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Multilevel Monte Carlo
MLMC is based on the telescoping sum

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

where P̂ℓ represents an approximation of some output P on level ℓ.

In simple SDE applications with uniform timestep hℓ = 2−ℓ h0,
if the weak convergence is

E[P̂ℓ − P ] = O(2−α ℓ),

and Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1], based on Nℓ samples,
with variance

V[Ŷℓ] = O(N−1
ℓ 2−β ℓ),

and expected cost
E[Cℓ] = O(Nℓ 2γ ℓ), . . .
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Multilevel Monte Carlo

. . . then the finest level L and the number of samples Nℓ on each level
can be chosen to achieve an RMS error of ε at an expected cost

C =





O
(
ε−2

)
, β > γ,

O
(
ε−2(log ε)2

)
, β = γ,

O
(
ε−2−(γ−β)/α

)
, 0 < β < γ.

I always try to get β > γ, so the main cost comes from the coarsest levels
– use of QMC can then give substantial additional benefits.

With β > γ, can also randomise levels to eliminate bias
(Rhee & Glynn, Operations Research, 2015).
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Multilevel Monte Carlo

The standard estimator for SDE applications is

Ŷℓ = N−1
ℓ

Nℓ∑

n=0

(
P̂ℓ(W

(n)) − P̂ℓ−1(W (n))
)

using the same Brownian motion W (n) for the nth sample on the fine
and coarse levels.

However, there is some freedom in how we construct the coupling provided
Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1].

Have exploited this with an antithetic estimator for multi-dimensional
SDEs which don’t satisfy the commutativity condition.

(G, Szpruch: AAP 2014)
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Multilevel Monte Carlo

Also, uniform timestepping is not required – it is fairly straightforward
to implement MLMC using non-nested adaptive timestepping.

(G, Lester, Whittle: MCQMC14 proceedings)

coarse path

fine path t

✲✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

This has been exploited for SDEs with a drift which is not globally
Lipschitz. (Fang, G: new arXiv paper)

Also, interesting possibilities for applications with discontinuous output
functionals.
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Reflected diffusions
Motivating application comes from modelling of network queues
(Kavita Ramanan, Brown University)

Reflected Brownian diffusion with constant volatility in a domain D has
SDE

dxt = a(xt)dt + b dWt + ν(xt)dLt ,

where Lt is a local time which increases when xt is on the boundary ∂D.

ν(x) can be normal to the boundary (pointing inwards), but in some cases
it is not and reflection from the boundary includes a tangential motion.
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Reflected diffusions

A penalised version is

dxt = a(xt)dt + b dWt + ν(xt)dLt ,

dLt = λ max(0,−d(xt))dt, λ ≫ 1

where d(x) is signed distance to the boundary (negative means outside)
and ν(x) is a smooth extension from the boundary into the exterior.

Mike Giles (Oxford) Two new MLMC applications Paris, July 7, 2016 8 / 32



Reflected diffusions

When D is a polygonal domain, this generalises to

dxt = a(xt)dt + b dWt +

K∑

k=1

νk(xt)dLk,t ,

with a different νk and local time Lk,t for each boundary face.

The corresponding penalised version is

dxt = a(xt)dt + b dWt +
K∑

k=1

νk(xt)dLk,t ,

dLk,t = λ max(0,−dk(xt))dt, λ ≫ 1

where dk(xt) is signed distance to the boundary face with a suitable
extension.
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Numerical approximations

3 different numerical treatments in literature:

projection (Gobet, S lomiński): predictor step

X̂ (p) = X̂tn + a(X̂tn , tn) hn + b ∆Wn,

followed by correction step

X̂tn+1 = X̂ (p) + ν(X̂ (p)) ∆L̂n,

with ∆L̂n > 0 if needed to put X̂tn+1 on boundary

reflection (Gobet): similar but with double the value for ∆L̂n
– can give improved O(h) weak convergence

penalised (S lomiński): Euler-Maruyama approximation of penalised
SDE with λ = O(h−1), giving convergence as h → 0
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Numerical approximations

Concern:

because b is constant, Euler-Maruyama method corresponds to first
order Milstein scheme, suggesting an O(h) strong error

however, all three treatments of boundary reflection lead to a strong
error which is O(h1/2) – this is based primarily on empirical evidence,
with only limited supporting theory

if the output quantity of interest is Lipschitz with respect to the
path then

V

[
P̂−P

]
≤ E

[
(P̂−P)2

]
≤ c2 E

[
sup
[0,T ]

(X̂t−Xt)
2

]

so the variance is O(h)

OK, but not great – would like O(hβ) with β > 1 for O(ε−2) MLMC
complexity

Mike Giles (Oxford) Two new MLMC applications Paris, July 7, 2016 11 / 32



Adaptive timesteps

Simple idea: use adaptive timestep based on distance from the boundary

far away, use uniform timestep hℓ = 2−ℓ h0

near the boundary, use uniform timestep hℓ = 2−2ℓ h0

in between, define hℓ(x) to vary smoothly based on distance d(x)

What do we hope to achieve?

strong error O(2−ℓ) =⇒ MLMC variance is O(2−2ℓ)

computational cost per path O(2ℓ)

β=2, γ=1 in MLMC theorem =⇒ complexity is O(ε−2)
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Adaptive timesteps

In intermediate zone, want negligible probability of taking a single step
and crossing the boundary.

Stochastic increment in Euler timestep is b ∆W , so define hℓ so that

(ℓ+3) ‖b‖2
√

hℓ = d

Final 3-zone max-min definition of hℓ is

hℓ = max
(

2−2ℓh0,min
(

2−ℓh0, (d/((ℓ+3) ‖b‖2)2
))

Balancing terms, gives

boundary zone up to d = O(2−ℓ)

intermediate zone up to d = O(2−ℓ/2)
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Adaptive timesteps

Balancing terms, gives

boundary zone up to d ≈ O(2−ℓ)

intermediate zone up to d ≈ O(2−ℓ/2)

If ρ(y , t), the density of paths at distance y from the boundary at time t,
is uniformly bounded then the computational cost per unit time is
approximately

∫ ∞

0

ρ(y , t)dy

hℓ(y)
∼ 22ℓ × 2−ℓ

︸ ︷︷ ︸
boundary

+

∫ O(2−ℓ/2)

O(2−ℓ)

dy

y2
︸ ︷︷ ︸

intermediate

+ 2ℓ × 1

︸ ︷︷ ︸
interior

≈ O(2ℓ)

so we get similar cost contributions from all 3 zones.
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Numerical analysis

Theorem (Computational cost)

If

the density ρ(y , t) for the SDE paths at distance y from the

boundary is uniformly bounded

the numerical discretisation with the adaptive timestep has

strong convergence O(2−ℓ)

then the computational cost is o(2(1+δ)ℓ) for any 0<δ≪1.

The second condition is needed to bound the difference between the
distributions of the paths and their numerical approximations.
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Numerical analysis

Theorem (Strong convergence)

If

the drift a is constant

a uniform timestep discretisation has O(h1/2) strong convergence

the adaptive timestep hℓ is rounded to the nearest multiple of the

boundary zone timestep

then the strong convergence is O(2−ℓ)

The proof is based on a comparison with a discretisation using the uniform
boundary zone timestep:

adaptive numerical discretisation is exact when boundary not crossed

almost zero probability of crossing the boundary unless in the
boundary zone using the uniform timestep
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Numerical analysis

Future challenges:

prove that for constant drift a and timestep h, the strong error is
O(h1/2) for reflected diffusions with oblique reflections, preferably
for generalised penalisation method for polygonal boundaries

extend analysis to include errors in local time

extend analysis to general drift and adaptive timesteps
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Numerical results

Simple test case:

3D Brownian motion in a unit ball

normal reflection at the boundary

x0 = 0

aim is to estimate E[‖x‖22] at time t=1.

implemented with both projection and penalisation schemes
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Numerical results

Projection method:
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Numerical results

Penalisation method:
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Decision making under uncertainty

The motivating application comes from medical decision-making
(Howard Thom, Bristol University).

Given no knowledge of independent uncertainties X ,Y , best treatment
out of some finite set D corresponds to

max
d∈D

E [fd (X ,Y )]

while with perfect knowledge we have

E

[
max
d∈D

fd(X ,Y )

]
.

However, if X is known but not Y , then best treatment has value

E

[
max
d

E [fd (X ,Y ) |X ]

]
.
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EVPI & EVPPI

EVPI, the expected value of perfect information, is the difference

EVPI = E

[
max
d

fd (X ,Y )

]
− max

d
E[fd(X ,Y )]

which can be estimated with O(ε−2) complexity by standard methods,
assuming an O(1) cost per sample fd (X ,Y ).

EVPPI, the expected value of partial perfect information, is the difference

EVPPI = E

[
max
d

E [fd (X ,Y ) |X ]

]
− max

d
E[fd(X ,Y )]

which is a nested simulation problem. In practice, we choose to estimate

EVPI − EVPPI = E

[
max
d

fd(X ,Y )

]
− E

[
max
d

E [fd (X ,Y ) |X ]

]
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MLMC treatment

Based on work by Oxford colleagues (Bujok, Hambly, Reisinger, 2015)
Takashi Goda (arXiv, April 2016) has proposed an efficient MLMC
estimator using 2ℓ samples on level ℓ for conditional expectation.

For given sample X , define

Zℓ = 1
2

(
max
d

fd
(a)

+ max
d

fd
(b)

)
− max

d
fd

where

fd
(a)

is an average of fd (X ,Y ) over 2ℓ−1 independent samples for Y ;

fd
(b)

is an average over a second independent set of 2ℓ−1 samples;

fd is an average over the combined set of 2ℓ inner samples.
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MLMC treatment

The expected value of this estimator is

E[Zℓ] = E[max
d

fd ,2ℓ−1 ] − E[max
d

fd ,2ℓ ]

where fd ,2ℓ is an average of 2ℓ inner samples, and hence

L∑

ℓ=1

E[Zℓ] = E[max
d

f ] − E[max
d

fd ,2L ]

→ E[max
d

f ] − E[max
d

E[f (X ,Y ) |X ]

as L → ∞, giving us the desired estimate.
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MLMC treatment

How good is the estimator? γ=1, but what are α and β?

Define

Fd(X ) = E [fd (X ,Y ) |X ] , dopt(X ) = arg max
d

Fd(X )

so dopt(x) is piecewise constant, with a lower-dimensional manifold K on
which it is not uniquely-defined.

Note that 1
2(fd

(a)
+ fd

(b)
) − fd = 0, so Zℓ=0 if the same d maximises

each term in Zℓ.
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Numerical analysis

Heuristic analysis:

fd
(a)

− fd
(b)

= O(2−ℓ/2), due to CLT

O(2−ℓ/2) probability of both being near K

under this condition, Zℓ = O(2−ℓ/2)

Hence E[Zℓ] = O(2−ℓ) and E[Z 2
ℓ ] = O(2−3ℓ/2), so α=1, β=3/2.

It is possible to make this rigorous given some assumptions.
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Numerical analysis

Assumptions

E [ |fd (X ,Y )|p] is finite for all p≥2.

Comment: helps to bound the difference between fd and Fd (X ).

There exists a constant c0>0 such that for all 0<ǫ<1

P(min
y∈K

‖X−y‖ ≤ ǫ) ≤ c0 ǫ.

Comment: bounds the probability of X being close to K.

There exist constants c1, c2 > 0 such that if X /∈ K, then

max
d

Fd (X ) − max
d 6=dopt (X )

Fd(X ) > min(c1, c2 min
y∈K

‖X−y‖).

Comment: ensure linear separation of the optimal Fd away from K.
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Numerical analysis

Building on the heuristic analysis, and other past analyses, we obtain the
following theorem:

Theorem

If the Assumptions are satisfied, and fd
(a)

, fd
(b)

, fd are as defined

previously for level ℓ, with 2ℓ inner samples being used for fd ,

then for any δ>0

E

[
1
2 (max

d
fd

(a)
+ max

d
fd

(b)
) − max

d
fd

]
= o(2−(1−δ)ℓ).

and

E

[(
1
2 (max

d
fd

(a)
+ max

d
fd

(b)
) − max

d
fd

)2
]

= o(2−(3/2−δ)ℓ).
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Numerical results

Goda test case:

X ∼ N(0, 2)
Y ∼ N(0, 3)

f1(X ,Y ) = X + Y

f2(X ,Y ) = 0

As expected
α ≈ 1
β ≈ 3/2

O(ε−2) and O(ε−3)
complexity for MLMC
and MC, respectively.
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Nested simulation

There are lots of other applications involving nested simulation.

One example is a McKean-Vlasov equation of the form

dXt = a(Xt ,E[Xt ])dt + b(Xt ,E[Xt ])dW

which can be simulated with P paths

X̂p,n+1 = X̂p,n + a


X̂p,n,

1

P

P∑

q=1

X̂q,n


 h + b


X̂p,n,

1

P

P∑

q=1

X̂q,n


∆Wp,n

Different levels can use different values for P and/or different timesteps
– a good application for multi-index Monte Carlo?

Mike Giles (Oxford) Two new MLMC applications Paris, July 7, 2016 30 / 32



Nested simulation

In other applications in finance and big data, each outer “sample”
requires a summation over a large set of data:

S =
N∑

1

x(n)

This can be represented as

S = N E[x(n)]

where n is uniformly distributed over {1, 2, 3, . . . ,N}. It can then be
approximated by

N

P

P∑

1

x(np)

and different levels can again use different values for P .
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Conclusions

still lots of new directions for MLMC research

adaptive timestepping can be helpful, and is easy to implement

nested simulation may be a significant new direction – splitting a
large sample into multiple sub-samples is key to a good coupling

I think multi-index Monte Carlo (MIMC) will be important for
nested simulation and other areas

Webpages:
http://people.maths.ox.ac.uk/gilesm/

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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