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Bayesian Interpretation of an Inverse Problem

Physical model gives π(y|x), the conditional probability of observing
y given x (“likelihood”), e.g. assuming additive Gaussian noise:

y = H(x) + η

where H : X → Rm is the forward operator & η ∼ N(0,Σ) the noise.

But often the real interest is in π(x|y), i.e. the conditional probability
of possible causes x given the observed data y (“posterior” density).

A simple result about conditional probabilities states

π(x|y) =
π(y|x)π(x)

π(y)
(Bayes’ rule)

where π(x) = prior density – our knowledge/belief about x
(the scaling factor π(y) is the marginal of π(x, y) over all possible x).
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Objective

Computationally tractable and efficient algorithms for Bayesian inference,
i.e. for computing statistics (moments, CDFs, PDFs) of certain quantities
of interest with respect to the posterior measure µy : high (or infinite)
dimensional quadrature Eµy [φ(x)] (with rigorous theoretical support).
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Model Problem
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Modelling and simulation essential in many applications,
e.g. radwaste disposal, oil reservoir simulation, . . .

Darcy’s law for steady-state subsurface flow ⇒ elliptic
partial differential equation

−∇ · (k∇p) = f

Lack of data ⇒ uncertain coefficient k(x) (permeability)

Quantify uncertainty in coefficients through stochastic
modelling ⇒ k, p random fields.
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Model problem

Typical prior model for k is a log–normal random field:
k = k∗ + exp[g], with g a scalar, isotropic Gaussian field and

E[g(x)] = 0, E[g(x)g(y)] = σ2 exp
(
− |x−y|λ

)
or σ2 exp

(
− |x−y|

2

2λ2

)

The quantity of interest (QoI) Q(k, p) and the observation operator
H(k, p) are some (nonlinear) functionals of p and k:

I point values or local averages of the pressure p

I point values or local averages of the Darcy flow ~q = −k∇p
I travel times of contaminant particles

Subsurface flow problems are typically characterised by:

I Low spatial regularity of permeability k and resulting pressure field p

I Unboundedness of the log–normal distribution

I High dimensionality of the stochastic space (possibly ∞-dimensional)
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Bayesian inference in infinite dimensions

Let y ∈ Rm, denote by µ0 the prior log–normal measure on k, and assume

y = H(p) + η, with η ∼ N (0, σ2ηIm).

Bayes’ Theorem (e.g. [Stuart, ’10])

dµy

dµ0
(k) =

1

Z
exp

(
−|y −H(p)|2

2σ2η

)
=:

1

Z
exp(−Φ(p))

where
Z := Eµ0 [exp(−Φ(p))].

We can write the posterior expectation of our QoI as

Eµy [Q(p)] = Eµ0
[

1

Z
exp[−Φ(p)]Q(p)

]
=

Eµ0 [Q(p) exp[−Φ(p)]]

Eµ0 [exp[−Φ(p)]]
,

i.e. the ratio of two prior expectations.
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Ratio Estimator

Let ψ(p) := Q(p) exp
(
− Φ(p)

)
. Then we can now approximate

Eµy [Q(p)] ≈ Q̂

Ẑ
,

where Q̂ is an estimator of Q := Eµ0 [ψ(p)] and Ẑ is an estimator of Z.

Remark: If m is very large or σ2η is very small, the two prior expectations
will be difficult to evaluate. The question is how small/large?

Alternatives:

Markov Chain Monte Carlo: Gibbs sampler, Metropolis-Hastings, . . .

Multilevel Metropolis-Hastings −→ Part II below
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Classical Monte Carlo (to estimate Q and Z)

The classical (finite element) Monte Carlo (MC) estimator

Q̂MC
h,N =

1

N

N∑
i=1

ψ(p
(i)
h )

is an equal weighted average of N i.i.d. samples ψ(p
(i)
h ), where ph

denotes a finite element discretisation of p with mesh width h.

(sampling from prior k via truncated KL-expansion or circulant embedding)

The mean square error satisfies

e(Q̂MC
h,N )2 := E

[(
Q̂MC
h,N −Q

)2]
= V[Q̂MC

h,N ]︸ ︷︷ ︸
sampling error

+
(
E[Q̂MC

h,N ]−Q
)2︸ ︷︷ ︸

discretisation error

≤ V[ψ(ph)]N−1 + Chs,

where the rate s ∈ (0, 4] is problem dependent (ignoring sampling errors).
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Quasi-Monte Carlo [Graham, Kuo, Nicholls, RS, Schwab, Sloan, 2014]

The Quasi-Monte Carlo (QMC) estimator

Q̂QMC
h,N =

1

N

N∑
j=1

ψ(p
(j)
h )

is an equal-weighted average of N deterministically chosen samples

ψ(p
(j)
h ), with FE soln. ph as before, e.g. randomised lattice points:

For linear functionals ψ(·) and for suff’ly smooth
RFs (ν > d in Matérn), the mean square error satisfies

e(Q̂QMC
h,N )2 ≤ C(N−2+δ + hs), for any δ > 0,

where the rate s ∈ (0, 4] is as before and C is
independent of of dimension!

Can be extended to analytic functionals ψ(·)
Proof for analytic function of linear functional in [RS, Stuart, Teckentrup, 2016]
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Multilevel Monte Carlo [Giles, ’07], [Cliffe, Giles, RS, Teckentrup, ’11]

The multilevel method works on a hierarchy of levels, s.t. h` = 1
2h`−1,

` = 0, 1, . . . , L. The finest mesh width is hL = h (as above).

Now, using

Eµ0 [ψ(phL)] = Eµ0 [ψ(ph0)] +
L∑
`=1

Eµ0
[
ψ(ph`)− ψ(ph`−1

)
]
,

a multilevel Monte Carlo (MLMC) estimator can be defined as

Q̂ML
{h`,N`} :=

1

N0

N0∑
i=1

ψ(p
(i)
h0

) +

L∑
`=1

1

N`

N∑̀
i=1

ψ(p
(i)
h`

)− ψ(p
(i)
h`−1

),

i.e. a sum of L+ 1 independent MC estimators.

The mean square error of the the multilevel estimator satisfies

e(Q̂ML
{h`,N`})

2 ≤ V[ψ(ph0)]

N0
+

L∑
`=1

V[ψ(ph`)− ψ(ph`−1
)]

N`
+ Chs.
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MLMC (lognormal) [Charrier, RS, Teckentrup, ’13], [Teckentrup et al ’14]

Analysis of FE error gives

e(Q̂ML
{h`,N`})

2 ≤ V[ψ(ph0)]

N0
+

L∑
`=1

hs`
N`

+ Chs,

where the rate s ∈ (0, 4] is as before.

But we can reduce the number N` of samples on the costly, fine levels:

N0 still needs to be large (≈ N in classical MC above), but samples
are 2Ld times cheaper to obtain on coarse grid

N` h
(
h`
hL

)s
, for ` > 0, which is much smaller than N and in

particular NL = O(1) !

Gains are complementary: Multilevel Quasi-Monte Carlo
[Kuo, RS, Schwab, Sloan, Ullmann, ’15]
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Numerical Comparison for lognormal problem (prior expectation)

ϵ
10-4 10-3 10-2

C
os

t (
in

 s
ec

)

10-1

100

101

102

103

104

105
ν = 2.5, σ2 = 1, λ = 1

MC
MLMC
QMC
MLQMC

1

32

D = (0, 1)2; linear FEs; ψ(p) := 1
|D∗|

∫
D∗ p dx; truncated KLE (w. s ∼ h−2/ν);

using a randomised lattice rule with product weights γj = 1/j2.
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Comments on Theory

FE error analysis and MLMC analysis

PDE not uniformly elliptic or bounded.

For ν < 1 (in Matérn), no full regularity (typical in applications).

Our analysis covers nonlinear functionals, point evaluations, tensors,
anisotropic covariance fcts., piecewise lognormal, piecewise constant
coeffs on random partitionings, . . .

QMC quadrature error analysis

Bounding mixed first derivatives in stochastic parameters in weighted
H1-norm (spatial H1-norm for QMC, L2-norm of Laplacian for MLQMC).

Fast CBC construction of tailored lattice rules [Kuo, Nuyens, Cools],. . .

Original analysis for linear functionals G(p); needs to be extended here
to analytic functions ψ : R→ R of G(p) (crucial for Bayesian inference).
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Fast CBC construction of tailored lattice rules [Kuo, Nuyens, Cools],. . .

Original analysis for linear functionals G(p); needs to be extended here
to analytic functions ψ : R→ R of G(p) (crucial for Bayesian inference).
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Back to the Inverse Problem and the Ratio Estimator

To bound the mean square error, we use

e

(
Q̂

Ẑ

)2

= E

(Q
Z
− Q̂

Ẑ

)2


≤ 2

Z2

E
[
(Q̂−Q)2

]
+ E

(Q̂
Ẑ

)2

(Ẑ − Z)2

 .

Further analysis depends on integrability of Q̂/Ẑ.

For QMC & MLMC analysis, currently require uniform ellipticity, i.e.

I uniform prior k(x) := k0(x) +
∑∞
j=1 ujkj(x) or

I “regularised” lognormal prior k(x) := k∗(x) + exp(g(x)) (with k∗ > 0)

⇒ Q̂/Ẑ ∈ L∞P
(in the MLMC case under the additional assumption that h0 is sufficiently small)
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Convergence Rates

Theorem: [RS, Stuart, Teckentrup, 2016]

Under a uniform or a “regularised” lognormal prior (k = k∗ + exp[g] with
k∗ > 0) and under suitable assumptions on H and Q, we have

e

(
Q̂MC
h,N

ẐMC
h,N

)2

≤ CMC

(
N−1 + hs

)
,

e

(Q̂ML
{h`,N`}

ẐML
{h`,N`}

)2

≤ CML

(
L∑
`=0

hs`
N`

+ hs

)
, with h = hL

e

(
Q̂QMC
h,N

ẐQMC
h,N

)2

≤ CQMC

(
N−2+δ + hs

)
, for any δ > 0.

where the convergence rate s ∈ (0, 4] is problem dependent.

(in the MLMC case we additional require that h0 is sufficiently small)

Same convergence rates as for the individual estimators Q̂ and Ẑ!
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Complexity

The ε-cost is the number of FLOPS required to achieve a MSE of O(ε2).

For the lognormal problem in d dimensions with optimal linear solver, the
ε-cost converges like O(ε−r) with r given in the following tables:

d MLMC QMC MC

1 2 ? 3

2 2 ? 4

3 3 ? 5

exponential covariance (s = 2)

d MLMC QMC MC

1 2 1.5 2.5

2 2 2 3

3 2 2.5 3.5

Matérn covariance w. ν suff. big (s = 4)

Rob Scheichl (University of Bath) Multilevel Bayesian Inference Paris 08/07/16 17 / 35



Numerical Results: Specification and Cost Comparison

2D flow cell model problem on (0, 1)2

prior k is lognormal with exponential covariance, λ = 0.3 and σ2 = 1

Synthetic data: local averages of pressure p at 9 points, σ2η = 0.09

QoI Q(p) is outflow over right boundary.
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Numerical Results: Discretisation and Sampling Errors

Discretisation error

Reference slope h

Sampling error MC

Reference slope N−1/2
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Numerical Results: Discretisation and Sampling Errors

Sampling error QMC

Reference slope N−1

Sampling error MLMC

Reference slope N−1/2
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Numerical Results: Dependence on σ2
η and m

Fixing h = 1/16 and N = 256.

Varying σ2η (with m = 9) Varying m (with σ2η = 1.0)
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Conclusions (Ratio Estimator)

Posterior expectations can be written as ratio of prior expectations,
and in this way approximated using QMC and MLMC methods.

A convergence and complexity analysis of the resulting estimators
showed that the complexity is the same as for prior expectations.

Numerical tests confirm the effectiveness of the ratio estimator witk
QMC and MLMC for a typical, simple model problem in subsurface
flow (for a range of values of σ2η and m) (even beyond the theory)

See also the recent paper by [Dick, Gantner, Le Gia, Schwab, ’16].

TODO: Comparison to other approaches, in particular MCMC and
multilevel MCMC
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Part II – Multilevel Metropolis-Hastings

(small noise case; avoiding calculation of normalising constant Z)
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Metropolis-Hastings Markov Chain Monte Carlo
Recall (no need to know normalising constant π(y))

π(x|y) h π(y|x)π(x) (Bayes’ rule)

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

Choose initial state x0 ∈ X.

At state xn generate proposal x′ ∈ X from distribution q(x′|xn),

e.g. via a random walk x′ ∼ N(xn, B)

Accept x′ as a sample with probability

α(x′|xn) = min

(
1,
π(x′|y) q(xn|x′)
π(xn|y) q(x′|xn)

)
i.e. xn+1 = x′ with probability α(x′|xn); otherwise xn+1 = xn.

The samples f(xn) of some output function (“statistic”) f(·) can be used for
inference as usual (even though not i.i.d.):

f̂MetH :=
1

N

N∑
i=1

f(xn) ≈ Eπ(x|y) [f(x)]
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Application to the Model Problem

Using truncated KL-expansion

log k ≈
s∑
j=1

√
µj φj(x)Zj(ω) with i.i.d. Zj ∼ N(0, 1)

and assuming additive Gaussian data noise with covariance Σobs

Prior model: πs0(Z) is the multivariate Gaussian density.

Likelihood model: πh,s(yobs|Z) h exp(−‖yobs − Fh(Z)‖2Σobs)

Apply Metropolis-Hastings MCMC (Algorithm 1):

Q̂MetH

h,s :=
1

N

N∑
n=1

Qh,s(Zn) ≈ Eπh,s [Qh,s] ≈ Eπ∞ [Q]

Pros:
Markov chain Zn ∼ πh,s as n→∞
⇒ “gold standard” [Stuart et al]

s-independent, e.g. via pCN sampler
[Cotter, Dashti, Stuart, 2012]

Cons:
αh,s v. expensive for h� 1.

αh,s < 10% for large s.

Same rate for ε-cost as standard
MC but much bigger constant !
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Multilevel Markov Chain Monte Carlo
For simplicity s` = s`−1.

What were the key ingredients of “standard” multilevel Monte Carlo?

Telescoping sum: E [QL] = E [Q0] +
∑L
`=1 E [Q` −Q`−1]

Models on coarser levels much cheaper to solve (M0 �ML).

V[Q` −Q`−1]
`→∞−→→ 0 as =⇒ much fewer samples on finer levels.

But Important! In MCMC the target distribution π` depends on `:

(on level ` let us denote the posterior by π` := πh`,s`(·|yobs))

EπL [QL] = Eπ0 [Q0] +
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]EπL [QL] = Eπ0 [Q0]︸ ︷︷ ︸

standard MCMC

+
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]︸ ︷︷ ︸

multilevel MCMC (NEW)

Q̂MLMetH

h,s :=
1

N0

N0∑
n=1

Q0(Zn0,0) +

L∑
`=1

1

N`

N∑̀
n=1

(
Q`(Zn`,`)−Q`−1(Zn`,`−1)

)
In reality, we also reduce number s`−1 of random parameters on coarser levels.
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Multilevel Markov Chain Monte Carlo
Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

Basic idea:

−→ Sketch on blackboard!

Starting from ` = 0, use i.i.d. samples from posterior π` as proposals for
Metropolis-Hastings on level `+ 1.

How to get i.i.d. samples from π`? Use MCMC and subsampling.

Acceptance αML
`+1

`→∞−→ 1 (since π` ≈ π`+1):

I Less and less subsampling necessary on higher levels.

I Strong “coupling” between proposed sample from π` and next state
on level `+ 1 ⇒ multilevel variance reduction!
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Multilevel Markov Chain Monte Carlo
Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for Q` −Q`−1)

At states Zn`,0, . . . ,Z
n
`,` of `+ 1 Markov chains on levels 0, . . . , `:

1 k = 0: Set z0
0 := Zn`,0 and generate T0 :=

∏`−1
j=0 tj samples zi0 ∼ π0

(coarsest posterior) via Algorithm 1 with pCN sampler. Choice of t` ?

2 k > 0: Set z0
k := Zn`,k and generate Tk :=

∏`−1
j=k tj samples zik ∼ πk:

(a) Propose z′k = z
(i+1)tk−1

k−1 with qML

k (z′k|zik) = πk−1(z′k) Subsample!

(b) Accept z′k with probability

αML
` (z′k|zik) = min

(
1,
πk(z′k) qML

k (znk |z′k)

πk(znk ) qML(z′k | znk )

)
i.e. set zi+1

k = z′k with prob. αML
` (z′k|zik); otherwise zi+1

k = zik

3 Set Zn+1
`,k := zTkk , for all k = 0, . . . , `.
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(i+1)tk−1

k−1 with qML

k (z′k|zik) = πk−1(z′k) Subsample!

(b) Accept z′k with probability

αML
` (z′k|zik) = min

(
1,
πk(z′k) qML

k (znk |z′k)

πk(znk ) qML(z′k | znk )

)
i.e. set zi+1

k = z′k with prob. αML
` (z′k|zik); otherwise zi+1

k = zik

3 Set Zn+1
`,k := zTkk , for all k = 0, . . . , `.
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Multilevel Markov Chain Monte Carlo
Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

For sufficiently big subsampling rates tk−1, we have (for n→∞) an
independence sampler from πk−1, i.e. z′k ∼ πk−1 independent of zik.

Hence, {Zn`,k}n≥1 is a Markov chain converging to πk, k = 0, . . . , `
(since it is just standard Metropolis-Hastings)

The multilevel algorithm is consistent (= no bias between levels)
since both {Zn`,`}n≥1 and {Zn`+1,`}n≥1 are samples from π` in the limit.

But states may differ between level ` and `− 1:

State n+ 1 Level `− 1 Level `

accept on level ` Zn+1
`,`−1 Zn+1

`,`−1

reject on level ` Zn+1
`,`−1 Zn`,`

In the second case the variance will in general not be small, but this does not

happen often since acceptance probability αML
`

`→∞−→ 1 (see below).
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Complexity Theorem for Multilevel MCMC

Suppose there are constants α, β, γ, η > 0 such that, for all ` = 0, . . . , L,

M1 |Eπ` [Q`]− Eπ∞ [Q]| = O(M−α` ) (discretisation and truncation error)

M2a Valg[Ŷ`] +
(
Ealg[Ŷ`]− Eπ`,π`−1 [Ŷ`]

)2

= Vπ`,π`−1 [Y`]O(N−1
` ) (MCMC-error)

M2b Vπ`,π`−1 [Y`] = O(M−β` ) (multilevel variance decay)

M3 Cost(Ŷ MC
` ) = O(N`M

γ
` ). (cost per sample)

Then there exist L, {N`}L`=0 s.t. MSE < ε2 and

Cε(Q̂MLMetH

h,s ) = ε−2−max(0, γ−βα ) (+ log-factor when β = γ)

(This is totally abstract & applies not only to our subsurface model problem!)

For standard MCMC (under the same assumptions) Cost . ε−2−γ/α.
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FE Analysis – Verifying Assumptions M1-M3
2D lognormal diffusion problem & linear FEs

Proof of Assumptions M1 and M3 similar to i.i.d. case.
(but crucially, two bias errors from posterior and functional approximation!)

M2a not specific to multilevel MCMC; first steps to prove it are in [Hairer,

Stuart, Vollmer, ’11] (but still unproved for lognormal case!)

Key Lemma for M2b (Dodwell, Ketelsen, RS, Teckentrup)

Let ν = 0.5 and assume that Fh is Fréchet diff’ble and suff’ly smooth. Then

Eπ`,π`
[
1−αML

` (·|·)
]

= O(h1−δ
`−1 + s

−1/2+δ
`−1 ) ∀δ > 0.

Theorem (Dodwell, Ketelsen, RS, Teckentrup)

Let {Zn`,`}n≥0 and {Zn`,`−1}n≥0 be from Algorithm 2 and choose s` & h−2
` . Then

Vπ`,π`−1

[
Q`(Zn`,`)−Q`−1(Zn`,`−1)

]
= O(h1−δ

` ) ∀δ > 0

and M2b holds for any β < 1. (unfortunately β = α not 2α)
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Numerical Example
2D lognormal diffusion problem on D = (0, 1)2 with linear FEs

Prior: Separable exponential covariance with σ2 = 1, λ = 0.5.

“Data” yobs: Pressure at 16 points x∗j ∈ D and Σobs = 10−4I.
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Numerical Example
2D lognormal diffusion problem on D = (0, 1)2 with linear FEs

Quantity of interest: Q =
∫ 1

0
k∇p dx2; coarsest mesh size: h0 = 1

9

Two-level method with #modes: s0 = s1 = 20

Autocorrelation fct. (a.c. time ≈ 86) E[Ŷ1] w. 95% confidence interval
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Lags
0 100 200 300 400 500 600

A
ut

oc
or

re
la

tio
n 

F
un

ct
io

n

-0.2

0

0.2

0.4

0.6

0.8

1

Sub-Sampling Rate, T
0 20 40 60 80 100

E
[Y

1]

0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

Rob Scheichl (University of Bath) Multilevel Bayesian Inference Paris 08/07/16 32 / 35



Numerical Example
2D lognormal diffusion problem on D = (0, 1)2 with linear FEs

5-level method w. #modes increasing from s0 = 50 to s4 = 150
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Additional Comments on MLMCMC

We use multiple chains to reduce dependence on initial state

Reduced autocorrelation related to delayed acceptance method
[Christen, Fox, 2005], [Cui, Fox, O’Sullivan, 2011]

Multilevel burn-in also much cheaper
(related to two-level work in [Efendiev, Hou, Luo, 2005])

Related theoretical work by [Hoang, Schwab, Stuart, 2013]
(different multilevel splitting and so far no numerics to compare)

pCN random walk not specific; can use other proposals
(e.g. use Hessian info about posterior [Cui, Law, Marzouk, ’14], [Ernst, Sprungk])
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Conclusions, Other Directions & Open Questions

Conclusions: In my opinion multilevel methods have huge potential
for Bayesian Inference, especially for large-scale PDE-constrained
problems. Many interesting open questions (theoretical and practical)!

Application in other areas (especially for multilevel MCMC):
other (nonlinear) PDEs, big data, geostatistics, imaging, physics

[Elsakout, Christie, Lord, ’15]

Multilevel methods in filtering, data assimiliation, sequential MC
[Hoel, Law, Tempone, ’15], [Beskos, Jasra, Law, Tempone, Zhou, ’15],

[Gregory, Cotter, Reich, ’15], [Jasra, Kamatani, Law, Zhou, ’15]

Multilevel methods for rare events – “subset simulation”
[Elfverson et al, ’14], [Ullmann, Papaioannou, ’14], [Elfverson, RS, Thur 16:40]

Apply information geometry ideas (gradient, Hessian) for better proposals
e.g. [Girolami, Calderhead, ’11], [Cui, Law, Marzouk, ’16], [Rudolf, Sprungk, ’15]

(Multilevel) high-order QMC [Dick, Gantner, Le Gia, Schwab, ’16], . . .
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