Variance reduction for nonlinear Monte Carlo

D. Belomestny ${ }^{1}$
${ }^{1}$ University of Duisburg Essen

PARIS, 2016

Nested Expectations

Let $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ be a random vector such that one can generate samples from the conditional distribution $Y \mid X$.

Problem

The problem is to compute the quantity

$$
F=\mathrm{E}[f(\mathrm{E}[g(X, Y) \mid X])]
$$

where $g: \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}^{m}$ and $f: \mathbb{R}^{m} \mapsto \mathbb{R}$.

Importance

This problem can be frequently encountered in risk management, mathematical finance and engeneering.

Examples

McKean-Vlasov Equation

Let $\left(X_{t}\right)_{t \in[0, T]}$ satisfy

$$
d X_{t}=A_{t}\left(X_{t}\right) d t+\sigma^{\top} d W_{t}
$$

where $A_{t}(x):=\mathrm{E}\left[a\left(X_{t}, X_{t}^{\prime}\right) \mid X_{t}=x\right], a: \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}^{d}, \sigma \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ is a constant matrix, W_{t} is a d-dimensional Brownian motion and X_{t}^{\prime} is an independent copy of X_{t}. Suppose that we want to compute

$$
\mathrm{E}\left[F\left(X_{t}\right)\right]
$$

for some $t>0$ and some function $F: \mathbb{R}^{d} \mapsto \mathbb{R}$. The Euler scheme yields

$$
X_{\Delta, j \Delta}=X_{\Delta,(j-1) \Delta}+A_{(j-1) \Delta}\left(X_{\Delta,(j-1) \Delta}\right) \Delta+\sigma^{\top} \sqrt{\Delta} \xi_{j}, \quad j=1, \ldots, J
$$

with $\xi_{j} \sim \mathscr{N}\left(0, I_{d}\right)$.

Examples

McKean-Vlasov Equation

Suppose that we can sample from $X_{\Delta,(j-1) \Delta}$, then we can compute

$$
\mathrm{E}\left[F\left(X_{\Delta, j \Delta}\right)\right]=\mathrm{E}\left[f\left(\mathrm{E}\left[g\left(X_{\Delta,(j-1) \Delta}, X_{\Delta,(j-1) \Delta}^{\prime}\right) \mid X_{\Delta,(j-1) \Delta}\right]\right)\right]
$$

where $g\left(X, X^{\prime}\right)=X+a\left(X, X^{\prime}\right) \Delta$ and $f(y)=\mathrm{E}_{\xi}\left[F\left(y+\sigma^{\top} \sqrt{\Delta} \xi\right)\right]$.

Remark

In general, we need to take into account an error in the distribution of $X_{\Delta,(j-1) \Delta}$ originating from approximations in the previous steps.

Examples

Optimal stopping

Consider a discrete time optimal stopping problem

$$
V_{j}(x)=\sup _{\tau \in \mathscr{T}[j, \ldots, T]} \mathrm{E}\left[G_{\tau}\left(X_{\tau}\right) \mid X_{j}=x\right]
$$

where $\left(X_{j}\right)_{j=0}^{T}$ is a d-dimensional Markov chain and $G_{j}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\mathscr{T}[j, \ldots, T]$ is a set of stopping times with values in $\{j, \ldots, T\}$.

Dynamic programming principle

The following relations hold for $j=1, \ldots, T-1$

$$
C_{j}(x)=\mathrm{E}\left[\max \left\{G_{j+1}\left(X_{j+1}\right), C_{j+1}\left(X_{j+1}\right)\right\} \mid X_{j}=x\right]
$$

where $C_{j}(x)=\mathrm{E}\left[V_{j+1}\left(X_{j+1}\right) \mid X_{j}=x\right]$ with $C_{0} \equiv 0$ by definition.

Examples

Optimal stopping

Consider a simplest two-step stopping problem with $C_{2}(x) \equiv 0$ and $X_{0}=x_{0}$. In this case

$$
\begin{aligned}
C_{1}(x) & =\mathrm{E}\left[G_{2}\left(X_{2}\right) \mid X_{1}=x\right] \\
C_{0}\left(x_{0}\right) & =\mathrm{E}\left[\max \left\{G_{1}\left(X_{1}\right), C_{1}\left(X_{1}\right)\right\} \mid X_{0}=x_{0}\right] \\
& =\mathrm{E}_{X_{0}}\left[f\left(\mathrm{E}\left[g\left(X_{1}, X_{2}\right) \mid X_{1}\right]\right)\right]
\end{aligned}
$$

with $g\left(X_{1}, X_{2}\right)=\left(G_{1}\left(X_{1}\right), G_{2}\left(X_{2}\right)\right)^{\top}$ and $f(x, y)=\max \{x, y\}$.

Examples

Dual approach for optimal stopping

It holds

$$
\begin{aligned}
V_{j}\left(X_{j}\right) & =\inf _{M \in \mathscr{M}} \mathrm{E}\left[\max _{t=j, \ldots, T}\left(G_{t}\left(X_{t}\right)-M_{t}+M_{j}\right)\right] \\
& =\mathrm{E}\left[\max _{t=j, \ldots, T}\left(G_{t}\left(X_{t}\right)-M_{t}^{*}+M_{j}^{*}\right)\right]
\end{aligned}
$$

with

$$
M_{j}^{*}:=\sum_{i=1}^{j}\left(V_{i}\left(X_{i}\right)-\mathrm{E}\left[V_{i}\left(X_{i}\right) \mid X_{i-1}\right]\right)
$$

Examples

Dual approach for optimal stopping

Suppose that some approximation \hat{V} of the value process V is available, then one construct an upper bound \tilde{V} for V via

$$
\tilde{V}_{j}=\mathrm{E}\left[\max _{t=j, \ldots, T}\left(G_{t}\left(X_{t}\right)-M_{t}+M_{j}\right)\right],
$$

where

$$
M_{j}=\sum_{i=1}^{j}\left(\hat{V}_{i}\left(X_{i}\right)-\mathrm{E}\left[\hat{V}_{i}\left(X_{i}\right) \mid X_{i-1}\right]\right) .
$$

Nested Monte Carlo approach

Idea

Suppose we want to compute

$$
F=\mathrm{E}[f(\mathrm{E}[g(X, Y) \mid X])]
$$

Approximate

$$
F_{N, K}:=\frac{1}{N} \sum_{n=1}^{N} f\left(\frac{1}{K} \sum_{k=1}^{K} g\left(X^{(n)}, Y^{(n, k)}\right)\right)
$$

where $\left(Y^{(n, k)}, k=1, \ldots, K\right)$ is a sample from the conditional distribution of Y given $X=X^{(n)}$.

Nested Monte Carlo approach

Error estimates

If the function f is Lipschitz continuous on \mathbb{R}^{m}, we derive by the Jensen inequality

$$
\begin{aligned}
\mathrm{E}\left[\left|F_{N, K}-F\right|^{2}\right] \leq & \underbrace{\frac{L_{f}^{2}}{K} \mathrm{E}_{X}\left\{\sum_{l=1}^{m} \operatorname{Var}\left[g_{l}(X, Y) \mid X\right]\right\}}_{\text {Bias }^{2}} \\
& +\underbrace{\frac{1}{N} \operatorname{Var}_{X}[f(\mathrm{E}[g(X, Y) \mid X])]}_{\text {Variance }}
\end{aligned}
$$

Observation

Note that the variances $\operatorname{Var}\left[g_{l}(X, Y) \mid X\right]$ appear in the bias of $F_{N, K}$, a common feature of many nonlinear Monte Carlo problems.

Nested Monte Carlo approach

Complexity

In order to get $\mathrm{E}\left[\left|F_{N, K}-F\right|^{2}\right] \leq \varepsilon^{2}$, we can take

$$
\begin{aligned}
K & =2 L_{f}^{2} \varepsilon^{-2} \mathrm{E}_{X}\left\{\sum_{l=1}^{m} \operatorname{Var}\left[g_{l}(X, Y) \mid X\right]\right\} \\
N & =2 \varepsilon^{-2} \operatorname{Var}_{X}[f(\mathrm{E}[g(X, Y) \mid X])]
\end{aligned}
$$

yielding the complexity of order

$$
\mathscr{C}_{N M C}=K N=O\left(\varepsilon^{-4}\right) .
$$

Question

Can this complexity order be improved?

Nested Monte Carlo approach

Observation

In order to reduce the bias of the estimate $F_{N, K}$, we need to reduce the variances $\operatorname{Var}\left[g_{l}(X, Y) \mid X\right]$.

Separation assumption

To simplify the analysis assume that

$$
Y=\Phi(X, \xi)
$$

where the random vector $\xi \in \mathbb{R}^{p}$ is independent of X. This assumption can be verified in many SDE related applications including the case of McKean-Vlasov Equations. Under this assumption, the original problem becomes

$$
F=\mathrm{E}\left[f\left(\mathrm{E}_{\xi}[\tilde{g}(X, \xi)]\right)\right]
$$

with $\tilde{g}(X, \xi)=g(X, \Phi(X, \xi))$.

Nested Monte Carlo approach

Projection based variance reduction

Suppose, for simplicity, that $m=1$. Let $\phi_{k}, k=0,1, \ldots$ with $\phi_{0} \equiv 1$ be a complete orthonormal system in $L_{2}\left(\mathrm{P}_{\xi}\right)$, i.e.,

$$
\mathrm{E}\left[\phi_{k}(\xi) \phi_{l}(\xi)\right]=\delta_{k l},
$$

then it holds

$$
\tilde{g}(x, \xi)=\mathrm{E}[\tilde{g}(x, \xi)]+\sum_{k=1}^{\infty} a_{k}(x) \phi_{k}(\xi)
$$

where $a_{k}(x):=\mathrm{E}\left[\tilde{g}(x, \xi) \phi_{k}(\xi)\right]$, provided $\mathrm{E}\left[(\tilde{g}(x, \xi))^{2}\right]<\infty$ for any $x \in \mathbb{R}^{d}$.

Nested Monte Carlo approach

Projection based variance reduction

Suppose that for some $\beta>0$

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{\beta} \mathrm{E}\left[a_{k}^{2}(X)\right] \leq C_{a} \tag{1}
\end{equation*}
$$

then the control variate $M_{L}(x, \xi):=\sum_{k=1}^{L} a_{k}(x) \phi_{k}(\xi)$ satisfies

$$
\mathrm{E}_{X} \operatorname{Var}\left[\tilde{g}(X, \xi)-M_{L}(X, \xi)\right] \leq C_{a} L^{-\beta}
$$

The assumption (1) means some kind of smoothness of $\tilde{g}(\cdot, x)$.

Nested Monte Carlo approach

Example

Suppose that $p=1$ and $\xi \sim \mathscr{N}(0,1)$, then we can take $\phi_{k}=H_{k}$ for $k \in \mathbb{N}_{0}$, where H_{k} stands for the (normalised) k-th Hermite polynomial, i.e.

$$
H_{k}(x) \doteq \frac{(-1)^{k}}{\sqrt{k!}} e^{\frac{x^{2}}{2}} \frac{d^{k}}{d x^{k}} e^{-\frac{x^{2}}{2}}, \quad x \in \mathbb{R} .
$$

We require that for any fixed $x>0, \tilde{g}(x, s)$ admits derivatives up to order $\beta \in \mathbb{N}$ which satisfy

$$
\int s^{2(\beta-\ell)} \mathrm{E}\left[\tilde{g}_{s}^{(\ell)}(X, s)\right]^{2} d s \leq C, \quad \ell=0, \ldots, \beta-1
$$

for some constant $C>0$.

Discussion

In SDE applications p can be large, but one can significantly reduce the number of basis functions using the structure of the underlying discretisation scheme, see Belomestny et al, 2016 .

Nested Monte Carlo approach

Estimation of coefficients

Each coefficient a_{k} in a fixed point x can be estimated via

$$
a_{k, n}(x):=\frac{1}{n} \sum_{j=1}^{n} \tilde{g}\left(x, \xi^{(j)}\right)
$$

Set $M_{L, n}(x, \xi):=\sum_{k=1}^{L} a_{k, n}(x) \phi_{k}(\xi)$, then by the Jensen's inequality

$$
\begin{aligned}
\mathrm{E}_{X}\left\{\operatorname{Var}\left[\tilde{g}(X, \xi)-M_{L, n}(X, \xi)\right]\right\}= & \mathrm{E}_{X}\left\{\operatorname{Var}\left[\tilde{g}(X, \xi)-M_{L}(X, \xi)\right]\right\} \\
& +\mathrm{E}\left[\left|M_{L}(X, \xi)-M_{L, n}(X, \xi)\right|^{2}\right] \\
\leq & C_{a} L^{-\beta}+\sqrt{C_{a}} \frac{L}{n}
\end{aligned}
$$

Nested Monte Carlo approach

Variance reduction

A new variance reduced nested Monte Carlo estimate

$$
F_{N, K, L, n}=\frac{1}{N} \sum_{i=1}^{N} f\left(\frac{1}{K} \sum_{k=1}^{K}\left\{\tilde{g}\left(X^{(i)}, \xi^{(k)}\right)-M_{L, n}\left(X^{(i)}, \xi^{(k)}\right)\right\}\right)
$$

has MSE error of the form

$$
\begin{aligned}
\mathrm{E}\left[\left|F_{N, K, L}-F\right|^{2}\right] \leq & \frac{L_{f}^{2}}{K}\left(C_{a} L^{-\beta}+\sqrt{C_{a}} \frac{L}{n}\right) \\
& +\frac{1}{N} \operatorname{Var}_{X}\left[f\left(\mathrm{E}_{\xi}[\tilde{g}(X, \xi)]\right)\right]
\end{aligned}
$$

while the cost of computing $F_{N, K, L, n}$ is of order $O(N n L+N K L)$. The resulting complexity of $F_{N, K, L, n}$ can be bounded as

$$
\mathscr{C}_{\text {VRNMC }}(\varepsilon)=O\left(\varepsilon^{-\frac{3 \beta}{\beta+1 / 2}}\right) .
$$

Nested Monte Carlo approach

Question

Can we further improve the complexity?

Multilevel Monte Carlo

Set

$$
U_{K, L, n}(X):=\frac{1}{K} \sum_{k=1}^{K}\left\{\tilde{g}\left(X, \xi^{(k)}\right)-M_{L, n}\left(X, \xi^{(k)}\right)\right\}
$$

and define a MLMC estimates $F_{\mathbf{N}, \mathbf{K}, \mathbf{L}, \mathbf{n}}$ via
$\frac{1}{N_{0}} \sum_{i=1}^{N_{0}} U_{K_{0}, L_{0}, n_{0}}\left(X^{(i)}\right)+\sum_{r=1}^{R} \frac{1}{N_{r}} \sum_{i=1}^{N_{r}}\left\{U_{K_{r}, L_{r}, n_{r}}\left(X^{(i)}\right)-U_{K_{r-1}, L_{r-1}, n_{r-1}}\left(X^{(i)}\right)\right\}$,
where $\mathbf{N}, \mathbf{K}, \mathbf{L}, \mathbf{n} \in \mathbb{R}^{R+1}$.

Nested Monte Carlo approach

Complexity

Using the estimate

$$
\mathrm{E}_{X}\left\{\operatorname{Var}\left[U_{K, L, n}(X) \mid X\right]\right\} \leq \frac{1}{K}\left[C_{a} L^{-\beta}+\sqrt{C_{a}} \frac{L}{n}\right]
$$

and the fact that the cost of computing $U_{K, L, n}(x)$ for a fixed x is of order $O(n L+K L)$, we derive

$$
\mathscr{C}_{F_{N, K, L, n}}(\varepsilon) \lesssim \begin{cases}\varepsilon^{-2}, & \beta>1 \\ \varepsilon^{-2} \log ^{2}(\varepsilon), & 0 \leq \beta \leq 1\end{cases}
$$

provided $\mathbf{N}, \mathbf{K}, \mathbf{L}, \mathbf{n}$ are chosen appropriately.

Observation

If $L=1$, we recover the standard MLMC for nested simulations (see, Belomestny and Schoenmakers (2013), Lemaire and Pagés, (2016)).

Nested Monte Carlo approach

Formal complexity result

Let $Q=(f, \tilde{g}, \xi, X) \in \mathscr{G}\left(\beta, C_{a}, L_{f}\right)$ for some $\beta>1, C_{a}, L_{f}>0$, where $\mathscr{G}\left(\beta, C_{a}, L_{f}\right)$ is a class of separable nested models such that

$$
\sum_{k=1}^{\infty} k^{\beta} \mathrm{E}\left[a_{k}^{2}(X)\right] \leq C_{a} \text { with } a_{k}(x)=\mathrm{E}\left[\tilde{g}(x, \xi) \phi_{k}(\xi)\right]
$$

and

$$
|f(x)-f(y)| \leq L_{f}\|x-y\|, \quad x, y \in \mathbb{R}^{d} .
$$

Then

$$
A \varepsilon^{-2} \leq \sup _{Q \in \mathscr{G}\left(\beta, C_{a}, L_{f}\right)} \inf _{\hat{F}}\left\{\operatorname{Cost}(\hat{F}): \mathrm{E}_{Q}\left[|\hat{F}-F|^{2}\right] \leq \varepsilon^{2}\right\} \leq B \varepsilon^{-2},
$$

where infimum is taken over the set of all measurable functions of the finite samples from the distributions P_{ξ} and P_{X}, and the constant s A and B depend on C_{a} and L_{f} only.

Nested Monte Carlo approach

Further complexity reduction

Let $\psi_{k}, k=0,1, \ldots$ with $\psi_{0} \equiv 1$ be a complete orthonormal system in $L_{2}\left(\mathrm{P}_{X}\right)$, i.e.,

$$
\mathrm{E}\left[\psi_{k}(X) \psi_{l}(X)\right]=\delta_{k l},
$$

then it holds

$$
H(X)=\mathrm{E}[H(X)]+\sum_{k=1}^{\infty} b_{k} \psi_{k}(X)
$$

where $b_{k}(x):=\mathrm{E}\left[H(X) \phi_{k}(X)\right]$, provided $\mathrm{E}\left[H^{2}(X)\right]<\infty$.

Nested Monte Carlo approach

Proposition

Define a new outer control variate via

$$
M_{J}(X):=\sum_{j=1}^{J} b_{K, L, n, j} \psi_{j}(X)
$$

where

$$
b_{j}(x):=\mathrm{E}\left[f\left(\mathrm{E}_{\xi}[\tilde{g}(X, \xi)]\right) \phi_{j}(X)\right], \quad j=1, \ldots, J .
$$

If the function $x \mapsto f\left(\mathrm{E}_{\xi}[\tilde{g}(x, \xi)]\right)$ is smooth, then the estimate

$$
F_{N, K, L, n, J}=\frac{1}{N} \sum_{i=1}^{N}\left[U_{K, L, n}\left(X^{(i)}\right)-M_{J}\left(X^{(i)}\right)\right]
$$

has (under a proper choice of K, L, n, J) the complexity order of $\varepsilon^{-2+\delta}$ for some $\delta \in[0,0.5)$.

Regression approach

We approximate

$$
G(x)=\mathrm{E}[g(X, Y) \mid X=x] \approx \sum_{j=0}^{K} a_{j} \psi_{j}(x)
$$

The coefficients $\left(a_{j}\right), j=1, \ldots, K$, can be estimated based on the data $D_{n}=\left(X_{i}, Y_{i}\right)_{i=1}^{n}$, where $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ is an i.i.d. sample from the distibution (X, Y). Define an estimate

$$
\left(a_{0, n}, \ldots, a_{K, n}\right)=\underset{a_{0}, \ldots, a_{K}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(g\left(X_{i}, Y_{i}\right)-\sum_{j=0}^{K} a_{j} \psi_{j}\left(X_{i}\right)\right)^{2}
$$

and set

$$
G_{K, n}(x)=\sum_{j=0}^{K} a_{j, n} \psi_{j}(x)
$$

Regression approach

Now we estimate the quantity F via

$$
F_{N, K, n}=\frac{1}{N} \sum_{j=1}^{N} f\left(G_{K, n}\left(X^{(j)}\right)\right)
$$

where $X^{(1)}, \ldots, X^{(N)}$ is an iid sample from P_{X}.

Convergence

Suppose that f is Lipschitz continuous, then it holds

$$
\mathrm{E}\left[\left|F_{N, K, n}-F\right|^{2}\right] \leq L_{f}^{2}\left[\mathrm{E}\left|G_{K, n}(X)-G(X)\right|^{2}\right]+\frac{1}{N} \operatorname{Var}\left[f\left(G_{K, n}(X)\right)\right]
$$

Regression approach

Convergence

Suppose that

$$
\sigma^{2}=\sup _{x} \operatorname{Var}[g(X, Y) \mid X=x]<\infty
$$

and

$$
\|G\|_{\infty} \leq M,
$$

then

$$
\begin{aligned}
\mathrm{E}\left|\widehat{G}_{K, n}(X)-G(X)\right|^{2} \leq & c \max \left\{\sigma^{2}, M\right\} \frac{(\log (n)+1) \cdot K}{n} \\
& +8 \inf _{\psi \in \operatorname{Span}\left(\psi_{0}, \ldots, \psi_{K}\right)} \mathrm{E}|\Psi(X)-G(X)|^{2}
\end{aligned}
$$

Regression estimate

Cost of regression

The cost of constructing the least-squares estimate $G_{K, n}(x)$ for one fixed x is of order $n K^{2}$, so that the overall computational cost of the regression-based MC approach is proportional to NnK^{2}.

Complexity

Set

$$
\rho_{K}:=\inf _{\Psi \in \operatorname{Span}\left(\psi_{0}, \ldots, \psi_{K}\right)} \mathrm{E}|\Psi(X)-G(X)|^{2}
$$

then the complexity of the estimate $G_{K, n}(x)$ is given by

$$
\mathscr{C}_{R M C}(\varepsilon) \lesssim \varepsilon^{-3} \rho_{K}^{-}(\varepsilon / \sqrt{3})
$$

By assuming $\rho_{K}=K^{-\alpha} I(K)$ for some $\alpha>0$ and some slow varying function I, we derive $\mathscr{C}_{R M C}(\varepsilon) \lesssim \varepsilon^{-3-1 / \alpha}$.

Discussion

- While RMC requires a rather strong uniform bound (in x) for the variance $\operatorname{Var}[g(X, Y) \mid X=x]$ and for the function $G(x)$, VRMC works under weaker assumptions (in the case of normal distribution)

$$
\int \mathrm{E}\left[\partial_{s} \tilde{g}(X, s)\right]^{2} d s<\infty
$$

- Any reduction of the variance $\operatorname{Var}[g(X, Y) \mid X=x]$ will have no effect on the complexity of the regression estimate because of the term $\max \left\{\sigma^{2}, M\right\}$. This is intrinsic problem of the global regression!

