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PDEs are about propagation of knowledge and
relationships

(a) An egg carton (b) A dome

Figure: The curse of Information not the curse of Dimension
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Integration and Differentiation

In moderate dimension even tracking is still a challenge

Singular diffusions in 6 dimensions (position and
momentum);
The weather;
Solve a parabolic PDE with very narrowly supported
boundary data;
There are techniques - hybrid and exploiting many ideas.
They sometimes work!
Wonjung Lee : Adaptive patched particle filter[3].
Specific High Dimensional Data Techniques essential -
asymptotics largely irrelevant
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Cubature - well thought scenarios - a basis for the
functions

(a) Nested Cubature (b) Nested Cubature

Figure: Summarising Lebesgue measure on a cube
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Functions

Smooth functions - local bases

y = f (x) ≈
∑

i=1...n φ1(x), x ∈ Rd .

1 polynomial or wavelet basis: x0, x1, x2, . . . , xn;
2 Fix degree, f , accuracy ε and get a scale R;
3 Computation trades between order and scale - usually

avoids the extremes.

Regression and the learning of functions)
1 From a few values f (xj), identify an approximation to f to

error ε over the region of radius R.
2 Use a basis and linear methods and add anti-overfitting

techniques like lasso.
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Many approaches to integration and differentiation

Exploration and integration
1 Monte carlo - slow but broadly applicable;
2 Grids - still low order - curse of dimension;
3 Cubature - not well known for good reason.
4 Sparse grids - unstable;

Terry Lyons Making high order methods effective



Representation and Dimension
Two assistive technologies

High order methods much more effective

Harder to implement
1 Litterer: High order recombination and an application to

cubature on Wiener space, [4];
2 Best speed from adaptive and truly high order approaches.
3 Diffusion 32 order, patching 11th Order
4 to time < 1s. 10−10 < accuracy < 10−12
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The competition: an Oxford colleague

I’ve now tried a few approaches to solving your problem but
can’t get results even close to yours in terms of accuracy
achieved in such a small amount of CPU time. In all cases I’ve
solved the heat equation on the spatial interval
−9.9 < x < 10.1 (so that with a coarse uniform mesh the point
x = 0; was not a node). Then to look at the error I have
computed the solution at time 1 and for x integer between −5
and 5 as you suggest.
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The competition: an Oxford colleague

The first approach: I took was to do an adaptive finite element
solution with the adaptivity geared towards getting an accurate
solution at time t = 1. The mesh can change at every timestep
which is obviously less than ideal as you then need to keep
recomputing the matrices. The code is taking about 30 seconds
and giving accuracy of between 10−4 and 10−7 depending on
which integer you look at. It actually turns out to be more
efficient to do something a bit more naive, namely to adapt the
mesh to resolve the initial condition well and then use that mesh
for the rest of the computation. As expected, this clusters the
nodes around x = 0 and the mesh is fairly coarse elsewhere.
The advantage of this is that you just solve the same matrix
problem at every timestep. This speeds things up a lot without
degrading the accuracy for this problem. So here I’m getting
accuracy of between 10−4 and 10−6 in about 1 second.
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The competition: an Oxford colleague

Then, finally: I gave Nick Trefethen et al’s Matlab package
Chebfun a go. In order to solve the heat equation which
exploits the fact that the problem is linear so you can write the
solution at a given time t as exp(tL)u0 where L is the spatial
operator (including boundary conditions) and u0 is the initial
condition. It seems that Chebfun struggles when u0 is not
smooth and it actually turns out to be more efficient to compute
the solution at time t = 1 in two stages... can solve the same
type of problem in 6.5s giving errors of 5 ∗ 10−6.

Terry Lyons Making high order methods effective



Representation and Dimension
Two assistive technologies

Parabolic PDEs as integrals

Parabolic PDEs as expectations
Solve the parabolic PDE whose second order term is
L =

∑
(V iV i) via

dYt = V i(Yt)dW i
t

u(x ,0) = E (u(YT ,T ))

How should we approximate this integration?
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Linearising SDEs

Definition (The signature of a path)

Let X : J → E := Rm be a continuous path with finite length.
For every [s, t ] ⊂ [0,T ], the signature of S(X[s,t]) in T ((E)) is
defined as follows

S(X[s,t]) = (1,X 1
[s,t],X

2
[s,t], ...),

where, for each n ≥ 1,

X n
[s,t] =

∫ t

s

∫ un

0
· · ·

∫ u2

0
dXu1 ⊗ . . .⊗ dXun .
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Signature - A top-down description on the path

Level 1 - increment of a path; Level 2 - area of a path;
Higher degree- a local structure of a path.
Uniqueness of the signature ([2], [1]).
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Linear Differential Controlled Equation

Let Y : [0,T ]→ R satisfy

dYt = AYtdXt ,Y0 = y0,

where X : [0,T ]→ Rd be a continuous path of bounded
variation, and A : R→ L(Rd ,R) be a bounded linear map.

Picard’s iteration

YT = y0 +
∞∑

n=1

A⊗ny0

∫ T

0

∫ un

0
· · ·

∫ u2

0
dXu1 ⊗ . . .⊗ dXun .

(1d) = y0 +
∞∑

n=1

Any0
(XT − X0)

n

n!
= y0 exp(A(XT − X0)).
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Hao Ni

Learning Stochastic Differential Equation

Suppose Yt satisfies the following Stochastic Differential
Equation:

dYt = a(1− Yt)dX (1)
t + bY 2

t dX (2)
t ,Y0 = 0.

where Xt = (X (1)
t ,X (2)

t ) = (t ,Wt), and the integral is in the
Stratonovich sense, and (a,b) is chosen to (1,2).

Dataset
We generate 800 independent samples of pairs (X[0,T ],YT )
using Milstein’s method with discretization step 0.001. Half of
the samples are used for the training set, and the rest is for the
back-testing set.
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Figure: T = 0.25, Degree of signatures = 4
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Cubature on Wiener Space

High order sampling of paths

Integration over path space can be well approximated if we can
find paths and weights so that the integrals of (expectations of)
the first few iterated integrals are correct. Cubature on Wiener
space looks for a discrete parsimonious set of paths so that the
expected value of the first few terms in the signature for the
discrete measure and the wiener measure agree. Only require
a finite set of paths.
Leads to high order methods of integration. A deterministic
method with deterministic a-priori error bounds.
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No Grid, Iteration leads to an explosion!

(a) Clenshaw Curtis 7 Points (b) After one iteration - 49 points!

Figure: If there are D paths in the cubature, then n-multistep leads to
Dn.
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Points, Dynamic Cubature and Recombination

Recombination
It is possible to redistribute the weights and so reduce the
number of points to the minimum. With a d dimensional cloud
of N weighted points, then computation to reduce the cloud to
D points having the same moments (≤ n) requires
ND + D3 log (N/D) units of time and needs storage of N + D2

storage. D(n,d) = (n + d)!/(n!d !).
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Core Ideas

Approximating a cloud
1 Stability - use the same points.
2 Accuracy - integrate basic functions correctly
3 Use the basic functions to translate the problem to an

example of Caratheodory’s theorem.
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Dynamic Caratheodory theorem [6]

a divide and conquer approach
1 Cluster weighted points into 2D + 1 subclusters
2 Eliminate D clusters. Repeat

The workhorse: 2D → D
1 Use SVD (+random matrix theory for numerical kernel) to

find the full kernel of weight changes on 2D points that do
not change the COG

2 Use pivoted Gaussian elimination with these vectors to
remove all mass from D of the points.
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The workhorse: Dynamic Caratheodory 2D → D

(a) Raw Times (b) exactly 2D → D

Figure: ((1, 2, 0.0000353381), (3, 6, 0.0000898817), (10, 20,
0.00040562), (35, 70, 0.00539367), (126, 252, 0.0604481), (462,
918, 0.65147), (1716, 3376, 14.4207), (6435, 12510, 726.204))

Terry Lyons Making high order methods effective



Representation and Dimension
Two assistive technologies

(a) Eliminating more than 2D (b) Eliminating less than 2D

Figure: No difference in computation time if one eliminates 1, D or 2D
points
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A dense case of the crossover problem in linear programming

The case N = D2 is the most typical. Work of Christian Litterer,
and more recently Maria Tchernynova’s thesis. Although not a
light approach, real time recombination can transform the
numerical approaches to solving PDEs and make totally
feasible problems that were previously out of reach.
It can be also regarded as a rather special problem in Linear
Programming, however our methods empirically outperform the
state of the art LP packages by a small order. Recombination is
a powerful, and completely non-naive, data reduction
technique.
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Figure: A comparison
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Figure: Dimensions of spaces of polynomials of degree 4
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Wei Pan: Memoization and Space filling curves

Memoization for backward equations?
High order methods require that one evaluates functions where
one chooses and accurately! Nonlinearity then forces
evaluation of other functions that would evaluate other functions
... . Memoization is a computer science technique that
recognises when you have seen a case before (log NoCases)
and then uses the previously computed value. It has huge
potential for accelerating nonlinear numerics - backward
optimisation problems etc.
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Wei Pan: Space Filling Paths

Just in time evaluation
If u is piecewise smooth, locally well approximated by a
polynomial of fixed degree. Only evaluate when you need to. If
you have a big enough demand for the function in a
neighbourhood, then use evaluations to extrapolate. The
challenge is to find nearby evaluations [5].

Simplest

Take the square to the line {.a1a2..., .b1b2...} → .a1b1a2b2...
using the Morton order which is easily computed. Store points
in 1d order. Logarithmic algorithm to find all entries in a dyadic
box. Binary search trees have same effect.
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