



x

F

-6

-4

-2

0

2

4

6

8

0 1 2 3 4 5 6 7



-20000

-15000

-10000

-5000

0

0 1 2 3 4 5 6 7

lo
g
lik
e
lih
o
o
d

F



0

5

10

15

20

25

0 1 2 3 4 5 6 7

c
(s
)

F



Sequential Monte Carlo (SMC)

1. For m = 0, draw N particles (samples) θ1:N from π0(θ).

2. For m = 1, . . . ,M

2.1 Weight: assign θn a weight of

wn = πm(θn)/πm−1(θn)
∝ p(ym | θ

n,y1:m−1)

2.2 Interact: resample all particles according to weights and adapt a
new kernel κm(θ ′ | θ) that is invariant to πm(θ).

2.3 Move: apply the kernel κm(θ ′ | θ) to each particle some number
of times.
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SMC2

I Run SMC2 using LibBi (www.libbi.org) on a local compute
server.

I 6 GPUs each with 1536 cores.
About 10,000 way parallelism.

I 28 θ-particles each with 220 x-particles.
About 250,000,000 particles.
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Anytime SMC2

I Set a deadline to finish the mth move step.

I During the move step, repeatedly choose a θ-particle at random
and apply the kernel.

I When time is up, discard the θ-particle currently selected, and
proceed to the next weight and interact steps.
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Cloud Computing

I Run SMC2 using LibBi (www.libbi.org) on Amazon EC2.

I 128 GPU instances each with 1536 cores.
About 200,000 way parallelism.

I 212 θ-particles each with 220 x-particles.
About 4,000,000,000 particles.
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Summary

I The anytime framework allows Monte Carlo algorithms to be
configured in terms of real time rather than number of samples.

I Can be used to satisfy real-time deadlines and budget constraints,
perhaps provide fault tolerance.

I Because, for non-iid sampling, it requires multiple states, it is
particularly useful within SMC, which already has multiple
states (particles).

I In a distributed computing setting, mitigates problems associated
with synchronisation that can otherwise limit scalability.
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