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Intro GP Design Classification

Optimal Stopping via Monte Carlo

(Xt ): Markov state process, t = 0,1,2, . . .
Dynamics Xt+1 = F (Xt , εt ), smooth transition density p(t , y |0, x)

Wish to maximize expected reward V (t , x) = supτ≤T E[h(τ,Xτ )]

from stopping at τ
Optimization is over hitting times τ = min{s : Xs ∈ Ss} ∧ T
Timing Value T (t , x) := Et ,x [V (t + 1,Xt+1)]− h(t , x)

Stopping set St = {x : T (t , x) < 0}
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Simulation Approach

Stochastic grid xn, n = 1, . . . ,N ⇒ Trajectories/scenarios x1:N
t :T

Evaluate future pathwise payoff h(τt+1, xn
τt+1

) where
τn

t+1 := min{s > t : xn
s ∈ Ŝs}

Compare to immediate payoff: yn := h(τt+1, xn
τt+1

)− h(t , xn
t )

Then E[Y (x)] = Et ,x
[
h(τt+1,Xτt+1)

]
− h(t , x) = T (t , x)

Rank expected future payoff vs present reward
Policy search vs Value-function-approximation
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Abstract Statistical Problem

Have a stochastic simulator Y (x) = f (x) + ε, E[ε] = 0
Input space x ∈ X ⊂ Rd (continuous, multi-dimensional)
Goal: learn S := {x : f (x) ≤ 0}
Discriminate between positive and negative values of the latent
function
Precise loss function:

L(Ŝ) = E
[
f (x)1S4Ŝ(x)

]
where the expectation is over a given measure P
The responses Y are pathwise costs-to-go (aka q-value); has
intrinsic noise ε due to the particular trajectory of X
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What are the Challenges?

How to approximate f̂?

Approximation architecture H

How to measure goodness-of-fit?

Loss function infH E[L(f̂ , f )]

How to handle non-standard statistical context?

Properties of ε

How to generate simulations?

Experimental design

How to prove/guarantee convergence?

Behavior as n→∞

How to speed-up convergence?

Non-asymptotics for a given N

How to achieve scalability?

Minimize dependence on specific dim d , payoff h(·), dynamics F
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Statistical Learning

Step I: experimental design – generate x1:N

Step II: sample y1:N = Y (x1:N) and estimate Ŝ

(x , y)1:N with N = 104,X = [28, 40]

Low signal-to-noise
ratio
Strong
heteroscedasticity
Non-standard noise
distribution
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Existing State-of-the-Art

Approximation architectures: basis expansions; nonparametric
regression; hierarchical methods; ...
Goodness-of-fit: least squares; penalized least-squares;
opportunity cost
Heteroscedasticity, non-Gaussian noise: regularization, batching
Experimental design: space-filling; sequential adaptive;
importance sampling
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Existing State-of-the-Art (cont)

Convergence proofs: Belomestny, Bouchard, Clement, Gobet,
Lamberton, Lapeyre, Pagès, Stentoft, Warin, ...
Intuitively: policy-iteration is better...
to Speed-up convergence: ASK the RIGHT questions to identify
opportunities for improvement
Scalability: used in a wide variety of contexts, often as a
sub-procedure. Would like to have a smart algorithm that doesn’t
require too much fine-tuning (e.g adaptive dictionary selection)
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Contributions

1 A nice modeling framework is available in GP/kriging. One of the
new tools emerging from machine learning. Arguably “smarter”
and more flexible than working with basis functions.

2 Experimental design is arguably more important than the
regression model. Default “density-based” sampling is highly
inefficient. Investigate space-filling and adaptive designs.
Replicated design.

3 The loss function resembles classification. Build a classification
model by converting observations into 0/1 labels. Modifies the
statistical behavior of the simulator. Promising in combination with
adaptive design.
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Formalize Statistical Learning

Capture the idea that f is learned from the data: Z(n) ≡ (x , y)1:n

induces F̂ (n) = E
[
f |Z(n)] posterior distribution (measure on H)

Treat the true map f ∈ H as a random function
Specify prior distribution and then use Bayesian updating

F̂ (n)
x = E[f (x)|Z(n)] posterior at x (measure on X )

f̂ (n) and its 95% CI for 3 different n, L. (2015)
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Stochastic Kriging

f is a realization of a Gaussian random field with a covariance
structure defined by K , function space HK = span(K (·, x) : x ∈ X )

K (x , x ′) := E[f (x)f (x ′)] controls the spatial smoothness
e.g Gaussian kernel K (x , x ′) = τ2 exp(−‖x − x ′‖2/θ2) – elements
of HK are C∞, with lengthscale θ and fluctuation scale τ .
The posterior conditional on Z ≡ (x , y)1:N is also Gaussian
f (x)|Z ∼ N(m(x), v2(x))

m(x) = ~k(x)T (K + Σ)−1~y

v(x , x ′) = K (x , x ′)− ~k(x)T (K + Σ)−1~k(x ′)

Kij = K (x i , x j), Σ = diag(σ2(x i)), ki = K (x , x i)
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GP Modeling

Given the kernel, the posterior is in
closed-form
Lengthscale θ controls correlation
decay = spatial smoothness of f
Can incorporate a non-zero
mean/trend
Global consistency – converge to
the truth as N →∞
Fitted Matern-5/2 kernel
K (x , x ′; τ, θ) = τ2

(
1 +
√

5‖x − x ′‖θ +

5/3‖x − x ′‖2
θ

)
· e−

√
5‖x−x ′‖θ
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Fitting a GP

Need to pick the kernel family
Need to know the kernel hyperparameters – τ, θ’s, et cetera.
Solution I: Use MLE (nonlinear optimization problem) or
cross-validation
Solution II: Specify priors and use a fully Bayesian method
(requires MCMC)
Need the sampling noise σ2(x) – use batching/replications to
estimate
GP is expensive compared to e.g LM; complexity is O(N3) for a
design of size N
We used DiceKriging package in R – off-the-shelf use
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Batched Designs

Re-use same site x for multiple paths – like a MC forest
(pre)-Average the pathwise payoffs: ȳ(x) = 1

M
∑M

i=1 y (i)(x) where
y (1)(x), . . . , y (M)(x) are M independent replicates
Sample variance estimator: σ̃2(x) := 1

M−1
∑M

i=1(y (i)(x)− ȳ(x))2

(More proper is to train another metamodel for σ(·))
(M can be chosen adaptively)
Plug-in σ̃2(x)/M for variance of Ȳ (x). Only need to regress
(x , ȳ)’s
When M is big, can just interpolate averaged payoffs
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Batched Kriging Metamodel for T (t , ·)

LHS design Z of size N = 3000 with M = 100 replications. The vertical “error” bars indicate the
95% quantiles of the simulation batch at x , while the dotted lines indicate the 95% credibility
interval (CI) of the kriging metamodel fit.
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Advantages of GP

Adapts to the structure of the problem. Need to pick the kernel
family but the rest is automatic
Has an extensive “ecosystem”: local GP, treed GP, t-noise GP, et
cetera
Works well with sequential design by providing online local
goodness-of-fit metrics; also is updateable
Implemented in multiple R packages
Clarifies the twin requirements of smoothing and interpolation
Smooth f̂ , can also set/get gradient estimates
Disadvantage: slow; less analytically understood
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Experimental Design

Global design: infZ:|Z|=N E0,X0

[
L(f̂ (Z(N)), f )

]
Above is NP-hard, so need heuristics
Idea 1: need to learn f (x) over the input space X
Space-filling designs – grid-based, low-discrepancy (Sobol), LHS
Loss is weighted according to P – sample x1:N

t ∼ Xt from P
(“empirical” design as originally proposed by Longstaff-Schwartz)

Idea 2: The geometry of the design affects the local accuracy of
the response surfaces
Denser design – smaller local error
Goal is to learn the sign of f (x)

⇒ preferentially target regions where f (·) changes signs
Adaptive designs
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Proposed Designs

Based on St |S0 Uniform in [30,40]

Monte Carlo forest Adaptive Grid
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Space-Filling Designs
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LHS M = 20,N ′ = 150 LHS M = 100,N ′ = 30 Emp M = 100,N ′ = 30

Three different designs for fitting a kriging metamodel of the continuation value for the 1-D
Bermudan Put (t = 0.6,T = 1). Top panels show the fitted T̂ (t , ·) and sites x1:N′

. Middle panels
plot the corresponding surrogate standard deviation v(x). Bottom panels display the loss metric
`(x ;Z).
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Adaptive Design for Optimal Stopping

Recall that aim to learn the sign of T (t , ·)
Gradually grow Z(k), k = N0, . . . ,N
Add new locations greedily according to acquisition function
xk+1 = arg max EIk (x)

Favor points where m(k)(x) ' 0 (close to zero-contour) or v (k)(x)
is large (reduce uncertainty)
Loss from making the wrong stopping decision at (t , x) is

`(x ;Z) :=

∫
R
|y − h(t , x)|1{m(x)<h(t ,x)<y

⋃
y<h(t ,x)<m(x)}Mx (dy)

Analytic integral if assume the posterior distribution is Gaussian
Mx ∼ N(m(x), v2(x)).
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ZC-SUR Strategy

ZC-SUR (zero-contour stepwise uncertainty reduction): maximize
stepwise expected reduction in local loss
Analytic expression for
EIk (x) := E[`(k)(x)− `(k+1)(x)|Z(k), xk+1 = x ]

(Approximately) maximize EIk (x); see Gramacy-L. (SIFIN 2015)
Related ideas in machine learning/simulation optimization

I AL (Cohn et al ’96, MacKay ’92): minimizing integrated posterior
variance

I EGO (Jones et al ’98): learning infx f (x)
I Exploration/Exploitation trade-off (Auer et al ’02): UCB policies
I Contour-finding: Ranjan et al ’08
I SUR (Picheny et al ’10): myopically maximizing loss reduction
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Adaptive Designs
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Adaptive designs. Color-coded according to T (t , x); red contour indicates the stopping boundary.
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More Illustrations
Bermudan Put/2D Stoch Vol Model

LHS ZC-SUR

Adaptive and LHS designs. Bermudan Put e−rt (100− X1)+ with a Heston stochastic volatility
model. Both designs used N = 10000 simulations. Color-coded according to T (t , x); red contour
indicates the stopping boundary.
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Effect of Design
Probabilistic design: xn ∼ p(·, t |x0,0) (Classical approach)
Highly sensitive to initial condition, often mis-aligned with S

Adaptive design gains are modest

Design/Batch Size M = 4 M = 20 M = 100
Probabilistic 1.458 (0.002) 1.448 (0.003) 1.443 (0.006)
LHS 1.453 (0.002) 1.446 (0.004) 1.416 (0.033)
Sobol QMC 1.454(0.002) 1.448 (0.002) 1.454 (0.002)
Sequential ZC-SUR N/A 1.428 (0.004) 1.439 (0.005)

Performance of different DoE approaches to RMC for the 2-D Bermudan Put. The table reports
V̂ (0,X0) and its Monte Carlo (StDev). All methods utilize |Zt | = 3000. Results are based on
averaging 100 runs of each method, and evaluating V̂ (0,X0) on a fixed out-of-sample database
of Nout = 100, 000 scenarios. For comparison, LSMC-BW11 algorithm yielded estimates of
V̂ BW11(0,X0) = 1.431 with N = 10, 000 and V̂ BW11(0,X0) = 1.452 with N = 50, 000.

Ludkovski RMC Kriging



Intro GP Design Classification

Simulation Savings

Method V̂ (0,X0) (StDev.) #Sims Time (secs)
2D Max call

LSMC BW11 N=50,000 7.89 (0.023) 360 · 103 4.0
LSMC BW11 N=125,000 7.95 (0.015) 1125 · 103 7.7
Krig + LHS N=2500 7.85 (0.073) 59 · 103 1.2
Krig + LHS N=10,000 7.90 (0.037) 117 · 103 5.2
Krig + SUR N=4000 7.91 (0.024) 102 · 103 15.6
Krig + SUR N=10,000 7.95 (0.05) 246 · 103 28.7

3D Max Call
LSMC BW11 N=300,000 11.07 (0.01) 2.7 · 106 22
Krig + LHS N=30,000 11.09 (0.02) 0.48 · 106 27
Krig + SUR N=20,000 11.05 (0.02) 0.51 · 106 161

5D Max Call
LSMC BW11 N=640,000 16.32 (0.02) 5.76 · 106 87
Krig + LHS N=32,000 16.32 (0.03) 0.81 · 106 317
Krig + SUR N=30,000 16.33 (0.02) 0.85 · 106 952

Comparison of RMC methods for different max-Call models. Results are averages across 100 runs of each algorithm, with third
column reporting the corresponding standard deviations of V̂ (0, X0). Time is based on running the R code on a 1.9 MHz laptop
with 8Gb of RAM. The BW11 method used 102 partitions for d = 2, 53 partitions for d = 3 and 45 partitions for d = 5.
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Adaptive Design: Is It Worth It?

Significant memory savings, increased computation time
Kriging metamodel is an updateable representation of S – can be
used “anytime” or with adaptive termination
Outputs empirical self-assessment to monitor performance
New connections to statistics/machine learning
Sequential design is intermediate step – can sacrifice accuracy
(e.g. use one regression method during seq design and another
for final metamodel)
Or can use other importance sampling ideas (build a rough fit,
then refine)
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Sign Classification

Convert pathwise rewards into 0/1 labels:
zn

t = I(h(τt+1, xn
τt+1

) > h(t , xn
t ))

Let p(x) = P(Z (x) = 1). Then St ' {p(x) > 0.5}.
Build a statistical model for p(x) and hence approximate S.
(Picazo 2002)
Tools: Logistic regression; support vector machines.
Probit GP model: p(x) = Φ(f̃ (x)) where f̃ ∼ GP(m(x), v2(x))

Likelihood log p(f̃ |x , z) ∝ 1
2 f̃ T K−1 f̃ +

∑
i log Φ((2Zi − 1)f̃i)
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GP Classification

2D Max-Put. Left: kriging regression. Right: GP probit sign classification

This example is strongly under-sampled
Regression method has trouble identifying the zero-contour
Classification imposes more structure
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Classification Pros/Cons

Classification modifies the statistical “noise”; smoothes
non-Gaussian ε and heteroskedasticity
Note that p(x) = 0.5 is when the median of Y is zero. When Y is
skewed, median 6= mean. Significant concern in financial applications
where skew is very severe (ATM: usually pathwise payoff is less than
immediate one, but sometimes it’s MUCH bigger).

There is necessarily loss of information in discarding the
magnitude of Y when switching to Z
Better targets the loss function
Directly models the stopping boundary (eg SVM: adaptive
representation of ∂S as a collection of hyperplanes)
Natural approach for sequential design construction?
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Next Steps

Structured regression (with X. Lyu)
Root-finding (with S. Rodriguez)
Multiple responses (with R. Hu)
Related control problems
Common library of examples for benchmarking

THANK YOU!
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