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Counterparty risk on credit derivatives

• The credit crisis and the European sovereign debt crisis have highlighted

the native form of credit risk, namely counterparty risk

⇒ CVA & DVA (Credit & Debt Valuation Adjustment).

• The classical assumption of a unique locally risk-free asset is no longer

sustainable ⇒ FVA (Funding Valuation Adjustment).

Θ(TVA) = CVA + DVA + FVA.

TVA on credit derivatives challenges:

• non linear BSDE over random time interval (first default time) with

strong dependence between the underlying exposure and the default risk of

the two counterparties (wrong-way risk)

⇒ extended reduced-form modeling approach in Crépey and Song (2014a,

2014b, 2015a, 2015b).

• high-dimensional nonlinear problems ⇒ purely forward simulation
schemes:

• linear Monte Carlo expansion with randomization of Fujii and Takahashi
(2012a, 2012b)

• marked branching diffusion approach of Henry-Labordère (2012).
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TVA computation (I)

We consider a portfolio of OTC derivatives between the bank and its

counterparty under a risk-neutral pricing measure (G,Q). The funder of the

bank is a third party that insures the bank’s funding strategy.

TVA equation

βtΘt = Et

[∫ τ̄

t

βs fvas(Θs)ds + βτ̄1τ<T ξ

]
, ∀t ∈ [0, τ̄ ],

τ̄ = τ ∧ T where τ is the first to default time,

βt = e−
∫ t

0 rsds : discount factor where r is the OIS (risk-free) short rate process,

fvat(ϑ) = λ̄t(Pt − ϑ)+: funding coefficient, P: the clean value of the portfolio,

ξ : exposure at default of the bank.
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TVA computation (II)

• Let ft(ϑ) = fvat(ϑ)− rtϑ

⇒ Full TVA BSDE (I): Θt = Et

[∫ τ̄
t

fs(Θs)ds + 1τ<T ξ
]
, 0 ≤ t ≤ τ̄ .

• Let ξ̂ be a G predictable process such that ξ̂τ = E[ξ|Gτ− ] on τ <∞,

f̄t(ϑ) = (rt + γt)ξ̂t + ft(ϑ) = cdvat + fvat(ϑ)− rtϑ.

⇒ Partially reduced TVA BSDE (II): Θ̄t = Et

[∫ τ̄
t

f̄s(Θ̄s)ds
]
, 0 ≤ t ≤ τ̄ ,

• Let f̂t(ϑ) = f̄t(ϑ)− γtϑ = cdvat + fvat(ϑ)− (rt + γt)ϑ.

Extended reduced form approach Crépey and Song (2015): Reference

(market) filtration F + “invariance probability” P, F “reduction” f̃t(ϑ) of

f̂t(ϑ)

⇒ Fully reduced TVA BSDE (III): Θ̃t = Ẽt

[∫ T

t
f̃s(Θ̃s)ds

]
, t ∈ [0,T ].

Three BSDEs are equivalent, and f̄t , f̃t satisfy the monotonicity assumption.

⇒ existence, uniqueness, comparison and BSDE standard estimates.
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Markov jump diffusion setup

If there exists a (G,Q) jump diffusion X such that

f̄t(ϑ) = f̄ (t,Xt , ϑ) hence Θ̄t = Θ̄(t,Xt) t ∈ [0, τ̄ ] (1)

then the F extension of X is an (F ,P) jump diffusion X̃ such that

f̃t(ϑ) = f̃ (t, X̃t , ϑ), hence Θ̃t = Θ̃(t, X̃t), t ∈ [0,T ], (2)

where the reduced TVA functions Θ̄ and Θ̃ satisfy the reduced TVA PIDEs

with generators A of X and Ã of X̃ , namely, for τ given as the first exit time

of X from a domain R̄{
Θ̄(t, x) = 0, t = T or x /∈ R̄
(∂t +A)Θ̄(t, x) + f̄ (t, x , Θ̄(t, x)) = 0 on [0,T )× R̄,

(3)

{
Θ̃(T , ) = 0 , ∈ R̃
(∂t + Ã)Θ̃(t, ) + f̃ (t, , Θ̃(t, )) = 0 on [0,T )× R̃,

(4)

where R̃ is the state space of .
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“FT scheme” - Linear expansion

Perturbed form of the fully reduced BSDE (III): t ∈ [0,T ],

Θ̃εt︸︷︷︸
Θ̃

(0)
t +εΘ̃

(1)
t +ε2Θ̃

(2)
t +···

= Ẽt

∫ T

t

ε f̃s (Θ̃εs )︸ ︷︷ ︸
f̃s (Θ̃

(0)
s )+(εΘ̃

(1)
s +··· )∂ϑ f̃s (Θ̃

(0)
t )+

1

2
(εΘ̃

(1)
t +··· )2∂2

ϑ2 f̃s (Θ̃
(0)
t )+···

ds.

Collecting the terms of the same order with respect to ε, we obtain Θ̃
(0)
t = 0,

and

Θ̃
(1)
t = Ẽt

[∫ T

t

f̃s(Θ̃(0)
s )ds

]
,

Θ̃
(2)
t = Ẽt

[∫ T

t

Θ̃(1)
s ∂ϑ f̃s(Θ̃(0)

s )ds

]
,

Θ̃
(3)
t = Ẽt

[∫ T

t

Θ̃(2)
s ∂ϑ f̃s(Θ̃(0)

s )ds

]
,

Θ̃t ≈ Θ̃
(1)
t + Θ̃

(2)
t + Θ̃

(3)
t .
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“FT scheme” - Randomization

Randomization: Let ζ1 be a random variable with density

φ(t, s) = 1s≥t µ e−µ(s−t).

⇒ Θ̃
(1)
t = Ẽt

[∫ T

t

φ(t, s)
eµ(s−t)

µ
f̃s(Θ̃(0)

s )ds

]
= Ẽt

[
1ζ1<T

eµ(ζ1−t)

µ
f̃ζ1 (Θ̃

(0)
ζ1

)

]
.

Θ̃
(1)
0 = Ẽ

[
1ζ1<T

eµζ1

µ
f̃ζ1 (Θ̃

(0)
ζ1

)

]
Θ̃

(2)
0 = Ẽ

[
1ζ1+ζ2<T

eµζ1

µ
∂ϑ f̃ζ1 (Θ̃

(0)
ζ1

)
eµζ2

µ
f̃ζ1+ζ2 (Θ̃

(0)
ζ1+ζ2

)

]
Θ̃

(3)
0 = Ẽ

[
1ζ1+ζ2+ζ3<T

eµζ1

µ
∂ϑ f̃ζ1 (Θ̃

(0)
ζ1

)
eµζ2

µ
∂ϑ f̃ζ1+ζ2 (Θ̃

(0)
ζ1+ζ2

)
eµζ3

µ
f̃ζ1+ζ2+ζ3 (Θ̃

(0)
ζ1+ζ2+ζ3

)

]
ζ1, ζ2, ζ3: elapsed times from the last interaction until the next interaction,

which are independent exponential random variables with parameter µ.

Under Q expectations: Θ̄(0) = 0, similar formulas for Θ̄
(1)
0 , Θ̄

(2)
0 , Θ̄

(3)
0 but with τ

instead of T , f̄ instead of f̃ .
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“PHL scheme” - path dependant marked branching diffusion

BSDE (II): Θ̄t = Et

[∫ τ̄
t

f̄ (s,Xs , Θ̄s)ds
]
, 0 ≤ t ≤ τ̄ .

• X : (G,Q) Markov factor process

in a domain D,

τ = inf{t > 0 : Xt /∈ D}.
• Polynomial

F̄t,x(y) =
∑d

k=0 āk(t, x)y k

s.t. µ(F̄t,x(y)− y) ≈ f̄ (t, x , y).

• Random tree T (figure: d=2)

 

D 

root (t0,x0) 

node (t1,x1,2) 

node (t11,x11,1) 

node (t111,x111,0) 

node (t12,x12,2) 

node (t121,x121,0) 

node (t122,x122,0) 

exit point 

T 

0 

exit point 

ū(t0, x0) = Et0,x0

1T ⊂[0,T ]×D

∏
{inner nodes (t,x,k) of T }

āk(t, x)

pk

 , (t0, x0) ∈ [0,T ]×D.

⇒ ū ≈ Θ̄

Approximate solutions for the BSDEs (I) and (III) can be constructed similarly.

9 / 15



Counterparty risk on credit derivatives TVA computation Numerical schemes Applications Conclusion

“PHL scheme” - path dependant marked branching diffusion

BSDE (II): Θ̄t = Et

[∫ τ̄
t

f̄ (s,Xs , Θ̄s)ds
]
, 0 ≤ t ≤ τ̄ .

• X : (G,Q) Markov factor process

in a domain D,

τ = inf{t > 0 : Xt /∈ D}.
• Polynomial

F̄t,x(y) =
∑d
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Dynamized Gaussian Copula model (I)

• The default times are defined from a correlated multivariable BM.

• We lose the copula structure after a splitting time, so PHL scheme is not

available.

1st 2nd 3rd
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Order

T
V

A

TVA one CDS different orders

 

 

λ̄ = 0%

λ̄ = 1%

λ̄ = 2%

λ̄ = 3%

1st 2nd 3rd
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

Order
T

V
A

TVA 10 CDSs different orders

 

 

λ̄ = 0%

λ̄ = 1%

λ̄ = 2%

λ̄ = 3%

• The default leg of the CDS at 0 is 4.52 (left), 40.78 (right).

⇒ high TVA, which is explained by the wrong-way risk of the DGC model.

• When λ̄ 6= 0, the second FT term represents 5% to 10% of the first FT

term ⇒ first FT term: first order linear estimate of the TVA, second FT

term: nonlinear correction.
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Dynamized Gaussian Copula model (II)

0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

̺

T
V

A

TVA one CDS different correlations

 

 

λ̄ = 0%

λ̄ = 1%

λ̄ = 2%

λ̄ = 3%

0.2 0.4 0.6 0.8
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

̺

T
V

A

TVA 10 CDSs different correlations

 

 

λ̄ = 0%

λ̄ = 1%

λ̄ = 2%

λ̄ = 3%

Figure : Left: TVA on one CDS computed by FT scheme of order 3 as a function of
the DGC correlation parameter %. Right: Similar results regarding a portfolio of CDS
contracts on ten different names.

• TVA increases (roughly linearly) with %, including for high values of %.

• The errors of the different orders of the FT scheme don’t explode with the

dimension or with the level of nonlinearity. Computation times are

essentially linear in the number of names.
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Dynamized Marshall Olkin model

• The default times are defined from the shock times of the “single shocks”

and some “common shocks”. The correlation between default times is

modeled via the common shock intensities.

• The copula structure still holds after a conditional time ⇒ both FT and

PHL schemes are available.

t

-1 

0

1

2

3

1

2

3

0

1

0

2

3

0

2

3

1

0

2

3

1

-1 -1 -1 -1 

Figure : One possible default path in the common-shock model with n = 3 and
Y = {{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}.
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Dynamized Marshall Olkin model (II)
Method TVA 95% CI Rel. SE

FT 3.13 [3.10 , 3.16] 0.48 %

P̃HL 3.07 [2.87 , 3.28] 3.35 %

PHL 3.16 [2.94 , 3.37] 3.37 %

PHL 2.53 [2.13 , 2.94] 8.02%

Method TVA 95% CI Rel. SE

FT 9.08 [ 9.00 , 9.16] 0.46 %

P̃HL 9.05 [ 8.40 , 9.70] 3.58 %

PHL 9.28 [8.63 , 9.94] 3.51 %

PHL 12.6 [6.92 , 18.3] 22.5%

Method TVA 95% CI Rel. SE

FT 6.43 [6.33 , 6.53] 0.75 %

P̃HL 6.34 [5.93 , 6.75 ] 3.22 %

PHL 6.34 [5.93 , 6.75] 3.25 %

PHL 4.86 [2.84 , 6.89] 20.82%

Method TVA 95% CI Rel. SE

FT 2.29 [2.25 , 2.32] 0.77 %

P̃HL 2.51 [2.35 , 2.67] 3.17 %

PHL 2.68 [2.52 , 2.85] 3.12 %

PHL 1.93 [0.79 , 3.08] 29.57%

Table : FT, PHL, PHL and P̃HL schemes applied to the equity (top) and mezzanine
(middle) tranche, for the parameters λ̄ = 0%, λIj = 60bp/j (left) or λ̄ = 3%,
λIj = 20bp/j (right).

• The three PHL schemes are slightly biased, but the first two, based on the BSDEs with null
terminal condition, exhibit much less variance than the third one, based on the full BSDE
with terminal condition ξ.

• The intensities of the common shocks, which play a role similar to the correlation % in the
DGC model, have a more important impact on the higher tranches (mezzanine and senior
tranche),

• The equity tranche is more sensitive to the level of the unsecured borrowing spread λ̄.

• The relative standard errors don’t explode with the level of nonlinearity or the number of
reference names in the CDO.
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Conclusion

• Under mild assumptions, three equivalent TVA BSDEs are available.

• The Markov structure is important in the theory to guarantee the validity

of the numerical schemes, but is not really practical from an

implementation point of view.

• For nonlinear and very high-dimensional problems such as counterparty

risk on credit derivatives, the only feasible numerical schemes are purely

forward simulation schemes =⇒ “FT scheme” and “PHL scheme”

• PHL scheme: involves a nontrivial, sensitive fine-tuning for finding a

polynomial in ϑ requires a preliminary knowledge on the solution; more

demanding than the FT scheme in terms of the structural model

properties that it requires.

• The FT schemes applied to the partially or fully reduced BSDEs (a null

terminal condition is required) appears as the method of choice on these

problems: “weak” dynamic copula structure in the sense of simulation and

forward pricing by copula means is sufficient.

• A first order FT term can be used for obtaining “the best linear

approximation” to our problem, whereas a nonlinear correction can be

computed by a second order FT term.
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Thank you for your attention!
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