Multilevel Sampling Techniques for Bayesian Inference (Multilevel Markov Chain Monte Carlo Methods)

Rob Scheichl

Department of Mathematical Sciences

joint work with T.J. Dodwell (Exeter), C. Ketelsen (Boulder), A. Stuart & A.L. Teckentrup (both Warwick)

International Conference on Monte Carlo Techniques

Paris, July 8, 2016

Outline

- Bayesian inference in infinite dimensions
- Model problem: Darcy flow with uncertain data
- Multilevel Approach I: Ratio estimator (large noise case)
- Multilevel Approach II: Multilevel MCMC (small noise case)

Bayesian Interpretation of an Inverse Problem

• Physical model gives $\pi(y|x)$, the conditional probability of observing y given x ("likelihood"), e.g. assuming additive Gaussian noise:

 $y = H(x) + \eta$

where $H: X \to \mathbb{R}^m$ is the forward operator & $\eta \sim N(\mathbf{0}, \Sigma)$ the noise.

Bayesian Interpretation of an Inverse Problem

• Physical model gives $\pi(y|x)$, the conditional probability of observing y given x ("likelihood"), e.g. assuming additive Gaussian noise:

 $y = H(x) + \eta$

where $H: X \to \mathbb{R}^m$ is the forward operator & $\eta \sim N(\mathbf{0}, \Sigma)$ the noise.

• But often the real interest is in $\pi(x|y)$, i.e. the conditional probability of possible causes x given the observed data y ("posterior" density).

Bayesian Interpretation of an Inverse Problem

• Physical model gives $\pi(y|x)$, the conditional probability of observing y given x ("likelihood"), e.g. assuming additive Gaussian noise:

 $y = H(x) + \eta$

where $H: X \to \mathbb{R}^m$ is the forward operator & $\eta \sim N(\mathbf{0}, \Sigma)$ the noise.

- But often the real interest is in $\pi(x|y)$, i.e. the conditional probability of possible causes x given the observed data y ("posterior" density).
- A simple result about conditional probabilities states

$$\pi(x|y) = rac{\pi(y|x)\pi(x)}{\pi(y)}$$
 (Bayes' rule)

where $\pi(x) = \text{prior density} - \text{our knowledge/belief about } x$

(the scaling factor $\pi(y)$ is the marginal of $\pi(x, y)$ over all possible x).

Rob Scheichl (University of Bath)

Multilevel Bayesian Inference

Objective

Computationally tractable and efficient algorithms for **Bayesian inference**, i.e. for computing statistics (moments, CDFs, PDFs) of certain quantities of interest with respect to the posterior measure μ^y : high (or infinite) dimensional quadrature $\mathbb{E}_{\mu^y}[\phi(x)]$ (with rigorous theoretical support).

- Modelling and simulation essential in many applications, e.g. radwaste disposal, oil reservoir simulation, ...
- Darcy's law for steady-state subsurface flow \Rightarrow elliptic partial differential equation

$$-\nabla \cdot (k\nabla p) = f$$

EDZ CROWN SPACE WASTE VALUES FAULTED GRANITE GRANITE N-S SKIDDAW DEEP LATTERBARROW N-SI ATTERBARROW FAULTED TOP M-F BVG TOP MJE BVO FAULTED BLEAWATH BVG BI FAWATH BWG EALITED E H PUO E-H BVG FAULTED UNDIFF BVG LINDIFE BVG FAULTED N-S BVG NLS BVG FALLI TED CARB I ST CARB LST FAULTED COLLYHURST COLLYHURST FAULTED BROCKRAM BROCKRAM SHALES + EVAP FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES DEEP ST BEES FAULTED N-S ST BEES N-S ST REES FAULTED VN-S ST BEES VN-S ST REES FAULTED DEEP CALDER DEEP CALDER FAULTED N-S CALDER N-S CALDER FAULTED VN-S CALDER VN-S CALDER MERCIA MUDSTONE QUATERNARY

- Modelling and simulation essential in many applications, e.g. radwaste disposal, oil reservoir simulation, ...
- Darcy's law for steady-state subsurface flow \Rightarrow elliptic partial differential equation

 $-\nabla \cdot (k\nabla p) = f$

- Lack of data \Rightarrow uncertain coefficient k(x) (permeability)
- Quantify uncertainty in coefficients through stochastic modelling $\Rightarrow k, p$ random fields.

FD7 CROWN SPACE WASTE VALUES FAULTED GRANITE GRANITE N-S SKIDDAW DEEP LATTERBARROW N-SI ATTERBARROW FAULTED TOP M-F BVG TOP MLE BVG FAULTED BLEAWATH BVG BI FAWATH BWG EALITED E H PUO E-H BVG FAULTED UNDIFF BVG LINDIFE BVG FAULTED N-S BVG NLS BVG FALLI TED CARB L ST CARB LST FAULTED COLLYHURST COLLYHURST FAULTED BROCKRAM BROCKRAM SHALES + EVAP FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES DEEP ST BEES FAULTED N-S ST BEES N-S ST REES FAULTED VN-S ST BEES VN-S ST REES FAULTED DEEP CALDER DEEP CALDER FALL TED N-S CALDER FAULTED VN-S CALDER VN-S CALDER MERCIA MUDSTONE QUATERNARY

• Typical **prior model** for k is a log-normal random field: $k = k_* + \exp[q]$, with q a scalar, isotropic Gaussian field and

• Typical **prior model** for k is a log-normal random field: $k = k_* + \exp[q]$, with q a scalar, isotropic Gaussian field and

Typical prior model for k is a log-normal random field:
k = k_{*} + exp[g], with g a scalar, isotropic Gaussian field and

- The quantity of interest (Qol) Q(k, p) and the observation operator H(k, p) are some (nonlinear) functionals of p and k:
 - \blacktriangleright point values or local averages of the pressure p
 - point values or local averages of the Darcy flow $\vec{q}=-k\nabla p$
 - travel times of contaminant particles

• Typical **prior model** for k is a log-normal random field: $k = k_* + \exp[g]$, with g a scalar, isotropic Gaussian field and

- The quantity of interest (Qol) Q(k, p) and the observation operator H(k, p) are some (nonlinear) functionals of p and k:
 - \blacktriangleright point values or local averages of the pressure p
 - point values or local averages of the Darcy flow $\vec{q}=-k\nabla p$
 - travel times of contaminant particles
- Subsurface flow problems are typically characterised by:
 - \blacktriangleright Low spatial regularity of permeability k and resulting pressure field p
 - Unboundedness of the log-normal distribution
 - High dimensionality of the stochastic space (possibly ∞ -dimensional)

Bayesian inference in infinite dimensions

Let $y \in \mathbb{R}^m$, denote by μ_0 the prior log-normal measure on k, and assume $y = H(p) + \eta$, with $\eta \sim \mathcal{N}(0, \sigma_\eta^2 I_m)$.

Bayesian inference in infinite dimensions

Let $y \in \mathbb{R}^m$, denote by μ_0 the prior log-normal measure on k, and assume $y = H(p) + \eta$, with $\eta \sim \mathcal{N}(0, \sigma_\eta^2 I_m)$.

Bayes' Theorem (e.g. [Stuart, '10]) $\frac{d\mu^y}{d\mu_0}(k) = \frac{1}{Z} \exp\left(-\frac{|y - H(p)|^2}{2\sigma_\eta^2}\right) =: \frac{1}{Z} \exp(-\Phi(p))$ where $Z := \mathbb{E}_{\mu_0}[\exp(-\Phi(p))].$

Bayesian inference in infinite dimensions

Let $y \in \mathbb{R}^m$, denote by μ_0 the prior log-normal measure on k, and assume $y = H(p) + \eta$, with $\eta \sim \mathcal{N}(0, \sigma_\eta^2 I_m)$.

Bayes' Theorem (e.g. [Stuart, '10]) $\frac{d\mu^y}{d\mu_0}(k) = \frac{1}{Z} \exp\left(-\frac{|y - H(p)|^2}{2\sigma_\eta^2}\right) =: \frac{1}{Z} \exp(-\Phi(p))$ where $Z := \mathbb{E}_{\mu_0}[\exp(-\Phi(p))].$

We can write the posterior expectation of our Qol as

$$\mathbb{E}_{\mu^{y}}[\mathcal{Q}(p)] = \mathbb{E}_{\mu_{0}}\left[\frac{1}{Z}\exp[-\Phi(p)]\mathcal{Q}(p)\right] = \frac{\mathbb{E}_{\mu_{0}}[\mathcal{Q}(p)\exp[-\Phi(p)]]}{\mathbb{E}_{\mu_{0}}[\exp[-\Phi(p)]]},$$

i.e. the ratio of two prior expectations.

Rob Scheichl (University of Bath)

Ratio Estimator

Let $\psi(p) := \mathcal{Q}(p) \exp\left(-\Phi(p)\right)$. Then we can now **approximate** $\mathbb{E}_{\mu^y}[\mathcal{Q}(p)] \approx \frac{\widehat{Q}}{\widehat{Z}},$ where \widehat{Q} is an estimator of $Q := \mathbb{E}_{\mu_0}[\psi(p)]$ and \widehat{Z} is an estimator of Z.

Ratio Estimator

Let $\psi(p) := \mathcal{Q}(p) \exp \left(-\Phi(p)\right)$. Then we can now **approximate** $\mathbb{E}_{\mu^y}[\mathcal{Q}(p)] \approx \frac{\widehat{Q}}{\widehat{Z}},$

where \widehat{Q} is an estimator of $Q := \mathbb{E}_{\mu_0}[\psi(p)]$ and \widehat{Z} is an estimator of Z.

Remark: If m is very large or σ_{η}^2 is very small, the two prior expectations will be difficult to evaluate. The question is how small/large?

Ratio Estimator

Let $\psi(p) := \mathcal{Q}(p) \exp\left(-\Phi(p)\right)$. Then we can now **approximate** $\mathbb{E}_{\mu^y}[\mathcal{Q}(p)] \approx \frac{\widehat{Q}}{\widehat{Z}},$

where \widehat{Q} is an estimator of $Q := \mathbb{E}_{\mu_0}[\psi(p)]$ and \widehat{Z} is an estimator of Z.

Remark: If m is very large or σ_{η}^2 is very small, the two prior expectations will be difficult to evaluate. The question is how small/large?

Alternatives:

- Markov Chain Monte Carlo: Gibbs sampler, Metropolis-Hastings, ...
- Multilevel Metropolis-Hastings \longrightarrow

Part II below

Classical Monte Carlo (to estimate Q and Z)

• The classical (finite element) Monte Carlo (MC) estimator

$$\widehat{Q}_{h,N}^{\mathrm{MC}} = \frac{1}{N} \sum_{i=1}^{N} \psi(p_h^{(i)})$$

is an equal weighted average of N i.i.d. samples $\psi(p_h^{(i)})$, where p_h denotes a finite element discretisation of p with mesh width h.

(sampling from prior k via truncated KL-expansion or circulant embedding)

Classical Monte Carlo (to estimate Q and Z)

• The classical (finite element) Monte Carlo (MC) estimator

$$\widehat{Q}_{h,N}^{\mathrm{MC}} = \frac{1}{N} \sum_{i=1}^{N} \psi(p_h^{(i)})$$

is an equal weighted average of N i.i.d. samples $\psi(p_h^{(i)})$, where p_h denotes a finite element discretisation of p with mesh width h.

(sampling from prior k via truncated KL-expansion or circulant embedding)

• The mean square error satisfies

$$\begin{split} e(\widehat{Q}_{h,N}^{\mathrm{MC}})^2 &:= \mathbb{E}\big[\big(\widehat{Q}_{h,N}^{\mathrm{MC}} - Q\big)^2\big] = \underbrace{\mathbb{V}[\widehat{Q}_{h,N}^{\mathrm{MC}}]}_{\text{sampling error}} + \underbrace{\big(\mathbb{E}[\widehat{Q}_{h,N}^{\mathrm{MC}}] - Q\big)^2}_{\text{discretisation error}} \\ &\leq \mathbb{V}[\psi(p_h)]N^{-1} + Ch^s, \end{split}$$

where the rate $s \in (0, 4]$ is problem dependent (ignoring sampling errors).

Quasi-Monte Carlo [Graham, Kuo, Nicholls, RS, Schwab, Sloan, 2014]

• The Quasi-Monte Carlo (QMC) estimator

$$\widehat{Q}_{h,N}^{\text{QMC}} = \frac{1}{N} \sum_{j=1}^{N} \psi(p_h^{(j)})$$

is an equal-weighted average of N deterministically chosen samples $\psi(p_h^{(j)})$, with FE soln. p_h as before, e.g. randomised lattice points:

• For <u>linear</u> functionals $\psi(\cdot)$ and for suff'ly smooth RFs ($\nu > d$ in Matérn), the mean square error satisfies

 $e(\widehat{Q}_{h,N}^{ ext{QMC}})^2 \leq C(N^{-2+\delta}+h^s), \quad ext{for any } \delta>0,$

where the rate $s \in (0, 4]$ is as before and C is independent of of dimension!

• Can be extended to <u>analytic</u> functionals $\psi(\cdot)$ Proof for analytic function of linear functional in [RS, Stuart, Teckentrup, 2016]

Multilevel Monte Carlo [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]

The multilevel method works on a hierarchy of levels, s.t. $h_{\ell} = \frac{1}{2}h_{\ell-1}$, $\ell = 0, 1, \dots, L$. The finest mesh width is $h_L = h$ (as above).

Multilevel Monte Carlo [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]

The multilevel method works on a hierarchy of levels, s.t. $h_{\ell} = \frac{1}{2}h_{\ell-1}$, $\ell = 0, 1, \dots, L$. The finest mesh width is $h_L = h$ (as above). Now, using

$$\mathbb{E}_{\mu_0} \left[\psi(p_{h_L}) \right] = \mathbb{E}_{\mu_0} \left[\psi(p_{h_0}) \right] + \sum_{\ell=1}^L \mathbb{E}_{\mu_0} \left[\psi(p_{h_\ell}) - \psi(p_{h_{\ell-1}}) \right],$$

a multilevel Monte Carlo (MLMC) estimator can be defined as

$$\widehat{Q}_{\{h_{\ell},N_{\ell}\}}^{\mathrm{ML}} := \frac{1}{N_{0}} \sum_{i=1}^{N_{0}} \psi(p_{h_{0}}^{(i)}) + \sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} \psi(p_{h_{\ell}}^{(i)}) - \psi(p_{h_{\ell-1}}^{(i)}),$$

i.e. a sum of L + 1 independent MC estimators.

Multilevel Monte Carlo [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]

The multilevel method works on a hierarchy of levels, s.t. $h_{\ell} = \frac{1}{2}h_{\ell-1}$, $\ell = 0, 1, \dots, L$. The finest mesh width is $h_L = h$ (as above). Now, using

$$\mathbb{E}_{\mu_0} \left[\psi(p_{h_L}) \right] = \mathbb{E}_{\mu_0} \left[\psi(p_{h_0}) \right] + \sum_{\ell=1}^L \mathbb{E}_{\mu_0} \left[\psi(p_{h_\ell}) - \psi(p_{h_{\ell-1}}) \right],$$

a multilevel Monte Carlo (MLMC) estimator can be defined as

$$\widehat{Q}^{\mathrm{ML}}_{\{h_{\ell},N_{\ell}\}} := \frac{1}{N_0} \sum_{i=1}^{N_0} \psi(p^{(i)}_{h_0}) + \sum_{\ell=1}^L \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} \psi(p^{(i)}_{h_{\ell}}) - \psi(p^{(i)}_{h_{\ell-1}}),$$

i.e. a sum of L + 1 independent MC estimators.

The mean square error of the the multilevel estimator satisfies

$$e(\widehat{Q}_{\{h_{\ell},N_{\ell}\}}^{\mathrm{ML}})^{2} \leq \frac{\mathbb{V}[\psi(p_{h_{0}})]}{N_{0}} + \sum_{\ell=1}^{L} \frac{\mathbb{V}[\psi(p_{h_{\ell}}) - \psi(p_{h_{\ell-1}})]}{N_{\ell}} + Ch^{s}.$$

Analysis of FE error gives

$$e(\widehat{Q}_{\{h_{\ell},N_{\ell}\}}^{\mathrm{ML}})^{2} \leq \frac{\mathbb{V}[\psi(p_{h_{0}})]}{N_{0}} + \sum_{\ell=1}^{L} \frac{h_{\ell}^{s}}{N_{\ell}} + Ch^{s},$$

where the rate $s \in (0, 4]$ is as before.

Analysis of FE error gives

$$e(\widehat{Q}_{\{h_{\ell},N_{\ell}\}}^{\mathrm{ML}})^{2} \leq \frac{\mathbb{V}[\psi(p_{h_{0}})]}{N_{0}} + \sum_{\ell=1}^{L} \frac{h_{\ell}^{s}}{N_{\ell}} + Ch^{s},$$

where the rate $s \in (0, 4]$ is as before.

But we can reduce the number N_{ℓ} of samples on the costly, fine levels:

• N_0 still needs to be large ($\approx N$ in classical MC above), but samples are 2^{Ld} times cheaper to obtain on coarse grid

Analysis of FE error gives

$$e(\widehat{Q}_{\{h_{\ell},N_{\ell}\}}^{\mathrm{ML}})^{2} \leq \frac{\mathbb{V}[\psi(p_{h_{0}})]}{N_{0}} + \sum_{\ell=1}^{L} \frac{h_{\ell}^{s}}{N_{\ell}} + Ch^{s},$$

where the rate $s \in (0, 4]$ is as before.

But we can reduce the number N_{ℓ} of samples on the costly, fine levels:

• N_0 still needs to be large ($\approx N$ in classical MC above), but samples are 2^{Ld} times cheaper to obtain on coarse grid

• $N_{\ell} \approx \left(\frac{h_{\ell}}{h_L}\right)^s$, for $\ell > 0$, which is much smaller than N and in particular $N_L = \mathcal{O}(1)$!

Analysis of FE error gives

$$e(\widehat{Q}_{\{h_{\ell},N_{\ell}\}}^{\mathrm{ML}})^{2} \leq \frac{\mathbb{V}[\psi(p_{h_{0}})]}{N_{0}} + \sum_{\ell=1}^{L} \frac{h_{\ell}^{s}}{N_{\ell}} + Ch^{s},$$

where the rate $s \in (0, 4]$ is as before.

But we can reduce the number N_{ℓ} of samples on the costly, fine levels:

- N_0 still needs to be large ($\approx N$ in classical MC above), but samples are 2^{Ld} times cheaper to obtain on coarse grid
- $N_{\ell} \approx \left(\frac{h_{\ell}}{h_L}\right)^s$, for $\ell > 0$, which is much smaller than N and in particular $N_L = \mathcal{O}(1)$!

Gains are complementary: Multilevel Quasi-Monte Carlo [Kuo, RS, Schwab, Sloan, Ullmann, '15]

Numerical Comparison for lognormal problem (prior expectation)

$$\begin{split} D &= (0,1)^2; \text{ linear FEs; } \psi(p) := \frac{1}{|D^*|} \int_{D^*} p \, \mathrm{d}x; \text{ truncated KLE } (\text{w. } s \sim h^{-2/\nu}); \\ \text{using a randomised lattice rule with product weights } \gamma_j = 1/j^2. \end{split}$$

Comments on Theory

FE error analysis and MLMC analysis

- PDE **not** uniformly elliptic or bounded.
- For $\nu < 1$ (in Matérn), **no full regularity** (typical in applications).
- Our analysis covers nonlinear functionals, point evaluations, tensors, anisotropic covariance fcts., piecewise lognormal, piecewise constant coeffs on random partitionings, ...

Comments on Theory

FE error analysis and MLMC analysis

- PDE **not** uniformly elliptic or bounded.
- For $\nu < 1$ (in Matérn), **no full regularity** (typical in applications).
- Our analysis covers nonlinear functionals, point evaluations, tensors, anisotropic covariance fcts., piecewise lognormal, piecewise constant coeffs on random partitionings, ...

QMC quadrature error analysis

- Bounding mixed first derivatives in stochastic parameters in weighted *H*¹-norm (spatial *H*¹-norm for QMC, *L*²-norm of Laplacian for MLQMC).
- Fast CBC construction of tailored lattice rules [Kuo, Nuyens, Cools],...

Comments on Theory

FE error analysis and MLMC analysis

- PDE **not** uniformly elliptic or bounded.
- For $\nu < 1$ (in Matérn), no full regularity (typical in applications).
- Our analysis covers nonlinear functionals, point evaluations, tensors, anisotropic covariance fcts., piecewise lognormal, piecewise constant coeffs on random partitionings, ...

QMC quadrature error analysis

- Bounding mixed first derivatives in stochastic parameters in weighted *H*¹-norm (spatial *H*¹-norm for QMC, *L*²-norm of Laplacian for MLQMC).
- Fast CBC construction of tailored lattice rules [Kuo, Nuyens, Cools],...
- Original analysis for linear functionals $\mathcal{G}(p)$; needs to be extended here to analytic functions $\psi : \mathbb{R} \to \mathbb{R}$ of $\mathcal{G}(p)$ (crucial for Bayesian inference).

Back to the Inverse Problem and the Ratio Estimator

• To bound the mean square error, we use

$$e\left(\frac{\widehat{Q}}{\widehat{Z}}\right)^{2} = \mathbb{E}\left[\left(\frac{Q}{Z} - \frac{\widehat{Q}}{\widehat{Z}}\right)^{2}\right]$$
$$\leq \frac{2}{Z^{2}}\left(\mathbb{E}\left[(\widehat{Q} - Q)^{2}\right] + \mathbb{E}\left[\left(\frac{\widehat{Q}}{\widehat{Z}}\right)^{2}(\widehat{Z} - Z)^{2}\right]\right).$$

Back to the Inverse Problem and the Ratio Estimator

• To bound the mean square error, we use

$$e\left(\frac{\widehat{Q}}{\widehat{Z}}\right)^{2} = \mathbb{E}\left[\left(\frac{Q}{Z} - \frac{\widehat{Q}}{\widehat{Z}}\right)^{2}\right]$$
$$\leq \frac{2}{Z^{2}}\left(\mathbb{E}\left[(\widehat{Q} - Q)^{2}\right] + \mathbb{E}\left[\left(\frac{\widehat{Q}}{\widehat{Z}}\right)^{2}(\widehat{Z} - Z)^{2}\right]\right).$$

• Further analysis depends on integrability of \widehat{Q}/\widehat{Z} .

Back to the Inverse Problem and the Ratio Estimator

• To bound the mean square error, we use

$$e\left(\frac{\widehat{Q}}{\widehat{Z}}\right)^{2} = \mathbb{E}\left[\left(\frac{Q}{Z} - \frac{\widehat{Q}}{\widehat{Z}}\right)^{2}\right]$$
$$\leq \frac{2}{Z^{2}}\left(\mathbb{E}\left[(\widehat{Q} - Q)^{2}\right] + \mathbb{E}\left[\left(\frac{\widehat{Q}}{\widehat{Z}}\right)^{2}(\widehat{Z} - Z)^{2}\right]\right).$$

- Further analysis depends on integrability of \widehat{Q}/\widehat{Z} .
- For QMC & MLMC analysis, currently require uniform ellipticity, i.e.
 - \blacktriangleright uniform prior $k(x):=k_0(x)+\sum_{j=1}^\infty u_jk_j(x)$ or
 - "regularised" lognormal prior $k(x) := k_*(x) + \exp(g(x))$ (with $k_* > 0$)

$$\Rightarrow \ \widehat{Q}/\widehat{Z} \in L^{\infty}_{\mathbb{P}}$$

(in the MLMC case under the additional assumption that h_0 is sufficiently small)

Convergence Rates

Theorem: [RS, Stuart, Teckentrup, 2016]

Under a uniform or a "regularised" lognormal prior $(k = k_* + \exp[g]$ with $k_* > 0)$ and under suitable assumptions on H and Q, we have

$$\begin{split} & e \bigg(\frac{\widehat{Q}_{h,N}^{\mathrm{MC}}}{\widehat{Z}_{h,N}^{\mathrm{MC}}} \bigg)^2 \leq C_{\mathrm{MC}} \left(N^{-1} + h^s \right), \\ & e \bigg(\frac{\widehat{Q}_{\{h_\ell,N_\ell\}}^{\mathrm{ML}}}{\widehat{Z}_{\{h_\ell,N_\ell\}}^{\mathrm{ML}}} \bigg)^2 \leq C_{\mathrm{ML}} \left(\sum_{\ell=0}^L \frac{h_\ell^s}{N_\ell} + h^s \right), \quad \text{with} \quad h = h_L \\ & e \bigg(\frac{\widehat{Q}_{h,N}^{\mathrm{QMC}}}{\widehat{Z}_{h,N}^{\mathrm{QMC}}} \bigg)^2 \leq C_{\mathrm{QMC}} \left(N^{-2+\delta} + h^s \right), \quad \text{for any } \delta > 0. \end{split}$$

where the convergence rate $s \in (0, 4]$ is problem dependent.

(in the MLMC case we additional require that h_0 is sufficiently small)

Same convergence rates as for the individual estimators \widehat{Q} and $\widehat{Z}!$

Rob Scheichl (University of Bath)

Multilevel Bayesian Inference
Complexity

The ε -cost is the number of FLOPS required to achieve a MSE of $\mathcal{O}(\varepsilon^2)$.

For the lognormal problem in d dimensions with optimal linear solver, the ε -cost converges like $\mathcal{O}(\varepsilon^{-r})$ with r given in the following tables:

d	MLMC	QMC	MC
1	2	?	3
2	2	?	4
3	3	?	5

exponential covariance (s = 2)

d	MLMC	QMC	MC
1	2	1.5	2.5
2	2	2	3
3	2	2.5	3.5

Matérn covariance w. ν suff. big (s = 4)

Numerical Results: Specification and Cost Comparison

- 2D flow cell model problem on $(0,1)^2$
- prior k is lognormal with exponential covariance, $\lambda=0.3$ and $\sigma^2=1$
- Synthetic data: local averages of pressure p at 9 points, $\sigma_{\eta}^2 = 0.09$
- Qol Q(p) is outflow over right boundary.

Numerical Results: Specification and Cost Comparison

- 2D flow cell model problem on $(0,1)^2$
- prior k is lognormal with exponential covariance, $\lambda=0.3$ and $\sigma^2=1$
- Synthetic data: local averages of pressure p at 9 points, $\sigma_n^2 = 0.09$
- Qol Q(p) is outflow over right boundary.

Numerical Results: Discretisation and Sampling Errors

Numerical Results: Discretisation and Sampling Errors

Numerical Results: Dependence on σ_n^2 and m

• Fixing h = 1/16 and N = 256.

Conclusions (Ratio Estimator)

- Posterior expectations can be written as ratio of prior expectations, and in this way approximated using QMC and MLMC methods.
- A convergence and complexity analysis of the resulting estimators showed that the complexity is the same as for prior expectations.
- Numerical tests confirm the effectiveness of the ratio estimator witk QMC and MLMC for a typical, simple model problem in subsurface flow (for a range of values of σ_n^2 and m) (even beyond the theory)

Conclusions (Ratio Estimator)

- Posterior expectations can be written as ratio of prior expectations, and in this way approximated using QMC and MLMC methods.
- A convergence and complexity analysis of the resulting estimators showed that the complexity is the same as for prior expectations.
- Numerical tests confirm the effectiveness of the ratio estimator witk QMC and MLMC for a typical, simple model problem in subsurface flow (for a range of values of σ_n^2 and m) (even beyond the theory)
- See also the recent paper by [Dick, Gantner, Le Gia, Schwab, '16].
- **TODO:** Comparison to other approaches, in particular MCMC and multilevel MCMC

Part II - Multilevel Metropolis-Hastings

(small noise case; avoiding calculation of normalising constant Z)

Metropolis-Hastings Markov Chain Monte Carlo

Recall (no need to know normalising constant $\pi(y)$)

 $\pi(x|y) \eqsim \pi(y|x)\pi(x)$ (Bayes' rule)

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

- Choose initial state $x^0 \in X$.
- At state x^n generate proposal $x' \in X$ from distribution $q(x'|x^n)$, e.g. via a random walk $x' \sim N(x^n, B)$

• Accept x' as a sample with probability

$$\boldsymbol{\alpha}(x'|x^n) \ = \ \min\left(1, \frac{\pi(x'|y) \ q(x^n|x')}{\pi(x^n|y) \ q(x'|x^n)}\right)$$

i.e. $x^{n+1} = x'$ with probability $\alpha(x'|x^n)$; otherwise $x^{n+1} = x^n$.

Metropolis-Hastings Markov Chain Monte Carlo

Recall (no need to know normalising constant $\pi(y)$)

 $\pi(x|y) \eqsim \pi(y|x)\pi(x)$ (Bayes' rule)

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

- Choose initial state $x^0 \in X$.
- At state x^n generate proposal $x' \in X$ from distribution $q(x'|x^n)$, e.g. via a random walk $x' \sim N(x^n, B)$

• Accept x' as a sample with probability

$$\boldsymbol{\alpha}(x'|x^n) = \min\left(1, \frac{\pi(x'|y) q(x^n|x')}{\pi(x^n|y) q(x'|x^n)}\right)$$

i.e. $x^{n+1} = x'$ with probability $\alpha(x'|x^n)$; otherwise $x^{n+1} = x^n$.

The samples $f(x^n)$ of some output function ("statistic") $f(\cdot)$ can be used for inference as usual (even though not i.i.d.):

$$\widehat{f}^{ extsf{MetH}} \ := \ rac{1}{N} \sum_{i=1}^{N} f(x^n) \ pprox \ \mathbb{E}_{\pi(x|y)}\left[f(x)
ight]$$

Rob Scheichl (University of Bath)

Application to the Model Problem

Using truncated KL-expansion

$$\log k \approx \sum_{j=1}^{s} \sqrt{\mu_j} \phi_j(x) Z_j(\omega)$$
 with i.i.d. $Z_j \sim \mathcal{N}(0,1)$

and assuming additive Gaussian data noise with covariance Σ^{obs}

Prior model: $\pi_0^s(\mathbf{Z})$ is the multivariate Gaussian density. Likelihood model: $\pi^{h,s}(\mathbf{y}^{\text{obs}}|\mathbf{Z}) \approx \exp(-\|\mathbf{y}^{\text{obs}} - F_h(\mathbf{Z})\|_{\text{Notes}}^2)$

Apply Metropolis-Hastings MCMC (Algorithm 1):

$$\widehat{Q}_{h,s}^{\text{\tiny MetH}} \ := \ \frac{1}{N} \sum_{n=1}^{N} \mathcal{Q}_{h,s}(\mathbf{Z}^n) \ \approx \ \mathbb{E}_{\pi^{h,s}} \left[\mathcal{Q}_{h,s} \right] \ \approx \ \mathbb{E}_{\pi^{\infty}} \left[\mathcal{Q} \right]$$

Application to the Model Problem

Using truncated KL-expansion

$$\log k \approx \sum_{j=1}^{s} \sqrt{\mu_j} \phi_j(x) Z_j(\omega)$$
 with i.i.d. $Z_j \sim \mathcal{N}(0,1)$

and assuming additive Gaussian data noise with covariance Σ^{obs}

Prior model: $\pi_0^s(\mathbf{Z})$ is the multivariate Gaussian density. Likelihood model: $\pi^{h,s}(\mathbf{y}^{\text{obs}}|\mathbf{Z}) \approx \exp(-\|\mathbf{y}^{\text{obs}} - F_h(\mathbf{Z})\|_{\Sigma^{\text{obs}}}^2)$

Apply Metropolis-Hastings MCMC (Algorithm 1):

$$\widehat{Q}_{h,s}^{\text{MetH}} := \frac{1}{N} \sum_{n=1}^{N} \mathcal{Q}_{h,s}(\mathbf{Z}^{n}) \approx \mathbb{E}_{\pi^{h,s}} \left[\mathcal{Q}_{h,s} \right] \approx \mathbb{E}_{\pi^{\infty}} \left[\mathcal{Q} \right]$$

Pros:

- Markov chain Zⁿ ~ π^{h,s} as n → ∞
 ⇒ "gold standard" [Stuart et al]
- s-independent, e.g. via pCN sampler [Cotter, Dashti, Stuart, 2012]

Application to the Model Problem

Using truncated KL-expansion

$$\log k \approx \sum_{j=1}^{s} \sqrt{\mu_j} \phi_j(x) Z_j(\omega)$$
 with i.i.d. $Z_j \sim \mathcal{N}(0,1)$

and assuming additive Gaussian data noise with covariance Σ^{obs}

Prior model: $\pi_0^s(\mathbf{Z})$ is the multivariate Gaussian density. Likelihood model: $\pi^{h,s}(\mathbf{y}^{\text{obs}}|\mathbf{Z}) \approx \exp(-\|\mathbf{y}^{\text{obs}} - F_h(\mathbf{Z})\|_{\text{Yobs}}^2)$

Apply Metropolis-Hastings MCMC (Algorithm 1):

$$\widehat{Q}_{h,s}^{\text{MetH}} := \frac{1}{N} \sum_{n=1}^{N} \mathcal{Q}_{h,s}(\mathbf{Z}^{n}) \approx \mathbb{E}_{\pi^{h,s}} \left[\mathcal{Q}_{h,s} \right] \approx \mathbb{E}_{\pi^{\infty}} \left[\mathcal{Q} \right]$$

Pros:

- Markov chain Zⁿ ~ π^{h,s} as n → ∞
 ⇒ "gold standard" [Stuart et al]
- s-independent, e.g. via pCN sampler [Cotter, Dashti, Stuart, 2012]

Cons:

- $\alpha_{h,s}$ v. expensive for $h \ll 1$.
- $\alpha_{h,s} < 10\%$ for large s.
- Same rate for ε-cost as standard
 MC but much bigger constant !

For simplicity $s_{\ell} = s_{\ell-1}$.

What were the key ingredients of "standard" multilevel Monte Carlo?

For simplicity $s_{\ell} = s_{\ell-1}$.

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[\mathcal{Q}_L] = \mathbb{E}[\mathcal{Q}_0] + \sum_{\ell=1}^L \mathbb{E}[\mathcal{Q}_\ell \mathcal{Q}_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(M_0 \ll M_L)$.

• $\mathbb{V}[\mathcal{Q}_{\ell} - \mathcal{Q}_{\ell-1}] \xrightarrow{\ell \to \infty} \to 0$ as \implies much **fewer samples** on finer levels.

For simplicity $s_{\ell} = s_{\ell-1}$.

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[\mathcal{Q}_L] = \mathbb{E}[\mathcal{Q}_0] + \sum_{\ell=1}^L \mathbb{E}[\mathcal{Q}_\ell \mathcal{Q}_{\ell-1}]$
- Models on coarser levels much cheaper to solve $(M_0 \ll M_L)$.

• $\mathbb{V}[\mathcal{Q}_{\ell} - \mathcal{Q}_{\ell-1}] \xrightarrow{\ell \to \infty} \to 0$ as \implies much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ : (on level ℓ let us denote the posterior by $\pi^{\ell} := \pi^{h_{\ell}, s_{\ell}}(\cdot | \mathbf{y}^{obs}))$

 $\mathbb{E}_{\pi^{L}}\left[\mathcal{Q}_{L}\right] = \mathbb{E}_{\pi^{0}}\left[\mathcal{Q}_{0}\right] + \sum_{\ell} \mathbb{E}_{\pi^{\ell}}\left[\mathcal{Q}_{\ell}\right] - \mathbb{E}_{\pi^{\ell-1}}\left[\mathcal{Q}_{\ell-1}\right]$

For simplicity $s_{\ell} = s_{\ell-1}$.

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[\mathcal{Q}_L] = \mathbb{E}[\mathcal{Q}_0] + \sum_{\ell=1}^L \mathbb{E}[\mathcal{Q}_\ell \mathcal{Q}_{\ell-1}]$
- Models on coarser levels much cheaper to solve $(M_0 \ll M_L)$.

• $\mathbb{V}[\mathcal{Q}_{\ell} - \mathcal{Q}_{\ell-1}] \xrightarrow{\ell \to \infty} \to 0$ as \implies much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ : (on level ℓ let us denote the posterior by $\pi^{\ell} := \pi^{h_{\ell}, s_{\ell}}(\cdot | \mathbf{y}^{obs})$)

$$\begin{split} \mathbb{E}_{\pi^{L}}\left[\mathcal{Q}_{L}\right] &= \underbrace{\mathbb{E}_{\pi^{0}}\left[\mathcal{Q}_{0}\right]}_{\text{standard MCMC}} + \sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[\mathcal{Q}_{\ell}\right] - \mathbb{E}_{\pi^{\ell-1}}\left[\mathcal{Q}_{\ell-1}\right]}_{\text{multilevel MCMC (NEW)}} \\ \widehat{Q}_{h,s}^{\text{MLMetH}} &:= \frac{1}{N_{0}}\sum_{n=1}^{N_{0}} \mathcal{Q}_{0}(\mathbf{Z}_{0,0}^{n}) + \sum_{\ell=1}^{L} \frac{1}{N_{\ell}}\sum_{n=1}^{N_{\ell}} \left(\mathcal{Q}_{\ell}(\mathbf{Z}_{\ell,\ell}^{n}) - \mathcal{Q}_{\ell-1}(\mathbf{Z}_{\ell,\ell-1}^{n})\right) \end{split}$$

For simplicity $s_{\ell} = s_{\ell-1}$.

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[\mathcal{Q}_L] = \mathbb{E}[\mathcal{Q}_0] + \sum_{\ell=1}^L \mathbb{E}[\mathcal{Q}_\ell \mathcal{Q}_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(M_0 \ll M_L)$.

• $\mathbb{V}[\mathcal{Q}_{\ell} - \mathcal{Q}_{\ell-1}] \xrightarrow{\ell \to \infty} \to 0$ as \implies much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ : (on level ℓ let us denote the posterior by $\pi^{\ell} := \pi^{h_{\ell}, s_{\ell}}(\cdot | \mathbf{y}^{obs})$)

$$\mathbb{E}_{\pi^{L}}\left[\mathcal{Q}_{L}\right] = \underbrace{\mathbb{E}_{\pi^{0}}\left[\mathcal{Q}_{0}\right]}_{\text{standard MCMC}} + \sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[\mathcal{Q}_{\ell}\right] - \mathbb{E}_{\pi^{\ell-1}}\left[\mathcal{Q}_{\ell-1}\right]}_{\text{multilevel MCMC (NEW)}}$$

$$\widehat{Q}_{h,s}^{\text{MLMetH}} := \frac{1}{N_0} \sum_{n=1}^{N_0} \mathcal{Q}_0(\mathbf{Z}_{0,0}^n) + \sum_{\ell=1}^L \frac{1}{N_\ell} \sum_{n=1}^{N_\ell} \left(\mathcal{Q}_\ell(\mathbf{Z}_{\ell,\ell}^n) - \mathcal{Q}_{\ell-1}(\mathbf{Z}_{\ell,\ell-1}^n) \right)$$

In reality, we also reduce number $s_{\ell-1}$ of random parameters on coarser levels.

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

• Basic idea:

 \longrightarrow Sketch on blackboard!

 Starting from ℓ = 0, use i.i.d. samples from posterior π^ℓ as proposals for Metropolis-Hastings on level ℓ + 1.

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

• Basic idea:

\longrightarrow Sketch on blackboard!

- Starting from ℓ = 0, use i.i.d. samples from posterior π^ℓ as proposals for Metropolis-Hastings on level ℓ + 1.
- How to get i.i.d. samples from π^{ℓ} ? Use **MCMC** and subsampling.

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

• Basic idea:

 \longrightarrow Sketch on blackboard!

- Starting from ℓ = 0, use i.i.d. samples from posterior π^ℓ as proposals for Metropolis-Hastings on level ℓ + 1.
- How to get i.i.d. samples from π^{ℓ} ? Use **MCMC** and subsampling.
- Acceptance $\alpha_{\ell+1}^{\mathsf{ML}} \stackrel{\ell \to \infty}{\longrightarrow} 1$ (since $\pi_{\ell} \approx \pi_{\ell+1}$):
 - Less and less subsampling necessary on higher levels.
 - Strong "coupling" between proposed sample from π^ℓ and next state on level ℓ + 1 ⇒ multilevel variance reduction!

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$) At states $\mathbf{Z}_{\ell,0}^n, \ldots, \mathbf{Z}_{\ell,\ell}^n$ of $\ell + 1$ Markov chains on levels $0, \ldots, \ell$: **1** k = 0: Set $\mathbf{z}_0^0 := \mathbf{Z}_{\ell,0}^n$ and generate $T_0 := \prod_{j=0}^{\ell-1} t_j$ samples $\mathbf{z}_0^i \sim \pi^0$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ?

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$) At states $\mathbf{Z}_{\ell 0}^{n}, \ldots, \mathbf{Z}_{\ell \ell}^{n}$ of $\ell + 1$ Markov chains on levels $0, \ldots, \ell$: • k = 0: Set $\mathbf{z}_0^0 := \mathbf{Z}_{\ell,0}^n$ and generate $T_0 := \prod_{i=0}^{\ell-1} t_i$ samples $\mathbf{z}_0^i \sim \pi^0$ (coarsest posterior) via **Algorithm 1** with pCN sampler. Choice of t_{ℓ} ? 2 k > 0: Set $\mathbf{z}_k^0 := \mathbf{Z}_{\ell,k}^n$ and generate $T_k := \prod_{i=k}^{\ell-1} t_i$ samples $\mathbf{z}_k^i \sim \pi^k$: (a) Propose $\mathbf{z}'_{k} = \mathbf{z}_{k-1}^{(i+1)t_{k-1}}$ with $q_{k}^{\text{ML}}(\mathbf{z}'_{k}|\mathbf{z}^{i}_{k}) = \pi^{k-1}(\mathbf{z}'_{k})$ Subsample!

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$) At states $\mathbf{Z}_{\ell 0}^{n}, \ldots, \mathbf{Z}_{\ell \ell}^{n}$ of $\ell + 1$ Markov chains on levels $0, \ldots, \ell$: • k = 0: Set $\mathbf{z}_0^0 := \mathbf{Z}_{\ell,0}^n$ and generate $T_0 := \prod_{i=0}^{\ell-1} t_i$ samples $\mathbf{z}_0^i \sim \pi^0$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ? 2 k > 0: Set $\mathbf{z}_k^0 := \mathbf{Z}_{\ell k}^n$ and generate $T_k := \prod_{i=k}^{\ell-1} t_i$ samples $\mathbf{z}_k^i \sim \pi^k$: (a) Propose $\mathbf{z}'_{k} = \mathbf{z}_{k-1}^{(i+1)t_{k-1}}$ with $q_{k}^{\text{ML}}(\mathbf{z}'_{k}|\mathbf{z}^{i}_{k}) = \pi^{k-1}(\mathbf{z}'_{k})$ Subsample! (b) Accept \mathbf{z}'_k with probability $\boldsymbol{\alpha}_{\ell}^{\mathsf{ML}}(\mathbf{z}_{k}'|\mathbf{z}_{k}^{i}) = \min\left(1, \frac{\pi^{k}(\mathbf{z}_{k}') \mathbf{q}_{k}^{\mathsf{ML}}(\mathbf{z}_{k}^{n}|\mathbf{z}_{k}')}{\pi^{k}(\mathbf{z}^{n}) \mathbf{q}^{\mathsf{ML}}(\mathbf{z}_{k}'|\mathbf{z}_{k}^{n})}\right)$ i.e. set $\mathbf{z}_k^{i+1} = \mathbf{z}_k'$ with prob. $\boldsymbol{\alpha}_{\ell}^{\mathsf{ML}}(\mathbf{z}_k'|\mathbf{z}_k^i)$; otherwise $\mathbf{z}_{\iota}^{i+1} = \mathbf{z}_{\iota}^i$

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$) At states $\mathbf{Z}_{\ell 0}^{n}, \ldots, \mathbf{Z}_{\ell \ell}^{n}$ of $\ell + 1$ Markov chains on levels $0, \ldots, \ell$: • k = 0: Set $\mathbf{z}_0^0 := \mathbf{Z}_{\ell,0}^n$ and generate $T_0 := \prod_{i=0}^{\ell-1} t_i$ samples $\mathbf{z}_0^i \sim \pi^0$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ? 2 k > 0: Set $\mathbf{z}_k^0 := \mathbf{Z}_{\ell k}^n$ and generate $T_k := \prod_{i=k}^{\ell-1} t_i$ samples $\mathbf{z}_k^i \sim \pi^k$: (a) Propose $\mathbf{z}'_{k} = \mathbf{z}_{k-1}^{(i+1)t_{k-1}}$ with $q_{k}^{\text{ML}}(\mathbf{z}'_{k}|\mathbf{z}^{i}_{k}) = \pi^{k-1}(\mathbf{z}'_{k})$ Subsample! (b) Accept \mathbf{z}'_k with probability $\boldsymbol{\alpha}_{\ell}^{\mathsf{ML}}(\mathbf{z}_{k}'|\mathbf{z}_{k}^{i}) = \min\left(1, \frac{\pi^{\kappa}(\mathbf{z}_{k}')\pi^{\kappa-1}(\mathbf{z}_{k}^{n})}{\pi^{k}(\mathbf{z}_{k}^{n})\pi^{k-1}(\mathbf{z}_{k}')}\right)$ i.e. set $\mathbf{z}_{k}^{i+1} = \mathbf{z}_{k}^{\prime}$ with prob. $\boldsymbol{\alpha}_{\ell}^{\mathsf{ML}}(\mathbf{z}_{k}^{\prime}|\mathbf{z}_{k}^{i})$; otherwise $\mathbf{z}_{k}^{i+1} = \mathbf{z}_{k}^{i}$

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$) At states $\mathbf{Z}_{\ell 0}^{n}, \ldots, \mathbf{Z}_{\ell \ell}^{n}$ of $\ell + 1$ Markov chains on levels $0, \ldots, \ell$: • k = 0: Set $\mathbf{z}_0^0 := \mathbf{Z}_{\ell,0}^n$ and generate $T_0 := \prod_{i=0}^{\ell-1} t_i$ samples $\mathbf{z}_0^i \sim \pi^0$ (coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t_{ℓ} ? 2 k > 0: Set $\mathbf{z}_k^0 := \mathbf{Z}_{\ell,k}^n$ and generate $T_k := \prod_{i=k}^{\ell-1} t_i$ samples $\mathbf{z}_k^i \sim \pi^k$: (a) Propose $\mathbf{z}'_{k} = \mathbf{z}_{k-1}^{(i+1)t_{k-1}}$ with $q_{k}^{\text{ML}}(\mathbf{z}'_{k}|\mathbf{z}_{k}^{i}) = \pi^{k-1}(\mathbf{z}'_{k})$ Subsample! (b) Accept \mathbf{z}'_k with probability $\boldsymbol{\alpha}_{\ell}^{\mathsf{ML}}(\mathbf{z}_{k}^{\prime}|\mathbf{z}_{k}^{i}) = \min\left(1, \frac{\pi^{\kappa}(\mathbf{z}_{k}^{\prime})\pi^{\kappa-1}(\mathbf{z}_{k}^{n})}{\pi^{\kappa}(\mathbf{z}_{k}^{n})\pi^{k-1}(\mathbf{z}_{k}^{\prime})}\right)$ i.e. set $\mathbf{z}_{k}^{i+1} = \mathbf{z}_{k}^{\prime}$ with prob. $\boldsymbol{\alpha}_{\ell}^{\mathsf{ML}}(\mathbf{z}_{k}^{\prime}|\mathbf{z}_{k}^{i})$; otherwise $\mathbf{z}_{k}^{i+1} = \mathbf{z}_{k}^{i}$ 3 Set $\mathbf{Z}_{\ell k}^{n+1} := \mathbf{z}_{k}^{T_{k}}$, for all $k = 0, \ldots, \ell$.

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

For sufficiently big subsampling rates t_{k-1}, we have (for n→∞) an independence sampler from π^{k-1}, i.e. z'_k ~ π^{k-1} independent of zⁱ_k.

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

- For sufficiently big subsampling rates t_{k-1}, we have (for n→∞) an independence sampler from π^{k-1}, i.e. z'_k ~ π^{k-1} independent of zⁱ_k.
- Hence, {Zⁿ_{ℓ,k}}_{n≥1} is a Markov chain converging to π^k, k = 0,..., ℓ (since it is just standard Metropolis-Hastings)

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

- For sufficiently big subsampling rates t_{k-1}, we have (for n→∞) an independence sampler from π^{k-1}, i.e. z'_k ~ π^{k-1} independent of zⁱ_k.
- Hence, $\{\mathbf{Z}_{\ell,k}^n\}_{n\geq 1}$ is a Markov chain converging to π^k , $k = 0, \ldots, \ell$ (since it is just standard Metropolis-Hastings)
- The multilevel algorithm is consistent (= no bias between levels) since both {Zⁿ_{ℓ,ℓ}}_{n≥1} and {Zⁿ_{ℓ+1,ℓ}}_{n≥1} are samples from π^ℓ in the limit.

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

- For sufficiently big subsampling rates t_{k-1}, we have (for n→∞) an independence sampler from π^{k-1}, i.e. z'_k ~ π^{k-1} independent of zⁱ_k.
- Hence, {Zⁿ_{ℓ,k}}_{n≥1} is a Markov chain converging to π^k, k = 0,..., ℓ (since it is just standard Metropolis-Hastings)
- The multilevel algorithm is consistent (= no bias between levels) since both {Zⁿ_{ℓ,ℓ}}_{n≥1} and {Zⁿ_{ℓ+1,ℓ}}_{n≥1} are samples from π^ℓ in the limit.
- But states may differ between level ℓ and $\ell 1$:

State $n+1$	Level $\ell - 1$	Level ℓ
accept on level ℓ	$\mathbf{Z}_{\ell,\ell-1}^{n+1}$	$\mathbf{Z}_{\ell,\ell-1}^{n+1}$
reject on level ℓ	$\mathbf{Z}_{\ell,\ell-1}^{n+1}$	$\mathbf{Z}_{\ell,\ell}^n$

In the second case the variance will in general **not** be small, **but** this does not happen often since **acceptance probability** $\alpha_{\ell}^{\mathsf{ML}} \stackrel{\ell \to \infty}{\longrightarrow} 1$ (see below).

Complexity Theorem for Multilevel MCMC

Suppose there are constants $\alpha, \beta, \gamma, \eta > 0$ such that, for all $\ell = 0, \dots, L$, M1 $|\mathbb{E}_{\pi^{\ell}}[\mathcal{Q}_{\ell}] - \mathbb{E}_{\pi^{\infty}}[\mathcal{Q}]| = \mathcal{O}(M_{\ell}^{-\alpha})$ (discretisation and truncation error) M2a $\mathbb{V}_{alg}[\hat{Y}_{\ell}] + \left(\mathbb{E}_{alg}[\hat{Y}_{\ell}] - \mathbb{E}_{\pi^{\ell},\pi^{\ell-1}}[\hat{Y}_{\ell}]\right)^2 = \mathbb{V}_{\pi^{\ell},\pi^{\ell-1}}[Y_{\ell}] \mathcal{O}(N_{\ell}^{-1})$ (MCMC-error) M2b $\mathbb{V}_{\pi^{\ell},\pi^{\ell-1}}[Y_{\ell}] = \mathcal{O}(M_{\ell}^{-\beta})$ (multilevel variance decay) M3 $\operatorname{Cost}(\hat{Y}_{\ell}^{\mathsf{MC}}) = \mathcal{O}(N_{\ell} M_{\ell}^{\gamma}).$ (cost per sample) Then there exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ s.t. MSE $< \varepsilon^2$ and $\mathcal{C}_{\varepsilon}(\widehat{\mathcal{Q}}_{h,c}^{\mathsf{MLMetH}}) = \varepsilon^{-2-\max\left(0,\frac{\gamma-\beta}{\alpha}\right)}$ (+ log-factor when $\beta = \gamma$)

(This is totally abstract & applies not only to our subsurface model problem!)

For standard MCMC (under the same assumptions) Cost $\lesssim \varepsilon^{-2-\gamma/lpha}$.

FE Analysis – Verifying Assumptions M1-M3

2D lognormal diffusion problem & linear FEs

- Proof of Assumptions M1 and M3 similar to i.i.d. case. (but crucially, two bias errors from posterior and functional approximation!)
- M2a not specific to multilevel MCMC; first steps to prove it are in [Hairer, Stuart, Vollmer, '11] (but still unproved for lognormal case!)

FE Analysis – Verifying Assumptions M1-M3

2D lognormal diffusion problem & linear FEs

- Proof of Assumptions M1 and M3 similar to i.i.d. case. (but crucially, two bias errors from posterior and functional approximation!)
- M2a not specific to multilevel MCMC; first steps to prove it are in [Hairer, Stuart, Vollmer, '11] (but still unproved for lognormal case!)

Key Lemma for M2b (Dodwell, Ketelsen, RS, Teckentrup) Let $\nu = 0.5$ and assume that F^h is Fréchet diff'ble and suff'ly smooth. Then $\mathbb{E}_{\pi^\ell,\pi^\ell} \Big[1 - \alpha_\ell^{\mathsf{ML}}(\cdot|\cdot) \Big] = \mathcal{O}(h_{\ell-1}^{1-\delta} + s_{\ell-1}^{-1/2+\delta}) \quad \forall \delta > 0.$

FE Analysis – Verifying Assumptions M1-M3

2D lognormal diffusion problem & linear FEs

- Proof of Assumptions M1 and M3 similar to i.i.d. case. (but crucially, two bias errors from posterior and functional approximation!)
- M2a not specific to multilevel MCMC; first steps to prove it are in [Hairer, Stuart, Vollmer, '11] (but still unproved for lognormal case!)

Key Lemma for M2b (Dodwell, Ketelsen, RS, Teckentrup)

Let $\nu=0.5$ and assume that F^h is Fréchet diff'ble and suff'ly smooth. Then

$$\mathbb{E}_{\pi^{\ell},\pi^{\ell}} \left[1 - \boldsymbol{\alpha}_{\ell}^{\mathsf{ML}}(\cdot|\cdot) \right] = \mathcal{O}(h_{\ell-1}^{1-\delta} + s_{\ell-1}^{-1/2+\delta}) \quad \forall \delta > 0.$$

Theorem (Dodwell, Ketelsen, RS, Teckentrup)

Let $\{\mathbf{Z}_{\ell,\ell}^n\}_{n\geq 0}$ and $\{\mathbf{Z}_{\ell,\ell-1}^n\}_{n\geq 0}$ be from Algorithm 2 and choose $s_\ell\gtrsim h_\ell^{-2}$. Then

 $\mathbb{V}_{\pi^{\ell},\pi^{\ell-1}}\left[\mathcal{Q}_{\ell}(\mathbf{Z}_{\ell,\ell}^{n}) - \mathcal{Q}_{\ell-1}(\mathbf{Z}_{\ell,\ell-1}^{n})\right] = \mathcal{O}(h_{\ell}^{1-\delta}) \quad \forall \delta > 0$

and M2b holds for any $\beta < 1$. (unfortunately $\beta = \alpha$ not 2α)

Numerical Example

2D lognormal diffusion problem on $D = (0, 1)^2$ with linear FEs

• **Prior:** Separable exponential covariance with $\sigma^2 = 1$, $\lambda = 0.5$.
2D lognormal diffusion problem on $D = (0, 1)^2$ with linear FEs

- **Prior:** Separable exponential covariance with $\sigma^2 = 1$, $\lambda = 0.5$.
- "Data" y^{obs}: Pressure at 16 points $x_j^* \in D$ and $\Sigma^{obs} = 10^{-4}I$.

2D lognormal diffusion problem on $D = (0,1)^2$ with linear FEs

- Quantity of interest: $Q = \int_0^1 k \nabla p \, dx_2$; coarsest mesh size: $h_0 = \frac{1}{9}$
- Two-level method with $\#modes: s_0 = s_1 = 20$

2D lognormal diffusion problem on $D = (0, 1)^2$ with linear FEs

- Quantity of interest: $Q = \int_0^1 k \nabla p \, dx_2$; coarsest mesh size: $h_0 = \frac{1}{9}$
- Two-level method with $\#modes: s_0 = s_1 = 20$

2D lognormal diffusion problem on $D = (0, 1)^2$ with linear FEs

• 5-level method w. #modes increasing from $s_0 = 50$ to $s_4 = 150$

2D lognormal diffusion problem on $D = (0,1)^2$ with linear FEs

• 5-level method w. #modes increasing from $s_0 = 50$ to $s_4 = 150$

Level ℓ	0	1	2	3	4
a.c. time $= t_\ell$	136.23	3.66	2.93	1.46	1.23

Rob Scheichl (University of Bath)

Multilevel Bayesian Inference

Additional Comments on MLMCMC

- We use multiple chains to reduce dependence on initial state
- Reduced autocorrelation related to **delayed acceptance** method [Christen, Fox, 2005], [Cui, Fox, O'Sullivan, 2011]
- Multilevel burn-in also much cheaper (related to two-level work in [Efendiev, Hou, Luo, 2005])
- Related theoretical work by [Hoang, Schwab, Stuart, 2013] (different multilevel splitting and so far no numerics to compare)
- pCN random walk not specific; can use other proposals (e.g. use Hessian info about posterior [Cui, Law, Marzouk, '14], [Ernst, Sprungk])

Conclusions, Other Directions & Open Questions

Conclusions: In my opinion multilevel methods have **huge potential** for Bayesian Inference, especially for **large-scale PDE-constrained** problems. **Many** interesting open questions (theoretical and practical)!

Conclusions, Other Directions & Open Questions

Conclusions: In my opinion multilevel methods have **huge potential** for Bayesian Inference, especially for **large-scale PDE-constrained** problems. **Many** interesting open questions (theoretical and practical)!

- Application in **other areas** (especially for multilevel MCMC): other (nonlinear) PDEs, big data, geostatistics, imaging, physics [Elsakout, Christie, Lord, '15]
- Multilevel methods in **filtering**, **data assimiliation**, **sequential MC** [Hoel, Law, Tempone, '15], [Beskos, Jasra, Law, Tempone, Zhou, '15], [Gregory, Cotter, Reich, '15], [Jasra, Kamatani, Law, Zhou, '15]
- Multilevel methods for rare events "subset simulation" [Elfverson et al, '14], [Ullmann, Papaioannou, '14], [Elfverson, RS, Thur 16:40]
- Apply **information geometry** ideas (gradient, Hessian) for better proposals e.g. [Girolami, Calderhead, '11], [Cui, Law, Marzouk, '16], [Rudolf, Sprungk, '15]
- (Multilevel) high-order QMC [Dick, Gantner, Le Gia, Schwab, '16], ...