Numerical solution of the master equation arising in large population stochastic control: Approximation of Forward-Backward SDE with McKean-Vlasov interaction

J-F Chassagneux (Université Paris Diderot, LPMA) joint work with D. Crisan (Imperial College London) and F. Delarue (Université de Nice)

Closing conference on Monte Carlo techniques, Paris, 5-8 July 2016

Introduction
Motivation
Well-posedness of the MKVFBSDE in small time MKVFBSDEs and Master Equation

Numerical approximation for small T
Introduction
A first scheme
Convergence results
Numerical approximation for arbitrary T
The solver [] () algorithm
Review of convergence
Numerical results

Large population stochastic control

- n players: personal state of player i

$$
\mathrm{d} X_{t}^{i}=b\left(t, X_{t}^{i}, \mu_{t}^{n}, \alpha_{t}^{i}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}^{i}
$$

(W^{i}) indep. Brownian Motion, $\mu_{t}^{n}=\frac{1}{n} \sum_{i} \delta_{X_{t}^{i}}, \alpha^{i}$ control of player

- Cost to minimise for player i :

$$
J^{i}(\alpha)=\mathbb{E}\left[g\left(X_{T}^{i}, \mu_{T}^{n}\right)+\int_{0}^{T} f\left(t, X_{t}^{i}, \mu_{t}^{n}, \alpha_{t}^{i}\right) \mathrm{d} t\right]
$$

- Asymptotic description of equilibrium, hopefully "easier" to handle.
- Simplification: at the optimum symmetric feedback control i.e. $\alpha^{i}=\phi\left(t, X_{t}^{i}\right)$.

Example - Mean Field Games

Lasry-Lions (06) / Huang-Caines-Malhamé (06)

- "Individual" strategies, looking for Nash-equilibrium $\bar{\alpha}$?

$$
J^{i}\left(\ldots, \bar{\alpha}^{i-1}, \alpha^{i}, \bar{\alpha}^{i-1}, \ldots\right) \geq J^{i}\left(\ldots, \bar{\alpha}^{i-1}, \bar{\alpha}^{i}, \bar{\alpha}^{i-1}, \ldots\right)
$$

- Optimisation problem for a player: given a flow of measure $\left(\mu_{t}\right)_{t \in[0, T]}$

$$
\bar{\phi}=\operatorname{argmin}_{\phi} \mathbb{E}\left[g\left(X_{T}^{\mu}, \mu_{t}\right)+\int_{0}^{T} f\left(t, X_{t}^{\mu}, \mu_{t}, \phi\left(t, X_{t}^{\mu}\right)\right) \mathrm{d} t\right]
$$

with $\mathrm{d} X_{t}^{\mu}=b\left(t, X_{t}^{\mu}, \mu_{t}, \phi\left(t, X_{t}\right)\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}$.

- Asymptotic $n \rightarrow \infty$ yields $\bar{\mu}_{t}=\mathcal{L}\left(X_{t}^{\bar{\mu}}\right) \quad$ (matching problem)
- Conclusion: MFG $=$ optimise first then pass to the limit

Getting the FBSDE

notation: $\mu_{t}=\mathcal{L}\left(X_{t}\right)$.

- Direct approach: optimum described by $\left(X_{t}, Y_{t}, Z_{t}\right)_{t \leq T}$:

$$
\begin{aligned}
& X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}, \mu_{s}, \bar{\phi}\left(s, X_{s}, Z_{s}, \mu_{s}\right)\right) \mathrm{d} s+\sigma W_{t} \\
& Y_{t}=g\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, \mu_{s}, \bar{\phi}\left(s, X_{s}, Z_{s}, \mu_{s}\right)\right) \mathrm{d} s-\int_{t}^{T} Z_{s} \mathrm{~d} W_{s}
\end{aligned}
$$

(PDE: Lasry-Lions)

- Variational approach (Stochastic Pontryagin Principle)

$$
\begin{aligned}
& X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}, \mu_{s}, \bar{\phi}\left(s, X_{s}, Y_{s}, \mu_{s}\right)\right) \mathrm{d} s+\sigma W_{t} \\
& Y_{t}=\partial_{\times} g\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} \partial_{x} H\left(s, X_{s}, Y_{s}, \mu_{s}, \bar{\phi}\left(s, X_{s}, Y_{s}, \mu_{s}\right)\right) \mathrm{d} s-\int_{t}^{T} Z_{s} \mathrm{~d} W_{s}
\end{aligned}
$$

where $H(\cdot)=b(\cdot) y+f(\cdot)$ and $\bar{\phi}(\cdot)=\operatorname{argmin}_{\phi} H(\cdot, \phi)$

Example - Control of MKV

- "Cooperative" equilibrium, when the strategy of one player changes, the strategy of all the player changes
\hookrightarrow Impact the statistical distribution of the system μ^{n}
- Asymptotic $n \rightarrow \infty$ "yields"

$$
\mathrm{d} X_{t}=b\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), \alpha_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

and for the cost

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right)+\int_{0}^{T} f\left(t, X_{t}, \mathcal{L}\left(X_{t}\right), \alpha_{t}\right) \mathrm{d} t\right]
$$

- then optimise $J(\alpha)$
- conclusion: control of MKV = pass to the limit then optimise
- Coupled FBSDE arises when using stoch. max. principle (Carmona-Delarue) or DPP (Pham)

Contraction approach

- Let us consider

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}, X_{0}=\xi \\
\mathrm{d} Y_{t}=Z_{t} \mathrm{~d} W_{t}, \quad Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right)
\end{array}\right.
$$

- in a Lipschitz setting

$$
\begin{aligned}
\left|b(y)-b\left(y^{\prime}\right)\right| & \leq K\left|y-y^{\prime}\right| \\
\left|g(x, \mu)-g\left(x^{\prime}, \mu^{\prime}\right)\right| & \leq K\left(\left|x-x^{\prime}\right|+W_{2}\left(\mu, \mu^{\prime}\right)\right),
\end{aligned}
$$

where $W_{2}\left(\mu, \mu^{\prime}\right)=\inf _{X \sim \mu, X^{\prime} \sim \mu^{\prime}} \mathbb{E}\left[\left|X-X^{\prime}\right|^{2}\right]^{\frac{1}{2}}$.

- For $T \leq c(K)$, existence and uniqueness (via contraction).

Decoupling field

- Non MKV case:

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}, X_{0}=\xi \\
\mathrm{d} Y_{t}=Z_{t} \mathrm{~d} W_{t}, Y_{T}=g\left(X_{T}\right)
\end{array}\right.
$$

One can show $Y_{t}=U\left(t, X_{t}\right)$.

- PDE for U?

On one hand

$$
\mathrm{d} U\left(t, X_{t}\right)=\left(\partial_{t} U+b(Y) \partial_{x} U+\frac{1}{2} \sigma^{2} \partial_{x x}^{2} U\right) \mathrm{d} t+\mathrm{d}(\text { mart })
$$

Moreover $\mathrm{d} U\left(t, X_{t}\right)=\mathrm{d} Y_{t}=\mathrm{d}($ mart $)$ and so

$$
\partial_{t} U(t, x)+b(U(t, x)) \partial_{x} U(t, x)+\frac{1}{2} \sigma^{2} \partial_{x x}^{2} U(t, x)=0 .
$$

Decoupling field in the MKV case

- For e.g.

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=b\left(Y_{t}, \mathcal{L}\left(X_{t}\right)\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}, X_{0}=\xi \\
\mathrm{d} Y_{t}=Z_{t} \mathrm{~d} W_{t}, Y_{T}=g\left(X_{T}\right)
\end{array}\right.
$$

One has: $Y_{t}=U\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)$ and U is defined on $[0, T] \times \mathbb{R} \times \mathcal{P}_{2}(\mathbb{R})$.

- U satisfies a PDE ?
\hookrightarrow Need a chain rule to expand U in the measure argument
\hookrightarrow Need some smoothness also...

Differential Calculus on $\mathcal{P}_{2}(\mathbb{R})$

- Lions' approach:

$$
\text { "Lift" to } L^{2}: \quad U(\mu) \rightarrow \mathcal{U}(\xi):=U(\mathcal{L}(\xi)) ;
$$

- U differentiable at μ if \mathcal{U} Frechet differentiable at ξ.
- Moreover, if \mathcal{U} is \mathcal{C}^{1} then

$$
D \mathcal{U}(\xi) \cdot \chi=\mathbb{E}\left[\partial_{\mu} U(\mu)(\xi) \chi\right] .
$$

$\hookrightarrow \partial_{\mu} U(\mu)(\cdot) \in L^{2}(\mathbb{R}, \mu)$ derivative of U at μ.

- Example: $U(\mu)=\int \phi(x) \mathrm{d} \mu(x)$

$$
\partial_{\mu} U(\mu)(v)=\phi^{\prime}(v)
$$

- Order 2:

$$
\partial_{\mu}^{2} U(\mu)\left(v, v^{\prime}\right) \quad \text { and } \quad \partial_{v} \partial_{\mu} U(\mu)(v)
$$

Finite dimensional projection

$$
u(x)=u\left(x_{1}, \ldots, x_{n}\right):=U\left(\mu_{x}^{n}\right) \text { with } \mu_{x}^{n}=\frac{1}{n} \sum_{i} \delta_{x_{i}} .
$$

- First order derivative

$$
\partial_{x_{i}} u(x)=\frac{1}{n} \partial_{\mu} U\left(\mu_{x}^{n}\right)\left(x_{i}\right)
$$

Proof. ϑ unif. distributed in $\{1, \ldots, n\}, h=\left(h_{i}\right)$ small perturbation:

$$
\begin{aligned}
u(x+h)=U\left(\mathcal{L}\left(x_{\vartheta}+h_{\vartheta}\right)\right) & \left.\left.=U\left(\mathcal{L}\left(x_{\vartheta}\right)\right)+\mathbb{E} \partial_{\mu} U\left(\mathcal{L}\left(x_{\vartheta}\right)\right)\left(x_{\vartheta}\right) h_{\vartheta}\right)\right]+o(|h|), \\
& =U\left(\mathcal{L}\left(x_{\vartheta}\right)\right)+\sum_{i} \frac{1}{n} \partial_{\mu} U\left(\mu_{x}^{n}\right)\left(x_{i}\right) h_{i}+o(|h|) .
\end{aligned}
$$

- second order derivative

$$
\partial_{x_{i} x_{j}}^{2} u(x)=\frac{1}{n} \partial_{v} \partial_{\mu} U\left(\mu_{x}^{n}\right)\left(x_{i}\right) \mathbf{1}_{i=j}+\frac{1}{n^{2}} \partial_{\mu}^{2} U\left(\mu_{x}^{n}\right)\left(x_{i}, x_{j}\right)
$$

Chain Rule

For a flow a measure $\left(\mu_{t}\right)_{t \in[0, T]}$ where $\mu_{t}=\mathcal{L}\left(X_{t}\right)$:

$$
\mathrm{d} X_{t}=b_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} W_{t}
$$

- The chain rule

$$
U\left(\mu_{T}\right)=U\left(\mu_{0}\right)+\int_{0}^{T} \mathbb{E}\left[b_{t} \partial_{\mu} U\left(\mu_{t}\right)\left(X_{t}\right)+\frac{1}{2} \partial_{v} \partial_{\mu} U\left(\mu_{t}\right)\left(X_{t}\right) \sigma_{t}^{2}\right] \mathrm{d} t
$$

proof.

Particle system: $\left(X^{i}\right)$ i.i.d. copies of $X, \mu_{X}^{n}=\frac{1}{n} \sum_{i} \delta_{X_{t}^{i}} \rightarrow_{n \infty} \mu_{t}$.
Apply Ito's formula to $u\left(X_{t}^{1}, \ldots, X_{t}^{n}\right)$ and let n goes to ∞ :

$$
\begin{aligned}
\mathrm{d} u\left(X_{t}^{1}, \ldots, X_{t}^{n}\right) & =\frac{1}{n} \sum_{i} \partial_{\mu} U\left(\mu_{X_{t}}^{n}\right)\left(X_{t}^{i}\right) b_{t}^{i} \mathrm{~d} t+\text { dmart } \\
& +\sum_{i}\left(\sigma_{t}^{i}\right)^{2}\left(\frac{1}{2 n} \partial_{v} \partial_{\mu} U\left(\mu_{X_{t}}^{n}\right)\left(X_{t}^{i}\right)+\frac{1}{2 n^{2}} \partial_{\mu}^{2} U\left(\mu_{X_{t}}^{n}\right)\left(X_{t}^{i}, X_{t}^{i}\right)\right) \mathrm{d} t
\end{aligned}
$$

Master equation - PDE for U

Consider

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=b\left(Y_{t}, \mathcal{L}\left(X_{t}\right)\right) \mathrm{d} t+\mathrm{d} W_{t}, X_{0}=\xi \\
\mathrm{d} Y_{t}=-f\left(Z_{t}\right) \mathrm{d} t+Z_{t} \mathrm{~d} W_{t}, \quad Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right)
\end{array}\right.
$$

U s.t. $Y_{t}=U\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)$ satisfies $U(T, x, \mu)=g(x, \mu)$ and

$$
\begin{aligned}
& \partial_{t} U(\cdot)+b(U(\cdot), \mu) \partial_{x} U(\cdot)+\frac{1}{2} \partial_{x x}^{2} U(\cdot)+f\left(\partial_{x} U(\cdot)\right) \\
& +\mathbb{E}\left[b(U(t, \xi, \mu), \mu) \partial_{\mu} U(t, x, \mu)(\xi)+\frac{1}{2} \partial_{v} \partial_{\mu} U(t, x, \mu)(\xi)\right]=0
\end{aligned}
$$

\hookrightarrow We prove existence and uniqueness of a "classical" solution in small time to the above PDE written on $[0, T] \times \mathbb{R} \times \mathcal{P}_{2}(\mathbb{R})$.

Arbitrary T - difficulties

Consider the following system of FBSDEs

$$
\left\{\begin{array}{l}
\mathrm{d} Y_{t}=-\mathbb{E}\left[X_{t}\right] \mathrm{d} t+Z_{t} \mathrm{~d} W_{t} \text { and } Y_{T}=-X_{T}, \tag{1}\\
\mathrm{~d} X_{t}=Y_{t} \mathrm{~d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t} \text { and } X_{0}=x
\end{array}\right.
$$

where $T=\frac{3 \pi}{4}$ and σ is a Lipschitz function.
If $x \neq 0$, there is no solution in $\mathcal{S}^{2} \times \mathcal{S}^{2} \times \mathcal{H}^{2}$ to the above equation. proof Note $m_{X}(t):=\mathbb{E}\left[X_{T}\right]$ and $m_{Y}(t):=\mathbb{E}\left[Y_{T}\right]$ satisfies

$$
\left\{\begin{align*}
\mathrm{d} m_{Y}(t) & =-m_{X}(t) \mathrm{d} t \text { and } m_{Y}(T)=-m_{X}(T) \tag{2}\\
\mathrm{d} m_{X}(t) & =m_{Y}(t) \mathrm{d} t \text { and } m_{X}(0)=x
\end{align*}\right.
$$

The above system has no solution for $x \neq 0$. Observe that $m_{X}(t)=x \cos (t)+\mu \sin (t), m_{Y}(t)=-x \sin (t)+\mu \cos (t)$ so that $m_{Y}(T)+m_{X}(T)=-x \sqrt{2}$.

Positive results in the "classical" case

\hookrightarrow No MKV interaction

- σ is non degenerate, coefficients are bounded (Delarue)
- Existence and uniqueness also for some singular FBSDEs (Carmona-Delarue).
In any case, need a control on the solution's gradient.

Generic method

- Recursive method by splitting the time interval
- Possible only if control of Lipschitz constant of U, obtained from the estimate

$$
\begin{equation*}
\mathbb{E}\left[\left|U(t, \xi, \mathcal{L}(\xi))-U\left(t, \xi^{\prime}, \mathcal{L}\left(\xi^{\prime}\right)\right)\right|^{2}\right]^{\frac{1}{2}} \leq \Lambda \mathbb{E}\left[\left|\xi-\xi^{\prime}\right|^{2}\right]^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

- Structural condition on the coefficient allows to obtain previous estimate both in the MFG and control of MKV setting.

Objective and difficulties

- Goal: Numerical Approximation of $U(0, \xi, \mathcal{L}(\xi)), U$ decoupling field for

$$
\left\{\begin{array}{l}
\left.X_{t}=\xi+\int_{0}^{t} b\left(Y_{r}, \mathbb{H} X_{I}\right]\right) \mathrm{d} r+\sigma W_{t}, \\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(Z_{r}\right) \mathrm{d} r-\int_{t}^{T} Z_{r} \mathrm{~d} W_{r},
\end{array}\right.
$$

in particular: $Y_{0}=U(0, \xi, \mathcal{L}(\xi))$.

- Method: Adaptating grid method for coupled FBSDE is difficult... $Y_{t}=U\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)$.
\hookrightarrow back to basics: we use a binomial tree and a Picard iteration scheme (Need T small!)

Dealing with the coupling

- Picard Iteration, $\left(\tilde{X}^{j}, \tilde{Y}^{j}, \tilde{Z}^{j}\right)_{0 \leq j}$:

$$
\left\{\begin{array}{l}
\tilde{X}_{t}^{j}=\xi+\int_{0}^{t} b\left(\tilde{Y}_{r}^{j}, \mathbb{E}\left[\tilde{X}_{r}^{j}\right]\right) \mathrm{d} r+W_{t}, \tag{4}\\
Y_{t}^{j}=g\left(\tilde{X}_{T}^{j-1}\right)+\int_{t}^{T} f\left(\tilde{Z}_{r}^{j}\right) \mathrm{d} r-\int_{t}^{T} \tilde{Z}_{r}^{j} \mathrm{~d} W_{r},
\end{array}\right.
$$

with $\tilde{X}^{0}=\xi\left(\right.$ and $\left.\tilde{Y}^{0}=\tilde{Z}^{0}=0\right)$.

- Easily shown: $\left(\tilde{X}^{j}, \tilde{Y}^{j}, \tilde{Z}^{j}\right) \rightarrow(X, Y, Z)$
- Stopped after J iteration: output is $Y_{0}^{J} \leftrightarrow U(0, \xi, \mathcal{L}(\xi))$
- In practice, one cannot solve perfectly (4)

Discrete approximation

- A discrete time grid $\pi=\left\{t_{0}, \ldots, t_{n}\right\}$ with mesh size $|\pi|:=h$.
- Use a Binomial Tree for Brownian Motion: $\overline{\mathbb{P}}\left(\Delta W_{i}= \pm \sqrt{h}\right)=\frac{1}{2}$.
- "Classical" BTZ scheme:

$$
\begin{aligned}
\bar{X}_{t_{i+1}} & \left.=\bar{X}_{t_{i}}+b\left(\bar{Y}_{t_{i}}, \overline{\mathbb{E}}^{[} \bar{X}_{t_{i}}\right]\right) h+\sigma \Delta \bar{W}_{i}, \\
\bar{Y}_{t_{i}} & =\overline{\mathbb{E}}_{t_{i}}\left[\bar{Y}_{t_{i+1}}+h f\left(\bar{Z}_{t_{i}}\right)\right] \text { with } \bar{Z}_{t_{i}}=\overline{\mathbb{E}}_{t_{i}}\left[\frac{\Delta W_{i}}{h} \bar{Y}_{t_{i+1}}\right]
\end{aligned}
$$

with $\bar{X}_{0}=\xi$ and $\bar{Y}_{t_{n}}=g\left(\bar{X}_{T}\right)$.
Note: For the X-part, classical Explicit Euler scheme...

Deriving the scheme $(1 / 2)-Y$ part

On the equidistant grid $\pi=\left\{0=t_{0}<\ldots<t_{i}<\ldots<t_{n}=T\right\}$, with $h=T / n$.

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s}=Y_{t_{i+1}}+\int_{t_{i}}^{t_{i+1}} f\left(Z_{s}\right) \mathrm{d} s \tag{1}
\end{equation*}
$$

Deriving the scheme $(1 / 2)-Y$ part

On the equidistant grid $\pi=\left\{0=t_{0}<\ldots<t_{i}<\ldots<t_{n}=T\right\}$, with $h=T / n$.

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right) \tag{1}
\end{equation*}
$$

Deriving the scheme $(1 / 2)-Y$ part

On the equidistant grid $\pi=\left\{0=t_{0}<\ldots<t_{i}<\ldots<t_{n}=T\right\}$, with $h=T / n$.

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right) \tag{1}
\end{equation*}
$$

- For the Y-part:

Deriving the scheme $(1 / 2)-Y$ part

On the equidistant grid $\pi=\left\{0=t_{0}<\ldots<t_{i}<\ldots<t_{n}=T\right\}$, with $h=T / n$.

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right) \tag{1}
\end{equation*}
$$

- For the Y-part:

Take conditional expectation,

$$
Y_{t_{i}} \simeq \mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right)\right]
$$

Deriving the scheme (1/2) - Y part

On the equidistant grid $\pi=\left\{0=t_{0}<\ldots<t_{i}<\ldots<t_{n}=T\right\}$, with $h=T / n$.

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right) \tag{1}
\end{equation*}
$$

- For the Y-part:

Take conditional expectation,

$$
\begin{aligned}
& Y_{t_{i}} \simeq \mathbb{E}_{t_{i}}\left[Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right)\right] \\
\hookrightarrow \quad & \bar{Y}_{t_{i}}:=\overline{\mathbb{E}}_{t_{i}}\left[\bar{Y}_{t_{i+1}}+h f\left(\bar{Z}_{t_{i}}\right)\right]
\end{aligned}
$$

Deriving the scheme (2/2) - Z part

- Start with:

$$
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right)
$$

Deriving the scheme (2/2) - Z part

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right) \tag{1}
\end{equation*}
$$

- For the Z-part:

Deriving the scheme (2/2) - Z part

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right) \tag{1}
\end{equation*}
$$

- For the Z-part:

Multiply (1) by $\Delta W_{i}:=W_{t_{i+1}}-W_{t_{i}}$, take conditional expectation:

$$
\mathbb{E}_{t_{i}}\left[\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} s\right] \simeq \mathbb{E}_{t_{i}}\left[\Delta W_{i} Y_{t_{i+1}}\right]
$$

Deriving the scheme (2/2) - Z part

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right) \tag{1}
\end{equation*}
$$

- For the Z-part:

Multiply (1) by $\Delta W_{i}:=W_{t_{i+1}}-W_{t_{i}}$, take conditional expectation:

$$
h Z_{t_{i}} \simeq \mathbb{E}_{t_{i}}\left[\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} s\right] \simeq \mathbb{E}_{t_{i}}\left[\Delta W_{i} Y_{t_{i+1}}\right]
$$

Deriving the scheme (2/2) - Z part

- Start with:

$$
\begin{equation*}
Y_{t_{i}}+\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{~d} W_{s} \simeq Y_{t_{i+1}}+h f\left(Z_{t_{i}}\right) \tag{1}
\end{equation*}
$$

- For the Z-part:

Multiply (1) by $\Delta W_{i}:=W_{t_{i+1}}-W_{t_{i}}$, take conditional expectation:

$$
\begin{aligned}
h Z_{t_{i}} & \simeq \mathbb{E}_{t_{i}}\left[\int_{t_{i}}^{t_{i+1}} Z_{s} \mathrm{ds}\right] \simeq \mathbb{E}_{t_{i}}\left[\Delta W_{i} Y_{t_{i+1}}\right] \\
& \hookrightarrow \quad \bar{Z}_{t_{i}}:=\overline{\mathbb{E}}_{t_{i}}\left[h^{-1} \Delta W_{i} \bar{Y}_{t_{i+1}}\right]
\end{aligned}
$$

Convergence "analysis"

- Errors:

1. Due to the Picard Iteration: $\leq C T^{\jmath}$
2. Due to the discretisation: $\leq \bar{C} \sqrt{h}$

- To prove

1. Compare \tilde{Y}_{t}^{j} and $U\left(t, \tilde{X}_{t}^{j}, \mathcal{L}\left(\tilde{X}_{t}^{j}\right)\right)$ \hookrightarrow use "extended" Ito formula + smoothness.
2. Compare $\bar{Y}_{t_{i}}$ and $U\left(t_{i}, \bar{X}_{t_{i}}, \mathcal{L}\left(\bar{X}_{t_{i}}\right)\right)$ \hookrightarrow use a "discrete" Ito formula.

Numerical result: a model with no MKV interaction

- The model:

$$
\begin{aligned}
\mathrm{d} X_{t} & =\rho \cos \left(Y_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t} \text { and } X_{0}=x \in \mathbb{R}, \\
d Y_{t} & =Z_{t} \mathrm{~d} W_{t} \text { and } Y_{T}=\sin \left(X_{T}\right)
\end{aligned}
$$

- The important parameter is the coupling parameter ρ that will vary in [2.5, 8.5].
- Parameters for the simulation: 25 Picard iterations, 15 time steps, $T=\sigma=1$

Introduction
Numerical approximation for small T Numerical approximation for arbitrary T

Numerical result: output

Continuation method

Divide $[0, T]$ in small intervals of size $\delta=\frac{T}{N}$.

- Continuation Method:
- We know that $Y_{0}=U(0, \xi, \mathcal{L}(\xi))$ with (X, Y, Z) solution to

$$
\left\{\begin{array}{l}
X_{t}=\xi+\int_{0}^{t} b\left(Y_{r}, \mathbb{E}\left[X_{r}\right]\right) \mathrm{d} r+W_{t} \\
Y_{t}=U\left(\delta, X_{\delta}, \mathcal{L}\left(X_{\delta}\right)\right)+\int_{t}^{\delta} f\left(Z_{r}\right) \mathrm{d} r-\int_{t}^{\delta} Z_{r} \mathrm{~d} W_{r}
\end{array}\right.
$$

Continuation method

Divide $[0, T]$ in small intervals of size $\delta=\frac{T}{N}$.

- Continuation Method:
- We know that $Y_{0}=U(0, \xi, \mathcal{L}(\xi))$ with (X, Y, Z) solution to

$$
\left\{\begin{array}{l}
X_{t}=\xi+\int_{0}^{t} b\left(Y_{r}, \mathbb{E}\left[X_{r}\right]\right) \mathrm{d} r+W_{t} \\
Y_{t}=U\left(\delta, X_{\delta}, \mathcal{L}\left(X_{\delta}\right)\right)+\int_{t}^{\delta} f\left(Z_{r}\right) \mathrm{d} r-\int_{t}^{\delta} Z_{r} \mathrm{~d} W_{r}
\end{array}\right.
$$

- which can be approximated by Picard Iteration

$$
\left\{\begin{array}{l}
X_{t}^{j}=\xi+\int_{0}^{t} b\left(Y_{r}^{j}, \mathbb{E}\left[X_{r}^{j}\right]\right) \mathrm{d} r+W_{t} \\
Y_{t}^{j}=U\left(\delta, X_{\delta}^{j-1}, \mathcal{L}\left(X_{\delta}^{j-1}\right)\right)+\int_{t}^{\delta} f\left(Z_{r}^{j}\right) \mathrm{d} r-\int_{t}^{\delta} Z_{r}^{j} \mathrm{~d} W_{r}
\end{array}\right.
$$

Continuation method

Divide $[0, T]$ in small intervals of size $\delta=\frac{T}{N}$.

- Continuation Method:
- We know that $Y_{0}=U(0, \xi, \mathcal{L}(\xi))$ with (X, Y, Z) solution to

$$
\left\{\begin{array}{l}
X_{t}=\xi+\int_{0}^{t} b\left(Y_{r}, \mathbb{E}\left[X_{r}\right]\right) \mathrm{d} r+W_{t} \\
Y_{t}=U\left(\delta, X_{\delta}, \mathcal{L}\left(X_{\delta}\right)\right)+\int_{t}^{\delta} f\left(Z_{r}\right) \mathrm{d} r-\int_{t}^{\delta} Z_{r} \mathrm{~d} W_{r}
\end{array}\right.
$$

- which can be approximated by Picard Iteration

$$
\left\{\begin{array}{l}
X_{t}^{j}=\xi+\int_{0}^{t} b\left(Y_{r}^{j}, \mathbb{E}\left[X_{r}^{j}\right]\right) \mathrm{d} r+W_{t} \\
Y_{t}^{j}=U\left(\delta, X_{\delta}^{j-1}, \mathcal{L}\left(X_{\delta}^{j-1}\right)\right)+\int_{t}^{\delta} f\left(Z_{r}^{j}\right) \mathrm{d} r-\int_{t}^{\delta} Z_{r}^{j} \mathrm{~d} W_{r}
\end{array}\right.
$$

- Problem: U is required and this is what we want to compute...
\hookrightarrow We use a recursive algorithm, assuming that

$$
U(\delta, \xi, \mathcal{L}(\xi)) \simeq \operatorname{solver}[1](\xi)
$$

Recursive Method

For any "level", $0 \leq k<N-1$

- we compute on $\left[r_{k}, r_{k+1}\right]$ with $r_{k}:=k \delta$

$$
\left\{\begin{array}{l}
X_{t}^{j}=\xi+\int_{r_{k}}^{t} b\left(Y_{r}^{j}, \mathbb{E}\left[X_{r}^{j}\right]\right) \mathrm{d} r+W_{t}-W_{r_{k}}, \\
Y_{t}^{j}=\operatorname{solver}[k+1]\left(X_{r_{k+1}}^{j-1}\right)+\int_{t}^{r_{k+1}} f\left(Z_{r}^{j}\right) \mathrm{d} r-\int_{t}^{r_{k+1}} Z_{r}^{j} \mathrm{~d} W_{r}
\end{array}\right.
$$

- we stop at Picard Iteration J and set

$$
\text { solver }[k](\xi):=Y_{r_{k}}^{J}
$$

Recursive Method

For any "level", $0 \leq k<N-1$

- we compute on $\left[r_{k}, r_{k+1}\right]$ with $r_{k}:=k \delta$

$$
\left\{\begin{array}{l}
X_{t}^{j}=\xi+\int_{r_{k}}^{t} b\left(Y_{r}^{j}, \mathbb{E}\left[X_{r}^{j}\right]\right) \mathrm{d} r+W_{t}-W_{r_{k}}, \\
Y_{t}^{j}=\operatorname{solver}[k+1]\left(X_{r_{k+1}}^{j-1}\right)+\int_{t}^{r_{k+1}} f\left(Z_{r}^{j}\right) \mathrm{d} r-\int_{t}^{r_{k+1}} Z_{r}^{j} \mathrm{~d} W_{r},
\end{array}\right.
$$

- we stop at Picard Iteration J and set

$$
\text { solver }[k](\xi):=Y_{r_{k}}^{J}
$$

At Level $N-1$, we have

- solver $[N-1](\xi):=Y_{r_{N-1}}^{J}$ where, for $j \leq J$,

$$
\left\{\begin{array}{l}
X_{t}^{j}=\xi+\int_{r_{N-1}}^{t} b\left(Y_{r}^{j}, \mathbb{E}\left[X_{r}^{j}\right]\right) \mathrm{d} r+W_{t}-W_{r_{N-1}}, \\
Y_{t}^{j}=g\left(X_{T}^{j-1}\right)+\int_{t}^{T} f\left(Z_{r}^{j}\right) \mathrm{d} r-\int_{t}^{T} Z_{r}^{j} \mathrm{~d} W_{r},
\end{array}\right.
$$

- In particular, solver $[N](\cdot)=g(\cdot)$, No error...

The solver [] () algorithm

Full algorithm

- One cannot solve the following BSDE perfectly on [r_{k}, r_{k+1}]:

$$
\left\{\begin{array}{l}
X_{t}=\xi+\int_{r_{k}}^{t} b\left(Y_{r}, \mathbb{E}\left[X_{r}\right]\right) \mathrm{d} r+W_{t}-W_{r_{k}} \\
Y_{t}=\chi+\int_{t}^{r_{k+1}} f\left(Z_{r}\right) \mathrm{d} r-\int_{t}^{r_{k+1}} Z_{r} \mathrm{~d} W_{r}
\end{array}\right.
$$

- the solution is approximated by $\left(\bar{X}_{t}, \bar{Y}_{t}, \bar{Z}_{t}\right)_{t \in \pi^{k}}$ on a subgrid π^{k} with $\left|\pi^{k}\right|=h$ via a generic solver:

$$
\left(\bar{X}_{t}, \bar{Y}_{t}\right)_{t \in \pi^{k}}:=\overline{\operatorname{solver}}[k](\xi, \chi)
$$

Full algorithm

- One cannot solve the following BSDE perfectly on [r_{k}, r_{k+1}]:

$$
\left\{\begin{aligned}
X_{t} & =\xi+\int_{r_{r}}^{t} b\left(Y_{r}, \mathbb{E}\left[X_{r}\right]\right) \mathrm{d} r+W_{t}-W_{r_{k}}, \\
Y_{t} & =\chi+\int_{t}^{t_{k+1}} f\left(Z_{r}\right) \mathrm{d} r-\int_{t}^{r_{k+1}} Z_{r} \mathrm{~d} W_{r},
\end{aligned}\right.
$$

- the solution is approximated by $\left(\bar{X}_{t}, \bar{Y}_{t}, \bar{Z}_{t}\right)_{t \in \pi^{k}}$ on a subgrid π^{k} with $\left|\pi^{k}\right|=h$ via a generic solver:

$$
\left(\bar{X}_{t}, \bar{Y}_{t}\right)_{t \in \pi^{k}}:=\overline{\operatorname{solver}}[k](\xi, \chi)
$$

- A level k, to compute solver $[k](\xi)$:

1. initialisation at $\bar{X}_{t}^{0, k}=\xi$ and $\bar{Y}_{t}^{0, k}=0$ for $t \in \pi_{k}$
2. for $j \leq J$
2.1 compute $\bar{Y}_{r_{k+1}}^{j, k}=\operatorname{solver}[k+1]\left(\bar{X}_{t_{k+1}}^{j-1, k}\right)$.
2.2 compute $\left(\bar{Y}^{j, k}, \bar{X}^{j, k}\right)=\overline{\operatorname{solver}}[k]\left(\xi, \bar{Y}_{r_{k+1}}^{j, k}\right)$
3. return $\bar{Y}_{r_{k+1}}^{J, k}$.

Definition of solver [] (,)

In practice, we use the classical BTZ scheme e.g. for level k :

$$
\begin{aligned}
\bar{X}_{t_{i+1}} & =\bar{X}_{t_{i}}+b\left(\bar{Y}_{t_{i}}, \overline{\mathbb{E}}\left[\bar{X}_{t_{i}}\right]\right) h+\sigma\left(\bar{X}_{t_{i}}\right) \Delta \bar{W}_{i} \\
\bar{Y}_{t_{i}} & =\overline{\mathbb{E}}_{t_{i}}\left[\bar{Y}_{t_{i+1}}+h f\left(\bar{Z}_{t_{i}}\right)\right] \text { with } \bar{Z}_{t_{i}}=\overline{\mathbb{E}}_{t_{i}}\left[\frac{\Delta W_{i}}{h} \bar{Y}_{t_{i+1}}\right]
\end{aligned}
$$

with $\bar{X}_{r_{k}}=\xi$ and $\bar{Y}_{r_{k+1}}=\eta$.

Errors and convergence

- At each level, local error comes from

1. Stopping the Picard Iteration
2. Discretising the BSDE.

- Global error: Propagation of local error through the levels?

1. When no error is made on $\overline{\operatorname{solver}}[]($,$) : err \leq C \delta^{J-1}$.
2. When ζ error made: err $\leq C\left(\delta^{J-1}+N \zeta\right)$.

- Result:

$$
\operatorname{err} \leq C\left(\delta^{J-1}+\sqrt{h}\right)
$$

Safety check: A linear model

- The model:

$$
\begin{aligned}
\mathrm{d} X_{t} & =-\rho \mathbb{E}[Y]_{t} \mathrm{~d} t+\sigma \mathrm{d} W_{t}, X_{0}=x, \\
\mathrm{~d} Y_{t} & =-a Y_{s} \mathrm{~d} s+Z_{s} \mathrm{~d} W_{s} \text { and } Y_{T}=X_{T} .
\end{aligned}
$$

- The coupling parameter is fixed.
- We study the convergence of the discretisation error for both method

1. Picard Iteration (25 iterations)
2. solver [] () with two levels (5 Picard iterations each)

Introduction
Numerical approximation for small T Numerical approximation for arbitrary T

Numerical result for the linear model

Non-linear example with MKV interaction

- The model

$$
\begin{aligned}
& \mathrm{d} X_{t}=-\rho Y_{t} \mathrm{~d} t+\mathrm{d} W_{t}, X_{0}=x, \\
& \mathrm{~d} Y_{t}=\operatorname{atan}\left(\mathbb{E}\left[X_{t}\right]\right) \mathrm{d} t+Z_{t} \mathrm{~d} W_{t} \text { and } Y_{T}=G^{\prime}\left(X_{T}\right):=\operatorname{atan}\left(X_{T}\right)
\end{aligned}
$$

- comming from Pontryagin principle applied to MFG

$$
\inf _{\alpha} \mathbb{E}\left[G\left(X_{t}^{\alpha}\right)+\int_{0}^{T}\left(\frac{1}{2 \rho} \alpha_{t}^{2}+X_{t}^{\alpha} \operatorname{atan}\left(\mathbb{E}\left[X_{t}^{\alpha}\right]\right)\right) \mathrm{d} t\right]
$$

with $\mathrm{d} X_{t}^{\alpha}=\alpha_{t} \mathrm{~d} t+\mathrm{d} W_{t}$.

- numerics

1. Picard Iterations (25) - in blue
2. $\overline{\text { solver }[](,) ~ w i t h ~ t w o ~ l e v e l s ~(5 ~ i t e r a t i o n s ~ p e r ~ l e v e l) ~-~ i n ~ b l a c k ~}$

Introduction
Numerical approximation for small T Numerical approximation for arbitrary T

The solver[] () algorithm
Review of convergence
Numerical results

Output

J-F Chassagneux

Numerical solution to the master equation

