Recent Developments in Randomized MLMC

Peter W. Glynn
Stanford University

Joint work with Chang-Han Rhee, Zeyu Zheng and Jose Blanchet

International Conference on Monte Carlo Techniques Paris, July 5-8, 2016

General Setting:

- Compute $\alpha=E Y_{\infty}$
- Given Y_{n} such that
$-E Y_{n} \rightarrow E Y_{\infty}$
- Y_{n} 's are coupled so that $\left\|Y_{n}-Y_{\infty}\right\|_{2}^{2} \rightarrow 0$ as $n \rightarrow \infty$
e.g. $Y_{n} \rightarrow Y_{\infty}$ in L^{2}
- Success depends on the quality of coupling

Some Applications

- Stochastic differential equations (SDE's)
- Partial differential equations with random coefficients
- Many others

Today's talk: Focus on Markov chains

Markov Chains

$X=\left(X_{n}: n \geq 0\right) S$-valued Markov chain

- $P(x, d y) \triangleq P\left(X_{n+1} \in d y \mid X_{n}=x\right)$
- $P_{x}(\cdot) \triangleq P\left(\cdot \mid X_{0}=x\right)$
- $E_{x}(\cdot) \triangleq E\left(\cdot \mid X_{0}=x\right)$

We will focus on computations related to equilibrium properties, so we will assume that X has a unique stationary distribution π

$$
\pi(\cdot) \triangleq P\left(X_{\infty} \in \cdot\right)
$$

Goal 1: Compute $\alpha=E\left(Y_{\infty}\right)$ where $Y_{\infty}=r\left(X_{\infty}\right)\left(r: S \rightarrow \mathbb{R}_{+}\right)$

The Relative Value Function

In approximate dynamic programming, the goal is to compute the solution of the HJB equation

$$
\alpha+v(x)=\max _{a \in \mathcal{A}(x)}\left[r(x, a)+\int_{S} P_{a(x)}(x, d y) v(y)\right]
$$

The value function satisfies Poisson's equation under the optimal a^{*},

$$
v(x)=r\left(x, a^{*}(x)\right)-\alpha+\int_{S} P_{a^{*}(x)}(x, d y) v(y)
$$

Under suitable regularity conditions,

$$
v(x)=\sum_{n=0}^{\infty}\left(E_{x}^{*} r\left(X_{n}\right)-E^{*} r\left(X_{\infty}\right)\right)
$$

Goal 2: Compute $v(x)$ efficiently

The Time-average Variance Constant (TAVC)

In approximating the distribution of total reward over n periods, we take advantage of the central limit theorem:

$$
\sum_{j=0}^{n-1} r\left(X_{j}\right) \stackrel{D}{\approx} n E r\left(X_{\infty}\right)+\sqrt{n} \sigma N(0,1)
$$

Goal 3: Compute the TAVC σ^{2} efficiently

- The quantity σ^{2} also plays a role in computing confidence intervals for $E r\left(X_{\infty}\right)$ when using the sample mean $n^{-1} \sum_{j=0}^{n-1} r\left(X_{j}\right)$.
- The quantity σ^{2} is a special case of the spectral density

$$
f(\lambda)=\frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} e^{i \lambda j} \operatorname{cov}_{\pi}\left(r\left(X_{0}\right), r\left(X_{j}\right)\right)
$$

In particular,

$$
\sigma^{2}=2 \pi f(0)
$$

The Gradient of an Equilibrium Expectation

Suppose that the transition kernel P depends on a parameter θ

$$
P=P(\theta)
$$

Goal 4: Compute $\frac{d}{d \theta} E_{\theta} r\left(X_{\infty}\right)$ efficiently

- Arises in statistical settings with uncertain input parameters

$$
E_{\hat{\theta}} r\left(X_{\infty}\right) \stackrel{D}{\approx} E_{\theta^{*}} r\left(X_{\infty}\right)+\frac{d}{d \theta} E_{\theta^{*} r} r\left(X_{\infty}\right)\left(\hat{\theta}-\theta^{*}\right)
$$

- Needed in numerical algorithms for optimizing steady-state reward over decision parameter space

A Simple Randomization Idea

Goal: Compute $E Y$, where Y is difficult / impossible to generate exactly

Suppose that we have a sequence $\left(Y_{m}: m \geq 0\right)$ for which

- Y_{m} can be generated exactly
- $Y_{m} \xrightarrow{L^{2}} Y$ as $m \rightarrow \infty$

Then:

$$
Y=\lim _{m \rightarrow \infty}{\underset{\sim}{\Delta_{0}}}_{\left(Y_{0}\right.}+\sum_{i=1}^{m}(\underbrace{Y_{i}-Y_{i-1}}_{\Delta_{i}}))=\sum_{i=0}^{\infty} \Delta_{i}
$$

If

$$
\sum_{i=1}^{\infty} \mathbf{E}\left|\Delta_{i}\right|<\infty
$$

then

Note that Z is an unbiased estimator of $\mathbf{E} Y$. We call Z the summed estimator.

Then:

$$
Y=\lim _{m \rightarrow \infty} \underset{\Delta_{0}}{\left(Y_{0}\right.}+\sum_{i=1}^{m}(\underbrace{Y_{i}-Y_{i-1}}_{\Delta_{i}}))=\sum_{i=0}^{\infty} \Delta_{i} .
$$

If

$$
\sum_{i=1}^{\infty} \mathbf{E}\left|\Delta_{i}\right|<\infty
$$

then
$\mathbf{E} Y=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i}=\sum_{i=1}^{\infty} \mathbb{E} \Delta_{i} \frac{\mathbb{P}(N \geq i)}{\mathbb{P}(N \geq i)}=\mathbb{E} \sum_{i=1}^{\infty} \Delta_{i} \frac{\mathbb{I}(N \geq i)}{\mathbb{P}(N \geq i)}=\mathbb{E} \sum_{i=1}^{N} \frac{\Delta_{i}}{\mathbb{P}(N \geq i)} \triangleq \mathbb{E} Z$.

Note that Z is an unbiased estimator of $\mathbf{E} Y$. We call Z the summed estimator.

Then:

$$
Y=\lim _{m \rightarrow \infty}{\underset{\sim}{\Delta_{0}}}_{\left(Y_{0}\right.}^{\sim}+\sum_{i=1}^{m}(\underbrace{Y_{i}-Y_{i-1}}_{\Delta_{i}}))=\sum_{i=0}^{\infty} \Delta_{i}
$$

If

$$
\sum_{i=1}^{\infty} \mathbf{E}\left|\Delta_{i}\right|<\infty
$$

then
$\mathbf{E} Y=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i}=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i} \frac{\mathbf{P}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbb{E} \sum_{i=1}^{\infty} \Delta_{i} \frac{\mathbb{I}(N \geq i)}{\mathbb{P}(N \geq i)}=\mathbb{E} \sum_{i=1}^{N} \frac{\Delta_{i}}{\mathbb{P}(N \geq i)} \triangleq \mathbb{E} Z$.

Note that Z is an unbiased estimator of $\mathbf{E} Y$. We call Z the summed estimator.

Then:

$$
Y=\lim _{m \rightarrow \infty}{\underset{\sim}{\Delta_{0}}}_{\left(Y_{0}\right.}+\sum_{i=1}^{m}(\underbrace{Y_{i}-Y_{i-1}}_{\Delta_{i}}))=\sum_{i=0}^{\infty} \Delta_{i}
$$

If

$$
\sum_{i=1}^{\infty} \mathbf{E}\left|\Delta_{i}\right|<\infty
$$

then
$\mathbf{E} Y=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i}=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i} \frac{\mathbf{P}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbf{E} \sum_{i=1}^{\infty} \Delta_{i} \frac{\mathbb{I}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbb{E} \sum_{i=1}^{N} \frac{\Delta_{i}}{\mathbb{P}(N \geq i)} \triangleq \mathbb{E} Z$.

Note that Z is an unbiased estimator of $\mathbf{E} Y$. We call Z the summed estimator.

Then:

$$
Y=\lim _{m \rightarrow \infty}{\underset{\sim}{\Delta_{0}}}_{\left(Y_{0}\right.}+\sum_{i=1}^{m}(\underbrace{Y_{i}-Y_{i-1}}_{\Delta_{i}}))=\sum_{i=0}^{\infty} \Delta_{i}
$$

If

$$
\sum_{i=1}^{\infty} \mathbf{E}\left|\Delta_{i}\right|<\infty
$$

then
$\mathbf{E} Y=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i}=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i} \frac{\mathbf{P}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbf{E} \sum_{i=1}^{\infty} \Delta_{i} \frac{\mathbb{I}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbf{E} \sum_{i=1}^{N} \frac{\Delta_{i}}{\mathbf{P}(N \geq i)}$

Note that Z is an unbiased estimator of $\mathbf{E} Y$. We call Z the summed estimator.

Then:

$$
Y=\lim _{m \rightarrow \infty}{\underset{\sim}{\Delta_{0}}}_{\left(Y_{0}\right.}+\sum_{i=1}^{m}(\underbrace{Y_{i}-Y_{i-1}}_{\Delta_{i}}))=\sum_{i=0}^{\infty} \Delta_{i}
$$

If

$$
\sum_{i=1}^{\infty} \mathbf{E}\left|\Delta_{i}\right|<\infty
$$

then
$\mathbf{E} Y=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i}=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i} \frac{\mathbf{P}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbf{E} \sum_{i=1}^{\infty} \Delta_{i} \frac{\mathbb{I}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbf{E} \sum_{i=1}^{N} \frac{\Delta_{i}}{\mathbf{P}(N \geq i)} \triangleq \mathbf{E} Z$.

Note that Z is an unbiased estimator of $\mathbf{E} Y$. We call Z the summed estimator.

Then:

$$
Y=\lim _{m \rightarrow \infty}{\underset{\sim}{\Delta_{0}}}_{\left(Y_{0}\right.}^{\sim}+\sum_{i=1}^{m}(\underbrace{Y_{i}-Y_{i-1}}_{\Delta_{i}}))=\sum_{i=0}^{\infty} \Delta_{i}
$$

If

$$
\sum_{i=1}^{\infty} \mathbf{E}\left|\Delta_{i}\right|<\infty
$$

then
$\mathbf{E} Y=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i}=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i} \frac{\mathbf{P}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbf{E} \sum_{i=1}^{\infty} \Delta_{i} \frac{\mathbb{I}(N \geq i)}{\mathbf{P}(N \geq i)}=\mathbf{E} \sum_{i=1}^{N} \frac{\Delta_{i}}{\mathbf{P}(N \geq i)} \triangleq \mathbf{E} Z$.

Note that Z is an unbiased estimator of $\mathbf{E} Y$. We call Z the summed estimator.

We want:

$$
c^{1 / 2}(\widehat{Y}(c)-\mathbf{E} Y) \Rightarrow \eta N(0,1)
$$

as $c \rightarrow \infty$.
For this, we need:

- $\operatorname{var}(Z)<\infty$
- \mathbf{E} (time to generate $Z)<\infty$

Then,

$$
c^{1 / 2}(\widehat{Y}(c)-\mathbf{E} Y) \Rightarrow \sqrt{\operatorname{var}(Z) \cdot \mathbf{E}(\text { time to generate } Z)} N(0,1)
$$

as $c \rightarrow \infty$

Variance of Z:

$$
\operatorname{var}(Z)=\sum_{i=0}^{\infty} \gamma_{i} / \mathbf{P}(N \geq i)
$$

where $\gamma_{i}=O\left(\left\|Y-Y_{i}\right\|_{2}^{2}\right)$

Mean time to generate Z :

$$
\begin{aligned}
\mathbf{E}(\text { time to generate } Z) & =\mathbf{E}\left(\sum_{i=0}^{N} t_{i}\right) \\
& =\sum_{i=0}^{\infty} t_{i} \mathbf{P}(N \geq i)
\end{aligned}
$$

where $t_{i}=$ (incremental) time to generate Y_{i}
Rhee and G $(2012,2013)$ McLeish (2011)

Single-Term Estimator

Note that

$$
\begin{aligned}
\mathbf{E} Y & =\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i}=\sum_{i=1}^{\infty} \mathbf{E} \Delta_{i} \frac{\mathbf{P}(N=i)}{\mathbf{P}(N=i)}=\mathbf{E} \sum_{i=1}^{\infty} \Delta_{i} \frac{\mathbb{I}(N=i)}{\mathbf{P}(N=i)} \\
& =\mathbf{E} \Delta_{N} / p_{N} \\
& \triangleq \mathbf{E} Z \check{ } \quad \text { "single-term estimator" }
\end{aligned}
$$

where $p_{n}=\mathbf{P}(N=n)$. Note that \check{Z} is also an unbiased estimator of $\mathbf{E} Y$

Optimal Choice of Randomization Distribution N for Summed Estimator

Find N that minimizes the work-variance product:

$$
\operatorname{minimize} \quad g(\bar{F})=\left(\sum_{i=0}^{\infty} t_{i} \bar{F}_{i}\right)\left(\sum_{i=0}^{\infty} \gamma_{i} / \bar{F}_{i}\right)
$$

subject to $\quad \bar{F}_{n} \geq \bar{F}_{n+1}, \quad \forall n \geq 0$

$$
\begin{aligned}
& \bar{F}_{n}>0, \quad \forall n \geq 0 \\
& \bar{F}_{0}=1
\end{aligned}
$$

where $\bar{F}_{i}=\mathbf{P}(N \geq i)$.

If $\sqrt{\gamma_{i} / t_{i}}$ is well-defined and non-increasing:

$$
\bar{F}_{i}^{*}=\frac{\sqrt{\gamma_{i} / t_{i}}}{\sqrt{\gamma_{0} / t_{0}}}
$$

McLeish (2011)
Rhee and G (2012)

Optimal Choice of Randomization Distribution N for Single-term Estimator

Theorem

Optimal N for the single-term estimator Z has the probability mass function ($p_{n}^{*}: n \geq 0$), where

$$
p_{n}^{*}=\sqrt{\frac{\mathbf{E} \Delta_{n}^{2}}{\alpha^{2}+c^{*} t_{n}}}
$$

for $n \geq 0$. Here c^{*} is the unique root of the equation

$$
\sum_{n=0}^{\infty} \sqrt{\frac{\mathbf{E} \Delta_{n}^{2}}{\alpha^{2}+c^{*} t_{n}}}=1
$$

The Connection to MLMC

- Our summed estimator takes the form

$$
\sum_{i=1}^{\infty} \hat{\Delta}_{i} \frac{\hat{P}(N \geq i)}{P(N \geq i)}
$$

where $\hat{\Delta}_{i}=\frac{1}{m_{i}} \sum_{j=1}^{\hat{m}_{i}} \Delta_{j i} \quad\left(\hat{m}_{1} \geq \hat{m}_{2} \geq \cdots\right)$

- We can post-stratify this estimator:

$$
\sum_{i=1}^{\infty} \hat{\Delta}_{i}(\triangleq \hat{W})
$$

- This post-stratified estimator reduces the variance

$$
\operatorname{var}(\hat{W}) \approx \frac{1}{n} \frac{\sum_{i=1}^{\infty}\left[\operatorname{var} \Delta_{i}+2 \operatorname{cov}\left(\Delta_{i}, Y_{\infty}-Y_{i}\right)\right]}{P(N \geq i)}
$$

If we further stratify the $\hat{\Delta}_{i}$'s:

$$
\text { Replace } \hat{\Delta}_{i} \text { by } \frac{1}{\lfloor n P(N \geq i)\rfloor} \sum_{j=1}^{\lfloor n P(N \geq i)\rfloor} \Delta_{j i}
$$

we effectively end up with MLMC (see Vihola (2015))

- This last step does not reduce asymptotic variance

Goal 1: Compute $\operatorname{Er}\left(X_{\infty}\right)$ efficiently

- The natural approximation to $Y_{\infty}=r\left(X_{\infty}\right)$ is $Y_{n}=r\left(X_{n}\right)$
- But the $r\left(X_{n}\right)$'s do not couple in the sense that

$$
\left\|r\left(X_{n}\right)-r\left(X_{\infty}\right)\right\|_{2}^{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Random Iterated Function Perspective

Set

$$
X_{n+1}=f\left(X_{n}, Z_{n+1}\right)
$$

where the Z_{i} 's are iid. View as

$$
X_{n+1}=\phi_{n+1}\left(X_{n}\right)
$$

where the ϕ_{i} 's are iid random functions. So,

$$
X_{n}=\left(\phi_{n} \circ \phi_{n-1} \cdots \circ \phi_{1}\right)\left(X_{0}\right) .
$$

But since the ϕ_{i} 's are iid,

$$
\phi_{n} \circ \cdots \circ \phi_{1} \stackrel{D}{=} \phi_{1} \circ \cdots \circ \phi_{n}
$$

so $\tilde{X}_{n} \stackrel{D}{=} X_{n}$, where

$$
\tilde{X}_{n}=\left(\phi_{1} \circ \phi_{2} \cdots \circ \phi_{n}\right)\left(X_{0}\right)
$$

Set $\tilde{Y}_{n}=r\left(\tilde{X}_{n}\right)$. Fortunately, the \tilde{Y}_{n} 's often couple nicely, in the sense that

$$
\left\|\tilde{Y}_{n}-\tilde{Y}_{n-1}\right\|_{2}^{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Setting 1: Contraction Chains

If:

- φ_{i} is contracting on average

$$
\begin{array}{ll}
& \sup _{x \neq y} \mathbf{E} \frac{\left|\varphi_{i}(x)-\varphi_{i}(y)\right|^{2}}{|x-y|^{2}} \leq \rho<1 \\
\text { e.g. } & \varphi_{i}(x)=A_{i} x+Z_{i} \quad\left(0<\mathbf{E}\left|A_{i}\right|^{2}<1\right)
\end{array}
$$

- $\mathbf{E}\left|x_{0}-\varphi_{i}\left(x_{0}\right)\right|^{2}<\infty$, for some x_{0}

Then,

$$
\mathbf{E}_{x}\left|\widetilde{X}_{m}-\widetilde{X}_{\infty}\right|^{2} \leq \gamma_{x} \rho^{n}, \quad n \geq 0
$$

Setting 2: Monotone Chains

Suppose that $\phi_{i}(\cdot)$ is non-decreasing in \preceq and S has a least element (0 , say) under \preceq. Then,

$$
\left(\phi_{1} \circ \cdots \circ \phi_{n}\right)(0) \nearrow
$$

in \preceq. So, if r is increasing in \preceq,

$$
\tilde{Y}_{n} \nearrow \tilde{Y}_{\infty} \quad \text { a.s. }
$$

Numerical Examples

Table: $\alpha=\mathbf{E} f\left(W_{\infty}\right), W_{n+1}=\left[W_{n}+X_{n}\right]^{+}, X_{i} \sim N(-0.5,1), f(x)=x \wedge 1,100$ Samples

IRE	90% Confidence Interval	RMSE $/ \alpha$	Work	Work \times MSE
0.200	0.3152012 ± 0.0100708	1.90×10^{-1}	1.9×10^{4}	72.0
0.100	0.3283592 ± 0.0045089	8.43×10^{-2}	8.9×10^{4}	67.5
0.050	0.3244757 ± 0.0024279	4.54×10^{-2}	3.3×10^{5}	73.3
0.020	0.3248810 ± 0.0011379	2.14×10^{-2}	2.0×10^{6}	99.6
0.010	0.3265324 ± 0.0004189	8.00×10^{-3}	9.5×10^{6}	64.5
0.005	0.3257757 ± 0.0002199	4.13×10^{-3}	3.4×10^{7}	60.8

Table: $\alpha=\mathbf{E} f\left(X_{\infty}\right), X_{n+1}=\frac{1}{2} X_{n}+\xi_{n}, \xi_{i} \sim N(1,1), f(x)=x$, 100 Samples

IRE	90% Confidence Interval	RMSE $/ \alpha$	Work	Work \times MSE
0.050	2.0022907 ± 0.0116508	3.54×10^{-2}	2.6×10^{3}	13.2
0.020	1.9925651 ± 0.0062383	1.93×10^{-2}	1.3×10^{4}	19.9
0.010	1.9999375 ± 0.0028700	8.71×10^{-3}	6.7×10^{4}	20.3
0.005	2.0005492 ± 0.0015075	4.58×10^{-3}	2.3×10^{5}	19.2
0.002	2.0000365 ± 0.0005775	1.75×10^{-3}	1.7×10^{6}	21.3
0.001	1.9999333 ± 0.0002688	8.16×10^{-4}	5.9×10^{6}	15.6

Unbiased Estimation for Equilibrium Expectations

- Use the above coupling in our randomized MLMC methodology
- We call this class of algorithms exact estimation algorithms, to be contrasted with exact simulation algorithms (like Propp-Wilson)
- Exact estimation is possible in many settings where exact simulation is hard or impossible (G and Rhee (2014))

Another Approach:

If X exhibits regenerative structure,

$$
\operatorname{Er}\left(X_{\infty}\right)=\frac{E \sum_{j=0}^{\tau-1} r\left(X_{j}\right)}{E \tau}
$$

where $\tau=$ regeneration time. So,

$$
\operatorname{Er}\left(X_{\infty}\right)=g\left(E \sum_{j=0}^{\tau-1} r\left(X_{j}\right), E \tau\right)
$$

where $g(x, y)=x / y$. Our randomized MLMC scheme can be extended to obtain unbiased estimators of such ratio quantities

Blanchet and G (2015)

Computing the Relative Value Function

Consider the relative value function:

$$
v(x)=\sum_{j=0}^{\infty}\left[E_{x}\left(r\left(X_{n}\right)-\operatorname{Er}\left(X_{\infty}\right)\right]\right.
$$

Conventional estimator must trade-off bias versus variance, leading to a sub-canonical (slower than $c^{-1 / 2}$) convergence rate

The Multi-level Alternative:

- Set $b_{n}(x)=\mathbf{E}_{x} r\left(X_{n}\right)$ and note that if

$$
\begin{aligned}
y_{n} & \triangleq \sum_{j=0}^{n-1}(j+1)\left(b_{j}(x)-b_{j+1}(x)\right) \\
& =\sum_{j=0}^{n-1} b_{j}(x)-n b_{n}(x) \\
& \rightarrow h(x)
\end{aligned}
$$

exponentially rapidly, when X is contractive. Also, $y_{k}=E \tilde{Y}_{k}$, where

$$
\begin{aligned}
& \tilde{Y}_{k}=\sum_{j=0}^{k-1}(j+1)\left[r\left(\left(\phi_{0} \circ \cdots \circ \phi_{-j+1}\right)(x)\right)-r\left(\left(\phi_{0} \circ \cdots \circ \phi_{-j}\right)(x)\right)\right], \\
& \tilde{Y}_{0}=r(x) \text { and }\left\|\tilde{Y}_{n}-\tilde{Y}_{n-r}\right\|_{2}=O\left(\beta^{n-r}\right) \text { for } 0<\beta<1 .
\end{aligned}
$$

- Leads to a square root convergent estimator (Zheng and G (2016))

A Numerical Example

Autoregressive model of order 1 :

$$
X_{n+1}=0.5 * X_{n}+Z_{n+1}
$$

where Z_{i} 's are iid $N(0,1) ; r_{1}(x)=x$ and $r_{2}(x)=x^{2}$.
Table: $P(N \geq n)=0.95^{n}, 10^{5}$ \# samples, 100 replications

$r(\cdot)$	X	$P\left(X_{\infty}>x\right)$	True $h(x)$	Est $h(x)$	Emp Bias	90% C.I.
r_{1}	0	0.5	0	0.0001	1.3×10^{-4}	$[-0.0251,0.0311]$
	0.7788	0.75	1.5577	1.5568	-8.2×10^{-4}	$[1.5250,1.5859]$
	1.8993	0.95	3.7986	3.7983	-3.7×10^{-4}	$[3.7690,3.8356]$
	2.6862	0.99	5.3725	5.3698	-2.7×10^{-3}	$[5.3331,5.4085]$
r_{2}	0	0.5	-1.778	-1.7829	-5.1×10^{-3}	$[-1.8331,-1.7320]$
	0.7788	0.75	-0.9690	-0.9696	-5.8×10^{-4}	$[-1.0360,-0.9028]$
	1.8993	0.95	3.0321	3.0460	-1.4×10^{-3}	$[2.9418,3.1266]$
	2.6862	0.99	7.8434	7.8413	-2.1×10^{-3}	$[7.7170,7.9729]$

Est $h(x)$ denotes the averaged estimations; Emp Bias denotes Empirical Bias

A Numerical Example: Square-root Convergence Rate

Table: Rate of Convergence

\# of Samples	True $h(x)$	90% Confidence Interval
1.0×10^{3}	3.798	$3.798 \pm 1.1 \times 10^{-1}$
2.0×10^{3}	3.798	$3.792 \pm 7.4 \times 10^{-2}$
5.0×10^{3}	3.798	$3.801 \pm 5.4 \times 10^{-2}$
1.0×10^{4}	3.798	$3.798 \pm 4.0 \times 10^{-2}$
2.0×10^{4}	3.798	$3.798 \pm 2.9 \times 10^{-2}$
5.0×10^{4}	3.798	$3.798 \pm 1.8 \times 10^{-2}$
1.0×10^{5}	3.798	$3.798 \pm 1.0 \times 10^{-2}$
2.0×10^{5}	3.798	$3.798 \pm 7.4 \times 10^{-3}$

We present the results of computations with the 95% steady-state quantile $x=1.8993$ and $r(\cdot)=r_{1}$.

A Numerical Example: Square-root Convergence Rate

Log-log Plot

Figure: The redline is a fitted linear regression, with slope $=-0.506$

Computing the Spectral Density

- The spectral density satisfies

$$
2 \pi f(\lambda)=\operatorname{var}_{\pi} r\left(X_{0}\right)+\sum_{j=1}^{\infty}\left(e^{i \lambda j}+e^{-i \lambda_{j}}\right) \operatorname{cov}_{\pi}\left(r\left(X_{0}\right), r\left(X_{j}\right)\right.
$$

- A coupling that works here is:

$$
\begin{aligned}
Y_{n} & =\left[r^{2}\left(\left(\phi_{1} \circ \cdots \circ \phi_{n}\right)(x)\right)-r\left(\left(\phi_{1} \circ \cdots \circ \phi_{n}\right)(x)\right) r\left(\left(\tilde{\phi}_{1} \circ \cdots \circ \tilde{\phi}_{n}\right)(x)\right)\right] \\
& +r\left(\left(\phi_{1} \circ \cdots \circ \phi_{n}\right)(x)\right) \sum_{j=1}^{n}\left(e^{i \lambda j}+e^{-i \lambda j}\right) . \\
& {\left[r\left(\left(\tilde{\phi}_{1} \circ \cdots \circ \tilde{\phi}_{j} \circ \phi_{1} \circ \cdots \circ \phi_{n}\right)(x)\right)-r\left(\left(\tilde{\phi}_{1} \circ \cdots \circ \tilde{\phi}_{n}\right)(x)\right)\right] }
\end{aligned}
$$

- Yields a canonical convergence rate (conventional estimator is sub-canonical)

Computing Steady-state Gradients Efficiently

Setting: $\quad X=\left(X_{n}: n \geq 0\right)$ positive recurrent Markov chain with transition kernel $P(\theta)$ having stationary distribution $\pi(\theta)$
Problem: Given a reward function $r: S \rightarrow \mathbb{R}_{+}$, compute the gradient

Idea:

$$
\nabla_{\theta} \int_{S} \pi(\theta, d x) r(x)
$$

$$
\begin{aligned}
\pi(\theta) & =\pi(\theta) P(\theta) \\
\pi^{\prime}(\theta)(I-P(\theta)) & =\pi(\theta) P^{\prime}(\theta)
\end{aligned}
$$

$$
\begin{aligned}
\pi^{\prime}(\theta) & =\pi(\theta) P^{\prime}(\theta)\left[\sum_{n=0}^{\infty} P^{n}(\theta)-\pi(\theta)\right] \\
\pi^{\prime}(\theta) r & =\sum_{k=1}^{\infty} \mathbf{E}_{\pi(\theta)}^{\theta} \frac{p^{\prime}\left(\theta, X_{0}, X_{1}\right)}{p\left(\theta, X_{0}, X_{1}\right)}\left(r\left(X_{k}\right)-\mathbf{E} r\left(X_{\infty}\right)\right)
\end{aligned}
$$

Can be justified under suitable Lyapunov conditions on r (Rhee and G (2016))

The Multi-level Alternative

- A coupling that works here is

$$
\begin{aligned}
Y_{n} & =\sum_{j=1}^{n} \frac{p^{\prime}\left(\theta,\left(\phi_{1} \circ \cdots \circ \phi_{n}\right)(x),\left(\phi_{0} \circ \cdots \circ \phi_{n}\right)(x)\right)}{p\left(\theta,\left(\phi_{1} \circ \cdots \circ \phi_{n}\right)(x),\left(\phi_{0} \circ \cdots \circ \phi_{n}\right)(x)\right)} \\
& \cdot j\left[r\left(\left(\tilde{\phi}_{1} \circ \cdots \circ \tilde{\phi}_{j-1} \circ \phi_{0} \circ \cdots \circ \phi_{n}\right)(x)\right)-r\left(\left(\tilde{\phi}_{1} \circ \cdots \circ \tilde{\phi}_{j} \circ \phi_{0} \circ \cdots \circ \phi_{n}\right)(x)\right)\right]
\end{aligned}
$$

- Yields a canonical convergence rate, even for non-regenerative systems

Conclusions:

- "De-biasing" a sequence of estimators and MLMC are closely related
- Exact estimation vs exact simulation
- Several applications to Markov chains that improve the convergence rate to "square root" rate:
- solutions to Poisson's equation
- spectral density computation
- gradient computation

Questions?

