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Nested Expectations

Let (X ,Y ) ∈ Rd ×Rd be a random vector such that one can generate
samples from the conditional distribution Y |X .

Problem
The problem is to compute the quantity

F = E [f (E [g(X ,Y )|X ])] ,

where g : Rd ×Rd 7→ Rm and f : Rm 7→ R.

Importance
This problem can be frequently encountered in risk management,
mathematical finance and engeneering.



Examples

McKean-Vlasov Equation
Let (Xt)t∈[0,T ] satisfy

dXt = At(Xt)dt + σ
> dWt ,

where At(x) := E [a(Xt ,X
′
t)|Xt = x ] , a : Rd ×Rd 7→ Rd , σ ∈ Rd ×Rd is a

constant matrix, Wt is a d-dimensional Brownian motion and X ′t is an
independent copy of Xt . Suppose that we want to compute

E [F (Xt)]

for some t > 0 and some function F : Rd 7→ R. The Euler scheme yields

X∆,j∆ = X∆,(j−1)∆ +A(j−1)∆(X∆,(j−1)∆)∆ + σ
>√∆ξj , j = 1, . . . ,J,

with ξj ∼N (0, Id).



Examples

McKean-Vlasov Equation
Suppose that we can sample from X∆,(j−1)∆, then we can compute

E
[
F
(
X∆,j∆

)]
= E

[
f
(

E
[
g(X∆,(j−1)∆,X ′∆,(j−1)∆)

∣∣∣X∆,(j−1)∆

])]
,

where g(X ,X ′) = X +a(X ,X ′)∆ and f (y) = Eξ

[
F
(
y + σ>

√
∆ξ

)]
.

Remark
In general, we need to take into account an error in the distribution of
X∆,(j−1)∆ originating from approximations in the previous steps.



Examples

Optimal stopping
Consider a discrete time optimal stopping problem

Vj(x) = sup
τ∈T [j ,...,T ]

E [Gτ (Xτ )|Xj = x ] ,

where (Xj)
T
j=0 is a d-dimensional Markov chain and Gj : Rd → R and

T [j , . . . ,T ] is a set of stopping times with values in {j , . . . ,T}.

Dynamic programming principle
The following relations hold for j = 1, . . . ,T −1

Cj(x) = E [max{Gj+1(Xj+1),Cj+1(Xj+1)}|Xj = x ] ,

where Cj(x) = E [Vj+1(Xj+1)|Xj = x ] with C0 ≡ 0 by definition.



Examples

Optimal stopping
Consider a simplest two-step stopping problem with C2(x)≡ 0 and
X0 = x0. In this case

C1(x) = E [G2(X2)|X1 = x ]

C0(x0) = E [max{G1(X1),C1(X1)}|X0 = x0]

= Ex0 [f (E [g(X1,X2)|X1])]

with g(X1,X2) = (G1(X1),G2(X2))> and f (x ,y) = max{x ,y} .



Examples

Dual approach for optimal stopping
It holds

Vj(Xj) = inf
M∈M

E
[

max
t=j ,...,T

(Gt(Xt)−Mt +Mj)

]
= E

[
max

t=j ,...,T
(Gt(Xt)−M∗t +M∗j )

]
with

M∗j :=
j

∑
i=1

(Vi (Xi )−E[Vi (Xi )|Xi−1]).



Examples

Dual approach for optimal stopping

Suppose that some approximation V̂ of the value process V is available,
then one construct an upper bound Ṽ for V via

Ṽj = E
[

max
t=j ,...,T

(Gt(Xt)−Mt +Mj)

]
,

where

Mj =
j

∑
i=1

(V̂i (Xi )−E[V̂i (Xi )|Xi−1]).



Nested Monte Carlo approach

Idea
Suppose we want to compute

F = E [f (E [g(X ,Y )|X ])] .

Approximate

FN,K :=
1
N

N

∑
n=1

f

(
1
K

K

∑
k=1

g(X (n),Y (n,k))

)
,

where
(
Y (n,k), k = 1, . . . ,K

)
is a sample from the conditional distribution

of Y given X = X (n).



Nested Monte Carlo approach

Error estimates
If the function f is Lipschitz continuous on Rm, we derive by the Jensen
inequality

E
[∣∣FN,K −F

∣∣2] ≤ L2
f

K
EX

{
m

∑
l=1

Var [gl(X ,Y )|X ]

}
︸ ︷︷ ︸

Bias2

+
1
N

VarX [f (E [g(X ,Y )|X ])]︸ ︷︷ ︸
Variance

Observation
Note that the variances Var [gl(X ,Y )|X ] appear in the bias of FN,K , a
common feature of many nonlinear Monte Carlo problems.



Nested Monte Carlo approach

Complexity

In order to get E
[∣∣FN,K −F

∣∣2]≤ ε2, we can take

K = 2L2
f ε
−2EX

{
m

∑
l=1

Var [gl(X ,Y )|X ]

}
,

N = 2ε
−2VarX [f (E [g(X ,Y )|X ])] ,

yielding the complexity of order

CNMC = KN = O
(
ε
−4) .

Question
Can this complexity order be improved ?



Nested Monte Carlo approach

Observation
In order to reduce the bias of the estimate FN,K , we need to reduce the
variances Var [gl(X ,Y )|X ] .

Separation assumption
To simplify the analysis assume that

Y = Φ(X ,ξ ),

where the random vector ξ ∈ Rp is independent of X . This assumption can
be verified in many SDE related applications including the case of
McKean-Vlasov Equations. Under this assumption, the original problem
becomes

F = E
[
f
(
Eξ [g̃(X ,ξ )]

)]
with g̃(X ,ξ ) = g(X ,Φ(X ,ξ )).



Nested Monte Carlo approach

Projection based variance reduction
Suppose, for simplicity, that m = 1. Let φk , k = 0,1, . . . with φ0 ≡ 1 be a
complete orthonormal system in L2(Pξ ), i.e.,

E [φk(ξ )φl(ξ )] = δkl ,

then it holds

g̃(x ,ξ ) = E[g̃(x ,ξ )] +
∞

∑
k=1

ak(x)φk(ξ ),

where ak(x) := E [g̃(x ,ξ )φk(ξ )] , provided E
[
(g̃(x ,ξ ))2]< ∞ for any

x ∈ Rd .



Nested Monte Carlo approach

Projection based variance reduction
Suppose that for some β > 0

∞

∑
k=1

kβ E[a2
k(X )]≤ Ca, (1)

then the control variate ML(x ,ξ ) := ∑
L
k=1 ak(x)φk(ξ ) satisfies

EXVar[g̃(X ,ξ )−ML(X ,ξ )]≤ CaL
−β .

The assumption (1) means some kind of smoothness of g̃(·,x).



Nested Monte Carlo approach
Example
Suppose that p = 1 and ξ ∼N (0,1), then we can take φk = Hk for
k ∈ N0, where Hk stands for the (normalised) k-th Hermite polynomial, i.e.

Hk(x)
.

=
(−1)k√

k!
e

x2
2
dk

dxk
e−

x2
2 , x ∈ R.

We require that for any fixed x > 0, g̃(x ,s) admits derivatives up to order
β ∈ N which satisfy∫

s2(β−`)E
[
g̃

(`)
s (X ,s)

]2
ds ≤ C , ` = 0, . . . ,β −1

for some constant C > 0.

Discussion
In SDE applications p can be large, but one can significantly reduce the
number of basis functions using the structure of the underlying
discretisation scheme, see Belomestny et al, 2016.



Nested Monte Carlo approach

Estimation of coefficients
Each coefficient ak in a fixed point x can be estimated via

ak,n(x) :=
1
n

n

∑
j=1

g̃(x ,ξ (j)).

Set ML,n(x ,ξ ) := ∑
L
k=1 ak,n(x)φk(ξ ), then by the Jensen’s inequality

EX

{
Var[g̃(X ,ξ )−ML,n(X ,ξ )]

}
= EX {Var[g̃(X ,ξ )−ML(X ,ξ )]}

+E
[∣∣ML(X ,ξ )−ML,n(X ,ξ )

∣∣2]
≤ CaL

−β +
√

Ca
L

n
.



Nested Monte Carlo approach

Variance reduction
A new variance reduced nested Monte Carlo estimate

FN,K ,L,n =
1
N

N

∑
i=1

f

(
1
K

K

∑
k=1

{
g̃(X (i),ξ (k))−ML,n(X (i),ξ (k))

})

has MSE error of the form

E
[∣∣FN,K ,L−F

∣∣2] ≤ L2
f

K

(
CaL

−β +
√

Ca
L

n

)
+

1
N

VarX
[
f
(
Eξ [g̃(X ,ξ )]

)]
while the cost of computing FN,K ,L,n is of order O(NnL+NKL). The
resulting complexity of FN,K ,L,n can be bounded as

CVRNMC (ε) = O
(

ε
− 3β

β+1/2
)
.



Nested Monte Carlo approach

Question
Can we further improve the complexity ?

Multilevel Monte Carlo
Set

UK ,L,n(X ) :=
1
K

K

∑
k=1

{
g̃(X ,ξ (k))−ML,n(X ,ξ (k))

}
and define a MLMC estimates FN,K,L,n via

1
N0

N0

∑
i=1

UK0,L0,n0(X (i)) +
R

∑
r=1

1
Nr

Nr

∑
i=1

{
UKr ,Lr ,nr (X

(i))−UKr−1,Lr−1,nr−1(X (i))
}
,

where N,K,L,n ∈ RR+1.



Nested Monte Carlo approach
Complexity
Using the estimate

EX

{
Var[UK ,L,n(X )|X ]

}
≤ 1

K

[
CaL

−β +
√
Ca

L

n

]
and the fact that the cost of computing UK ,L,n(x) for a fixed x is of order
O(nL+KL), we derive

CFN,K,L,n(ε) .

{
ε−2, β > 1,
ε−2 log2(ε), 0≤ β ≤ 1,

provided N,K,L,n are chosen appropriately.

Observation
If L = 1, we recover the standard MLMC for nested simulations (see,
Belomestny and Schoenmakers (2013), Lemaire and Pagés, (2016)).



Nested Monte Carlo approach
Formal complexity result
Let Q = (f , g̃ ,ξ ,X ) ∈ G (β ,Ca,Lf ) for some β > 1, Ca,Lf > 0, where
G (β ,Ca,Lf ) is a class of separable nested models such that

∞

∑
k=1

kβ E[a2
k(X )]≤ Ca with ak(x) = E [g̃(x ,ξ )φk(ξ )]

and

|f (x)− f (y)| ≤ Lf ‖x−y‖, x ,y ∈ Rd .

Then

Aε
−2 ≤ sup

Q∈G (β ,Ca,Lf )
inf
F̂

{
Cost(F̂ ) : EQ [|F̂ −F |2]≤ ε

2
}
≤ Bε

−2,

where infimum is taken over the set of all measurable functions of the finite
samples from the distributions Pξ and PX , and the constant s A and B
depend on Ca and Lf only.



Nested Monte Carlo approach

Further complexity reduction
Let ψk , k = 0,1, . . . with ψ0 ≡ 1 be a complete orthonormal system in
L2(PX ), i.e.,

E [ψk(X )ψl(X )] = δkl ,

then it holds

H(X ) = E[H(X )] +
∞

∑
k=1

bkψk(X ),

where bk(x) := E [H(X )φk(X )] , provided E
[
H2(X )

]
< ∞.



Nested Monte Carlo approach

Proposition
Define a new outer control variate via

MJ(X ) :=
J

∑
j=1

bK ,L,n,jψj(X ),

where
bj(x) := E

[
f
(
Eξ [g̃(X ,ξ )]

)
φj(X )

]
, j = 1, . . . ,J.

If the function x 7→ f
(
Eξ [g̃(x ,ξ )]

)
is smooth, then the estimate

FN,K ,L,n,J =
1
N

N

∑
i=1

[
UK ,L,n(X (i))−MJ(X (i))

]
has (under a proper choice of K ,L,n,J) the complexity order of ε−2+δ for
some δ ∈ [0,0.5).



Regression approach

We approximate

G (x) = E [g(X ,Y )|X = x ]≈
K

∑
j=0

ajψj(x).

The coefficients (aj) , j = 1, . . . ,K , can be estimated based on the data
Dn = (Xi ,Yi )

n
i=1, where (Xi ,Yi )

n
i=1 is an i.i.d. sample from the distibution

(X ,Y ). Define an estimate

(a0,n, . . . ,aK ,n) = argmin
a0,...,aK

n

∑
i=1

(
g(Xi ,Yi )−

K

∑
j=0

ajψj(Xi )

)2

and set

GK ,n(x) =
K

∑
j=0

aj ,nψj(x).



Regression approach

Now we estimate the quantity F via

FN,K ,n =
1
N

N

∑
j=1

f
(
GK ,n(X (j))

)
,

where X (1), . . . ,X (N) is an iid sample from PX .

Convergence
Suppose that f is Lipschitz continuous, then it holds

E
[∣∣FN,K ,n−F

∣∣2]≤ L2
f

[
E
∣∣GK ,n(X )−G (X )

∣∣2]+
1
N

Var [f (GK ,n(X ))] .



Regression approach

Convergence
Suppose that

σ
2 = sup

x
Var [g(X ,Y )|X = x ] < ∞

and
‖G‖

∞
≤M,

then

E
∣∣∣ĜK ,n(X )−G (X )

∣∣∣2 ≤ cmax
{

σ
2,M

} (log(n) +1) ·K
n

+8 inf
Ψ∈Span(ψ0,...,ψK )

E |Ψ(X )−G (X )|2 .



Regression estimate

Cost of regression
The cost of constructing the least-squares estimate GK ,n(x) for one fixed x
is of order nK 2, so that the overall computational cost of the
regression-based MC approach is proportional to NnK 2.

Complexity
Set

ρK := inf
Ψ∈Span(ψ0,...,ψK )

E |Ψ(X )−G (X )|2

then the complexity of the estimate GK ,n(x) is given by

CRMC (ε) . ε
−3

ρ
−
K (ε/

√
3).

By assuming ρK = K−α l(K ) for some α > 0 and some slow varying
function l , we derive CRMC (ε) . ε−3−1/α .



Discussion

While RMC requires a rather strong uniform bound (in x) for the
variance Var [g(X ,Y )|X = x ] and for the function G (x), VRMC works
under weaker assumptions (in the case of normal distribution)∫

E [∂s g̃(X ,s)]2 ds < ∞.

Any reduction of the variance Var [g(X ,Y )|X = x ] will have no effect
on the complexity of the regression estimate because of the term
max

{
σ2,M

}
. This is intrinsic problem of the global regression !


