Stochastic Kriging for Bermudan Option Pricing International Conference on Monte Carlo Techniques, Paris

Mike Ludkovski

Dept of Statistics & Applied Probability UC Santa Barbara

July 6 2016 Work supported by NSF DMS-1222262

Optimal Stopping via Monte Carlo

- (*X_t*): Markov state process, *t* = 0, 1, 2, ...
- Dynamics $X_{t+1} = F(X_t, \varepsilon_t)$, smooth transition density p(t, y|0, x)
- Wish to maximize expected reward V(t, x) = sup_{τ≤T} E[h(τ, X_τ)] from stopping at τ
- Optimization is over hitting times $\tau = \min\{s : X_s \in \mathfrak{S}_s\} \land T$
- Timing Value $T(t, x) := \mathbb{E}_{t,x} [V(t+1, X_{t+1})] h(t, x)$
- Stopping set $\mathfrak{S}_t = \{x : T(t, x) < 0\}$

Simulation Approach

- Stochastic grid x^n , $n = 1, ..., N \implies$ Trajectories/scenarios $x_{t:T}^{1:N}$
- Evaluate future pathwise payoff $h(\tau_{t+1}, x_{\tau_{t+1}}^n)$ where $\tau_{t+1}^n := \min\{s > t : x_s^n \in \hat{\mathfrak{S}}_s\}$
- Compare to immediate payoff: $y^n := h(\tau_{t+1}, x^n_{\tau_{t+1}}) h(t, x^n_t)$
- Then $\mathbb{E}[Y(x)] = \mathbb{E}_{t,x} \left[h(\tau_{t+1}, X_{\tau_{t+1}})\right] h(t, x) = T(t, x)$
- Rank expected future payoff vs present reward
- Policy search vs Value-function-approximation

Abstract Statistical Problem

- Have a stochastic simulator $Y(x) = f(x) + \varepsilon$, $\mathbb{E}[\varepsilon] = 0$
- Input space $x \in \mathcal{X} \subset \mathbb{R}^d$ (continuous, multi-dimensional)
- Goal: learn $\mathfrak{S} := \{x : f(x) \le 0\}$
- Discriminate between positive and negative values of the latent function
- Precise loss function:

$$L(\hat{\mathfrak{S}}) = \mathbb{E}\left[f(x)\mathbf{1}_{\mathfrak{S} riangle \hat{\mathfrak{S}}}(x)\right]$$

where the expectation is over a given measure $\mathbb P$

 The responses Y are pathwise costs-to-go (aka *q*-value); has intrinsic noise ε due to the particular trajectory of X

- How to approximate \hat{f} ?
- How to measure goodness-of-fit?
- How to handle non-standard statistical context?
- How to generate simulations?
- How to prove/guarantee convergence?
- How to speed-up convergence?
- How to achieve scalability?

- How to approximate \hat{f} ? Approximation architecture \mathcal{H}
- How to measure goodness-of-fit? Loss function $\inf_{\mathcal{H}} \mathbb{E}[L(\hat{f}, f)]$
- How to handle non-standard statistical context?
- How to generate simulations?
- How to prove/guarantee convergence?
- How to speed-up convergence?
- How to achieve scalability?

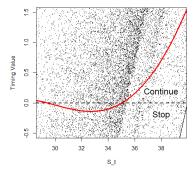
- How to approximate \hat{f} ? Approximation architecture \mathcal{H}
- How to measure goodness-of-fit? Loss function $\inf_{\mathcal{H}} \mathbb{E}[L(\hat{f}, f)]$
- How to handle non-standard statistical context? Properties of ε
- How to generate simulations? Experimental design
- How to prove/guarantee convergence?
- How to speed-up convergence?
- How to achieve scalability?

- How to approximate \hat{f} ? Approximation architecture \mathcal{H}
- How to measure goodness-of-fit? Loss function $\inf_{\mathcal{H}} \mathbb{E}[L(\hat{f}, f)]$
- How to handle non-standard statistical context? Properties of ε
- How to generate simulations? Experimental design
- How to prove/guarantee convergence? Behavior as $n \rightarrow \infty$
- How to speed-up convergence? Non-asymptotics for a given N
- How to achieve scalability?

- How to approximate \hat{f} ? Approximation architecture \mathcal{H}
- How to measure goodness-of-fit? Loss function $\inf_{\mathcal{H}} \mathbb{E}[L(\hat{f}, f)]$
- How to handle non-standard statistical context? Properties of ε
- How to generate simulations? Experimental design
- How to prove/guarantee convergence? Behavior as $n \to \infty$
- How to speed-up convergence? Non-asymptotics for a given N
- How to achieve scalability?
 Minimize dependence on specific dim *d*, payoff *h*(·), dynamics *F*

Statistical Learning

- Step I: experimental design generate x^{1:N}
- Step II: sample $y^{1:N} = Y(x^{1:N})$ and estimate $\hat{\mathfrak{S}}$



 $(x, y)^{1:N}$ with $N = 10^4$, $\mathcal{X} = [28, 40]$

- Low signal-to-noise ratio
- Strong heteroscedasticity
- Non-standard noise distribution

Existing State-of-the-Art

- Approximation architectures: basis expansions; nonparametric regression; hierarchical methods; ...
- Goodness-of-fit: least squares; penalized least-squares; opportunity cost
- Heteroscedasticity, non-Gaussian noise: regularization, batching
- Experimental design: space-filling; sequential adaptive; importance sampling

Existing State-of-the-Art (cont)

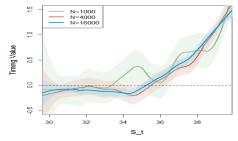
- Convergence proofs: Belomestny, Bouchard, Clement, Gobet, Lamberton, Lapeyre, Pagès, Stentoft, Warin, ...
 Intuitively: policy-iteration is better...
- to Speed-up convergence: ASK the RIGHT questions to identify opportunities for improvement
- Scalability: used in a wide variety of contexts, often as a sub-procedure. Would like to have a smart algorithm that doesn't require too much fine-tuning (e.g adaptive dictionary selection)

Contributions

- A nice modeling framework is available in GP/kriging. One of the new tools emerging from machine learning. Arguably "smarter" and more flexible than working with basis functions.
- Experimental design is arguably more important than the regression model. Default "density-based" sampling is highly inefficient. Investigate space-filling and adaptive designs. Replicated design.
- The loss function resembles classification. Build a classification model by converting observations into 0/1 labels. Modifies the statistical behavior of the simulator. Promising in combination with adaptive design.

Formalize Statistical Learning

- Capture the idea that *f* is learned from the data: Z⁽ⁿ⁾ ≡ (x, y)^{1:n} induces Â⁽ⁿ⁾ = E [f|Z⁽ⁿ⁾] posterior distribution (measure on H)
- Treat the true map $f \in \mathcal{H}$ as a random function
- Specify prior distribution and then use Bayesian updating
- $\hat{F}_x^{(n)} = \mathbb{E}[f(x)|\mathcal{Z}^{(n)}]$ posterior at *x* (measure on \mathcal{X})



Stochastic Kriging

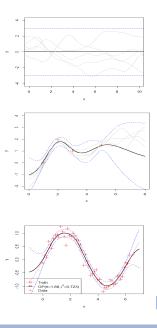
- *f* is a realization of a Gaussian random field with a covariance structure defined by *K*, function space *H_K* = *span*(*K*(·, *x*) : *x* ∈ *X*)
- $K(x, x') := \mathbb{E}[f(x)f(x')]$ controls the spatial smoothness
- e.g Gaussian kernel K(x, x') = τ² exp(-||x x'||²/θ²) elements of H_K are C[∞], with lengthscale θ and fluctuation scale τ.
- The posterior conditional on $\mathcal{Z} \equiv (x, y)^{1:N}$ is also Gaussian $f(x)|\mathcal{Z} \sim N(m(x), v^2(x))$

$$m(x) = \vec{k}(x)^T (\mathbf{K} + \Sigma)^{-1} \vec{y}$$
$$v(x, x') = K(x, x') - \vec{k}(x)^T (\mathbf{K} + \Sigma)^{-1} \vec{k}(x')$$

• $K_{ij} = K(x^i, x^j), \Sigma = diag(\sigma^2(x^i)), k_i = K(x, x^i)$

GP Modeling

- Given the kernel, the posterior is in closed-form
- Lengthscale θ controls correlation decay = spatial smoothness of f
- Can incorporate a non-zero mean/trend
- Global consistency converge to the truth as $N \to \infty$
- Fitted Matern-5/2 kernel $K(x, x'; \tau, \theta) = \tau^2 (1 + \sqrt{5} ||x - x'||_{\theta} + 5/3 ||x - x'||_{\theta}) \cdot e^{-\sqrt{5} ||x - x'||_{\theta}}$



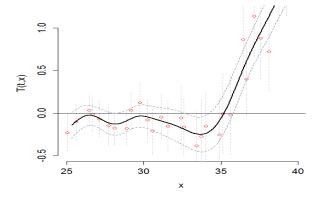
Fitting a GP

- Need to pick the kernel family
- Need to know the kernel hyperparameters $-\tau$, θ 's, et cetera.
- Solution I: Use MLE (nonlinear optimization problem) or cross-validation
- Solution II: Specify priors and use a fully Bayesian method (requires MCMC)
- Need the sampling noise σ²(x) use batching/replications to estimate
- GP is expensive compared to e.g LM; complexity is O(N³) for a design of size N
- We used DiceKriging package in R off-the-shelf use

Batched Designs

- Re-use same site x for multiple paths like a MC forest
- (pre)-Average the pathwise payoffs: $\bar{y}(x) = \frac{1}{M} \sum_{i=1}^{M} y^{(i)}(x)$ where $y^{(1)}(x), \dots, y^{(M)}(x)$ are *M* independent replicates
- Sample variance estimator: $\tilde{\sigma}^2(x) := \frac{1}{M-1} \sum_{i=1}^{M} (y^{(i)}(x) \bar{y}(x))^2$
- (More proper is to train another metamodel for $\sigma(\cdot)$)
- (*M* can be chosen adaptively)
- Plug-in $\tilde{\sigma}^2(x)/M$ for variance of $\bar{Y}(x)$. Only need to regress (x, \bar{y}) 's
- When *M* is big, can just *interpolate* averaged payoffs

Batched Kriging Metamodel for $T(t, \cdot)$



LHS design \mathcal{Z} of size N = 3000 with M = 100 replications. The vertical "error" bars indicate the 95% quantiles of the simulation batch at x, while the dotted lines indicate the 95% credibility interval (CI) of the kriging metamodel fit.

< (7) >

Advantages of GP

- Adapts to the structure of the problem. Need to pick the kernel family but the rest is automatic
- Has an extensive "ecosystem": local GP, treed GP, t-noise GP, et cetera
- Works well with sequential design by providing online local goodness-of-fit metrics; also is updateable
- Implemented in multiple R packages
- Clarifies the twin requirements of smoothing and interpolation
- Smooth \hat{f} , can also set/get gradient estimates
- Disadvantage: slow; less analytically understood

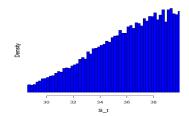
Experimental Design

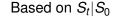
- Global design: $\inf_{\mathcal{Z}:|\mathcal{Z}|=N} \mathbb{E}_{0,X_0} \left[\mathcal{L}(\hat{f}(\mathcal{Z}^{(N)}), f) \right]$
- Above is NP-hard, so need heuristics
- Idea 1: need to learn f(x) over the input space \mathcal{X}
- Space-filling designs grid-based, low-discrepancy (Sobol), LHS
- Loss is weighted according to P − sample x_t^{1:N} ~ X_t from P ("empirical" design as originally proposed by Longstaff-Schwartz)

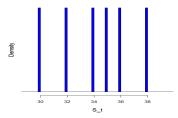
Experimental Design

- Global design: $\inf_{\mathcal{Z}:|\mathcal{Z}|=N} \mathbb{E}_{0,X_0} \left[\mathcal{L}(\hat{f}(\mathcal{Z}^{(N)}), f) \right]$
- Above is NP-hard, so need heuristics
- Idea 1: need to learn f(x) over the input space \mathcal{X}
- Space-filling designs grid-based, low-discrepancy (Sobol), LHS
- Loss is weighted according to P − sample x_t^{1:N} ~ X_t from P ("empirical" design as originally proposed by Longstaff-Schwartz)
- Idea 2: The geometry of the design affects the local accuracy of the response surfaces
- Denser design smaller local error
- Goal is to learn the sign of f(x)
- \Rightarrow preferentially target regions where $f(\cdot)$ changes signs
 - Adaptive designs

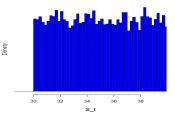
Proposed Designs



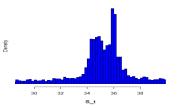




Monte Carlo forest

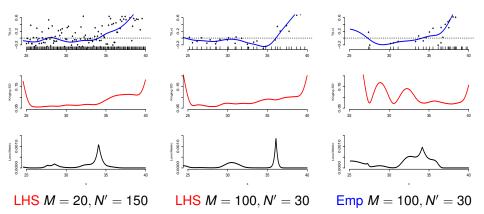


Uniform in [30, 40]



Adaptive Grid

Space-Filling Designs



Three different designs for fitting a kriging metamodel of the continuation value for the 1-D Bermudan Put (t = 0.6, T = 1). Top panels show the fitted $\hat{T}(t, \cdot)$ and sites $x^{1:N'}$. Middle panels plot the corresponding surrogate standard deviation v(x). Bottom panels display the loss metric $\ell(x; Z)$.

Adaptive Design for Optimal Stopping

- Recall that aim to learn the sign of $T(t, \cdot)$
- Gradually grow $\mathcal{Z}^{(k)}$, $k = N_0, \ldots, N$
- Add new locations greedily according to acquisition function $x^{k+1} = \arg \max El_k(x)$
- Favor points where $m^{(k)}(x) \simeq 0$ (close to zero-contour) or $v^{(k)}(x)$ is large (reduce uncertainty)
- Loss from making the wrong stopping decision at (t, x) is

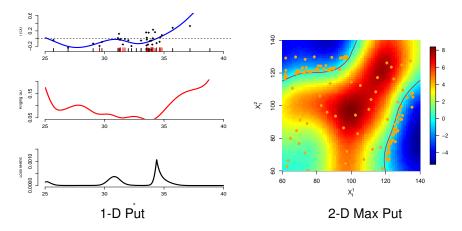
$$\ell(x; \mathcal{Z}) := \int_{\mathbb{R}} |y - h(t, x)| \mathbf{1}_{\{m(x) < h(t, x) < y \cup y < h(t, x) < m(x)\}} \mathcal{M}_{x}(dy)$$

• Analytic integral if assume the posterior distribution is Gaussian $\mathcal{M}_x \sim N(m(x), v^2(x)).$

ZC-SUR Strategy

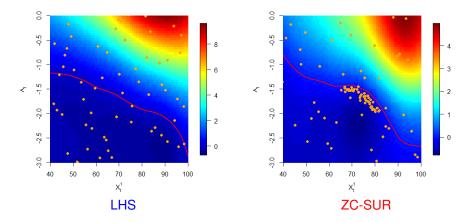
- ZC-SUR (zero-contour stepwise uncertainty reduction): maximize stepwise expected reduction in local loss
- Analytic expression for $EI_k(x) := \mathbb{E}[\ell^{(k)}(x) - \ell^{(k+1)}(x) | \mathcal{Z}^{(k)}, x^{k+1} = x]$
- (Approximately) maximize $El_k(x)$; see Gramacy-L. (SIFIN 2015)
- Related ideas in machine learning/simulation optimization
 - AL (Cohn et al '96, MacKay '92): minimizing integrated posterior variance
 - EGO (Jones et al '98): learning $\inf_x f(x)$
 - Exploration/Exploitation trade-off (Auer et al '02): UCB policies
 - Contour-finding: Ranjan et al '08
 - SUR (Picheny et al '10): myopically maximizing loss reduction

Adaptive Designs



Adaptive designs. Color-coded according to T(t, x); red contour indicates the stopping boundary.

More Illustrations Bermudan Put/2D Stoch Vol Model



Adaptive and LHS designs. Bermudan Put $e^{-t}(100 - X_1)_+$ with a Heston stochastic volatility model. Both designs used N = 10000 simulations. Color-coded according to T(t, x); red continuity indicates the stopping boundary.

Effect of Design

- Probabilistic design: $x^n \sim p(\cdot, t | x_0, 0)$ (Classical approach)
- Highly sensitive to initial condition, often mis-aligned with \mathfrak{S}
- Adaptive design gains are modest

Design/Batch Size	<i>M</i> = 4	<i>M</i> = 20	<i>M</i> = 100
Probabilistic	1.458 (0.002)	1.448 (0.003)	1.443 (0.006)
LHS	1.453 (0.002)	1.446 (0.004)	1.416 (0.033)
Sobol QMC	1.454(0.002)	1.448 (0.002)	1.454 (0.002)
Sequential ZC-SUR	N/A	1.428 (0.004)	1.439 (0.005)

Performance of different DoE approaches to RMC for the 2-D Bermudan Put. The table reports $\hat{V}(0, X_0)$ and its Monte Carlo (StDev). All methods utilize $|\mathcal{Z}_t| = 3000$. Results are based on averaging 100 runs of each method, and evaluating $\hat{V}(0, X_0)$ on a fixed out-of-sample database of $N_{out} = 100,000$ scenarios. For comparison, LSMC-BW11 algorithm yielded estimates of $\hat{V}^{BW11}(0, X_0) = 1.431$ with N = 10,000 and $\hat{V}^{BW11}(0, X_0) = 1.452$ with N = 50,000.

Simulation Savings

Method		$\hat{V}(0, X_0)$	(StDev.)	#Sims	Time (secs)			
	2	2D Max call						
LSMC BW11	N=50,000	7.89	(0.023)	360 · 10 ³	4.0			
LSMC BW11	N=125,000	7.95	(0.015)	1125 · 10 ³	7.7			
Krig + LHS	N=2500	7.85	(0.073)	59 · 10 ³	1.2			
Krig + LHS	N=10,000	7.90	(0.037)	117 · 10 ³	5.2			
Krig + SUR	N=4000	7.91	(0.024)	$102 \cdot 10^3$	15.6			
Krig + SUR	N=10,000	7.95	(0.05)	$246 \cdot 10^3$	28.7			
	3	D Max Cal						
LSMC BW11	N=300,000	11.07	(0.01)	2.7 · 10 ⁶	22			
Krig + LHS	N=30,000	11.09	(0.02)	0.48 · 10 ⁶	27			
Krig + SUR	N=20,000	11.05	(0.02)	0.51 · 10 ⁶	161			
5D Max Call								
LSMC BW11	N=640,000	16.32	(0.02)	$5.76 \cdot 10^{6}$	87			
Krig + LHS	N=32,000	16.32	(0.03)	0.81 · 10 ⁶	317			
Krig + SUR	N=30,000	16.33	(0.02)	$0.85\cdot 10^6$	952			

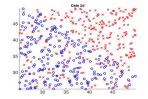
Comparison of RMC methods for different max-Call models. Results are averages across 100 runs of each algorithm, with third column reporting the corresponding standard deviations of $\hat{V}(0, X_0)$. Time is based on running the R code on a 1.9 MHz laptower with 8Gb of RAM. The BW11 method used 10² partitions for $d = 2, 5^3$ partitions for d = 3 and 4^5 partitions for d = 5.

Adaptive Design: Is It Worth It?

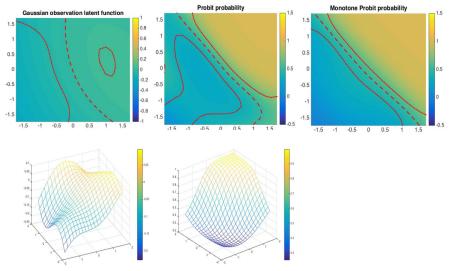
- Significant memory savings, increased computation time
- Kriging metamodel is an updateable representation of 𝔅 − can be used "anytime" or with adaptive termination
- Outputs empirical self-assessment to monitor performance
- New connections to statistics/machine learning
- Sequential design is intermediate step can sacrifice accuracy (e.g. use one regression method during seq design and another for final metamodel)
- Or can use other importance sampling ideas (build a rough fit, then refine)

Sign Classification

- Convert pathwise rewards into 0/1 labels: $z_t^n = I(h(\tau_{t+1}, x_{\tau_{t+1}}^n) > h(t, x_t^n))$
- Let $p(x) = \mathbb{P}(Z(x) = 1)$. Then $\mathfrak{S}_t \simeq \{p(x) > 0.5\}$.
- Build a statistical model for *p*(*x*) and hence approximate *G*.
 (Picazo 2002)
- Tools: Logistic regression; support vector machines.
- Probit GP model: $p(x) = \Phi(\tilde{f}(x))$ where $\tilde{f} \sim GP(m(x), v^2(x))$
- Likelihood log $p(\tilde{f}|x,z) \propto \frac{1}{2}\tilde{f}^T K^{-1}\tilde{f} + \sum_i \log \Phi((2Z_i 1)\tilde{f}_i)$



GP Classification



2D Max-Put. Left: kriging regression. Right: GP probit sign classification

< 🗇 >

Classification Pros/Cons

- Classification modifies the statistical "noise"; smoothes non-Gaussian ε and heteroskedasticity
- Note that p(x) = 0.5 is when the median of Y is zero. When Y is skewed, median ≠ mean. Significant concern in financial applications where skew is very severe (ATM: usually pathwise payoff is less than immediate one, but sometimes it's MUCH bigger).
- There is necessarily loss of information in discarding the magnitude of *Y* when switching to *Z*
- Better targets the loss function
- Directly models the stopping boundary (eg SVM: adaptive representation of ∂G as a collection of hyperplanes)
- Natural approach for sequential design construction?

Next Steps

- Structured regression (with X. Lyu)
- Root-finding (with S. Rodriguez)
- Multiple responses (with R. Hu)
- Related control problems
- Common library of examples for benchmarking

Next Steps

- Structured regression (with X. Lyu)
- Root-finding (with S. Rodriguez)
- Multiple responses (with R. Hu)
- Related control problems
- Common library of examples for benchmarking

THANK YOU!

References I

B. ANKENMAN, B. L NELSON, AND J. STAUM *Stochastic kriging for simulation metamodeling* Operations research, 58(2):371–382, 2010.

B. BOUCHARD AND X. WARIN, *Monte-Carlo valorisation of American options: facts and new algorithms to improve existing methods*, in Numerical Methods in Finance, R. Carmona, P. D. Moral, P. Hu, and N. Oudjane, eds., vol. 12 of Springer Proceedings in Mathematics, Springer, 2011.

E GOBET AND P TURKEDJIEV,

Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations, Technical report, HAL Archives 01169119, 2015.

M. KOHLER, *A review on regression-based Monte Carlo methods for pricing American options*, in Recent Developments in Applied Probability and Statistics, Springer, 2010, pp. 37–58.

BECT, J., GINSBOURGER, D., LI, L., PICHENY, V., AND VAZQUEZ, E., *Sequential design of computer experiments for the estimation of a probability of failure*, Statistics and Computing, 22(3), 773–793, (2012).

P. RANJAN, D. BINGHAM, AND G. MICHAILIDIS, *Sequential experiment design for contour estimation from complex computer codes*, Technometrics, 50, pp. 527–541, (2008).

References II

R. GRAMACY AND M. LUDKOVSKI Sequential Design for Optimal Stopping Problems SIAM Journal on Financial Mathematics, 6(1), pp. 748–775, 2015

M. LUDKOVSKI Kriging Metamodels for Bermudan Option Pricing, submitted, 2015 arXiv:1509.02179

K. SHATSKIKH AND M. LUDKOVSKI Bayesian Detection of Epidemics in Multiple Populations, preprint, 2015

S. RODRIGUEZ AND M. LUDKOVSKI Generalized Bisection Algorithms for Stochastic Root-Finding w/Applications to Optimal Stopping, In preparation.

X. LYU AND M. LUDKOVSKI Response Surface Modeling for Sign Classification, In preparation.

