# Multi-Level and Multi-index Monte Carlo (and Multi-index Stochastic Collocation) 

Raúl Tempone

King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
stochastic_numerics.kaust.edu.sa
sri-uq.kaust.edu.sa
International Conference on Monte Carlo techniques
July 8th, 2016


## Overview of the talk

Monte Carlo (MC)
Multilevel Monte Carlo (MLMC)
Multi-Index Monte Carlo (MIMC)
Choosing the Multi-Index Set in MIMC
Main Theorem
Comparisons
Numerical Results
Conclusions
MIMC for Interacting Stochastic Particle Systems
Multilevel ensemble Kalman filtering
Multi-index Stochastic Collocation (MISC)

## Monte Carlo and extensions

Motivational Example: Let $(\Omega, \mathcal{F}, P)$ be a complete probability space and $\mathcal{D}$ be a bounded convex polygonal domain in $\mathbb{R}^{d}$. The solution $u: \mathcal{D} \times \Omega \rightarrow \mathbb{R}$ here solves almost surely (a.s.) the following equation:

$$
\begin{aligned}
-\nabla \cdot(a(\boldsymbol{x} ; \omega) \nabla u(\boldsymbol{x} ; \omega)) & =f(\boldsymbol{x} ; \omega) & \text { for } \boldsymbol{x} \in \mathcal{D} \\
u(\boldsymbol{x} ; \omega) & =0 & \text { for } \boldsymbol{x} \in \partial \mathcal{D} .
\end{aligned}
$$

Goal: to approximate $\mathrm{E}[S] \in \mathbb{R}$ where $S=\Psi(u)$ for some sufficiently "smooth" a,f and functional $\Psi$.

## Monte Carlo and extensions

Motivational Example: Let $(\Omega, \mathcal{F}, P)$ be a complete probability space and $\mathcal{D}$ be a bounded convex polygonal domain in $\mathbb{R}^{d}$. The solution $u: \mathcal{D} \times \Omega \rightarrow \mathbb{R}$ here solves almost surely (a.s.) the following equation:

$$
\begin{aligned}
-\nabla \cdot(a(\boldsymbol{x} ; \omega) \nabla u(\boldsymbol{x} ; \omega)) & =f(\boldsymbol{x} ; \omega) & \text { for } \boldsymbol{x} \in \mathcal{D} \\
u(\boldsymbol{x} ; \omega) & =0 & \text { for } \boldsymbol{x} \in \partial \mathcal{D} .
\end{aligned}
$$

Goal: to approximate $\mathrm{E}[S] \in \mathbb{R}$ where $S=\Psi(u)$ for some sufficiently "smooth" $a, f$ and functional $\Psi$.
Later, in our numerical example we use

$$
S=100\left(2 \pi \sigma^{2}\right)^{\frac{-3}{2}} \int_{\mathcal{D}} \exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{2}^{2}}{2 \sigma^{2}}\right) u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

for $x_{0} \in \mathcal{D}$ and $\sigma>0$.

## Monte Carlo (Metropolis and Ulam, 1949)

Recall the Monte Carlo method and its error splitting:

$$
\begin{gathered}
\mathrm{E}[\Psi(u(\boldsymbol{y}))]-\frac{1}{M} \sum_{m=1}^{M} \Psi\left(u_{h}\left(\boldsymbol{y}\left(\omega_{m}\right)\right)\right)=\mathcal{E}_{\text {bias }}^{\Psi}(h)+\mathcal{E}_{\text {stat }}^{\Psi}(M) \\
\left|\mathcal{E}_{\text {bias }}^{\Psi}(h)\right|=\underbrace{\left|E\left[\Psi(u(\boldsymbol{y}))-\Psi\left(u_{h}(\boldsymbol{y})\right)\right]\right|}_{\text {discretization error }} \leq C h^{w} \\
\left|\mathcal{E}_{\text {stat }}^{\Psi}(M)\right|=\underbrace{\left|E\left[\Psi\left(u_{h}(\boldsymbol{y})\right)\right]-\frac{1}{M} \sum_{m=1}^{M} \Psi\left(u_{h}\left(\boldsymbol{y}\left(\omega_{m}\right)\right)\right)\right|}_{\text {statistical error }} \lesssim c_{0} \frac{\operatorname{std}\left[\Psi\left(u_{h}\right)\right]}{\sqrt{M}}
\end{gathered}
$$

The last approximation is motivated by the Central Limit Theorem.

$$
P\left(\left|\mathcal{E}_{\text {stat }}^{\psi}(M)\right| \leq c_{0} \frac{\operatorname{std}\left[\Psi\left(u_{h}\right)\right]}{\sqrt{M}}\right) \approx 1-\epsilon
$$

Assume: computational work for each $u\left(\boldsymbol{y}\left(\omega_{m}\right)\right)$ is $\mathcal{O}\left(h^{-d \gamma}\right)$ !AUST Total work: $M h^{-d \gamma}$

$$
\text { Total error : }\left|\mathcal{E}_{\text {bias }}^{\psi}(h)\right|+\left|\mathcal{E}_{\text {stat }}^{\psi}(M)\right| \leq C_{1} h^{w}+\frac{C_{2}}{\sqrt{M}}
$$

We want now to choose optimally $h$ and $M$. Here we minimize the computational work subject to an accuracy constraint, i.e. we solve

$$
\left\{\begin{array}{l}
\min _{h, M} M h^{-d \gamma} \\
\text { s.t. } \quad C_{1} h^{w}+\frac{C_{2}}{\sqrt{M}} \leq \mathrm{TOL}
\end{array}\right.
$$

We can interpret the above as a tolerance splitting into statistical and space discretization tolerances, $\mathrm{TOL}=\mathrm{TOL}_{S}+\mathrm{TOL}_{h}$, such that

$$
\mathrm{TOL}_{h}=\frac{\mathrm{TOL}}{(1+2 w /(d \gamma))} \text { and } \mathrm{TOL}_{S}=\mathrm{TOL}\left(1-\frac{1}{(1+2 w /(d \gamma))}\right)
$$

The resulting complexity (error versus computational work) is then

$$
W \propto \mathrm{TOL}^{-(2+d \gamma / w)}
$$

## Numerical Approximation

We assume:

- $\mathcal{D}=\prod_{i=1}^{d}\left[0, D_{i}\right]$ for $D_{i} \subset \mathbb{R}_{+}$be a hypercube domain in $\mathbb{R}^{d}$.
- we have an approximation of $u$ (FEM, FD, FV, ...) based on discretization parameters
 $h_{i}$ for $i=1 \ldots d$. Here

$$
h_{i}=h_{i, 0} \beta_{i}^{-\alpha_{i}}
$$

with $\beta_{i}>1$ and the multi-index

$$
\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i=1}^{d} \in \mathbb{N}^{d} .
$$

Notation: $S_{\alpha}$ is the approximation of $S$ calculated using a discretization defined by $\boldsymbol{\alpha}$.


ML-MIMC [R. Tempone]
L Monte Carlo (MC)


Left: Tensor domain, cylinder.
Center: Non-tensor domain immersed in a tensor box. Right: Non-tensor domain with a structured mesh.

ML-MIMC [R. Tempone]
L Multilevel Monte Carlo (MLMC)

## Multilevel Monte Carlo (MLMC)

Take $\beta_{i}=\beta$ and for each $\ell=1,2, \ldots$ use discretizations with $\boldsymbol{\alpha}=(\ell, \ldots, \ell)$. Recall the standard MLMC difference operator

$$
\widetilde{\Delta} S_{\ell}= \begin{cases}S_{0} & \text { if } \ell=0 \\ S_{\ell \cdot 1}-S_{(\ell-1) \cdot 1} & \text { if } \ell>0\end{cases}
$$

## Multilevel Monte Carlo (MLMC)

Take $\beta_{i}=\beta$ and for each $\ell=1,2, \ldots$ use discretizations with $\boldsymbol{\alpha}=(\ell, \ldots, \ell)$. Recall the standard MLMC difference operator

$$
\widetilde{\Delta} S_{\ell}= \begin{cases}S_{0} & \text { if } \ell=0 \\ S_{\ell \cdot \mathbf{1}}-S_{(\ell-1) \cdot \mathbf{1}} & \text { if } \ell>0\end{cases}
$$

Observe the telescopic identity

$$
\mathrm{E}[S] \approx \mathrm{E}\left[S_{\llcorner\cdot 1}\right]=\sum_{\ell=0}^{L} \mathrm{E}\left[\widetilde{\Delta} S_{\ell}\right]
$$

## Multilevel Monte Carlo (MLMC)

Take $\beta_{i}=\beta$ and for each $\ell=1,2, \ldots$ use discretizations with $\boldsymbol{\alpha}=(\ell, \ldots, \ell)$. Recall the standard MLMC difference operator

$$
\widetilde{\Delta} S_{\ell}= \begin{cases}S_{0} & \text { if } \ell=0 \\ S_{\ell \cdot \mathbf{1}}-S_{(\ell-1) \cdot \mathbf{1}} & \text { if } \ell>0\end{cases}
$$

Observe the telescopic identity

$$
\mathrm{E}[S] \approx \mathrm{E}\left[S_{L \cdot \mathbf{1}}\right]=\sum_{\ell=0}^{L} \mathrm{E}\left[\widetilde{\Delta} S_{\ell}\right]
$$

Then, using MC to approximate each level independently, the MLMC estimator can be written as

$$
\mathcal{A}_{\mathrm{MLMC}}=\sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M_{\ell}} \widetilde{\Delta} S_{\ell}\left(\omega_{\ell, m}\right)
$$

## Variance reduction: MLMC

Recall: With Monte Carlo we have to satisfy

$$
\operatorname{Var}\left[A_{M C}\right]=\frac{1}{M_{L}} \operatorname{Var}\left[S_{L}\right] \approx \frac{1}{M_{L}} \operatorname{Var}[S] \leq \mathrm{TOL}^{2}
$$

Main point: MLMC reduces the variance of the deepest level using samples on coarser (less expensive) levels!

$$
\begin{aligned}
& \operatorname{Var}\left[A_{\mathrm{MLMC}}\right]=\frac{1}{M_{0}} \operatorname{Var}\left[S_{0}\right] \\
& \quad+\sum_{\ell=1}^{L} \frac{1}{M_{\ell}} \operatorname{Var}\left[\Delta S_{\ell}\right] \leq \mathrm{TOL}^{2}
\end{aligned}
$$

Observe: Level 0 in MLMC is usually determined by both stability and accuracy, i.e.
$\operatorname{Var}\left[\Delta S_{1}\right] \ll \operatorname{Var}\left[S_{0}\right] \approx \operatorname{Var}[S]<\infty$.


## Classical assumptions for MLMC

For every $\ell$, we assume the following:

Assumption $\widetilde{1}$ (Bias):
Assumption $\widetilde{2}$ (Variance):
Assumption $\widetilde{3}$ (Work):

$$
\begin{aligned}
\left|\mathrm{E}\left[S-S_{\ell}\right]\right| & \lesssim \beta^{-w \ell}, \\
V_{\ell}=\operatorname{Var}\left[\widetilde{\Delta} S_{\ell}\right] & \lesssim \beta^{-s \ell}, \\
W_{\ell}=\operatorname{Work}\left(\widetilde{\Delta} S_{\ell}\right) & \lesssim \beta^{d \gamma \ell},
\end{aligned}
$$

for positive constants $\gamma, w$ and $s \leq 2 w$.
Example: Our smooth linear elliptic PDE example approximated with Multilinear piecewise cont. FEM: $2 w=s=4,1 \leq \gamma \leq 3$.

$$
\text { Work of MLMC: Work(MLMC) }=\sum_{\ell=0}^{L} M_{\ell} W_{\ell}
$$

Choose the samples $\left(M_{\ell}\right)_{\ell=0}^{L}$ optimally so $\operatorname{Var}\left[\mathcal{A}_{\mathrm{MLMC}}\right] \lesssim \mathrm{TOL}^{2}$.
Optimal Work of MLMC: Work $($ MLMC $) \lesssim \mathrm{TOL}^{-2}\left(\sum_{\ell=0}^{L} \sqrt{V_{\ell} W_{\ell}}\right)_{9 / 57}^{2}$

## MLMC Computational Complexity

Choose the number of levels $L$ (TOL) to bound the bias

$$
\left|\mathrm{E}\left[S-S_{L}\right]\right| \lesssim \beta^{-L w} \leq C \mathrm{TOL} \quad \Rightarrow \quad L \geq \frac{\log \left(\mathrm{TOL}^{-1}\right)-\log (C)}{w \log (\beta)}
$$

Then the optimal work satisfies (Giles et al., 2008, 2011):

$$
\text { Work }(\mathrm{MLMC})= \begin{cases}\mathcal{O}\left(\mathrm{TOL}^{-2}\right), & s>d \gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{2}\right), & s=d \gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-\left(2+\frac{(d \gamma-s)}{w}\right)}\right), & s<d \gamma\end{cases}
$$

Recall: $\operatorname{Work}(\mathrm{MC})=\mathcal{O}\left(\mathrm{TOL}^{-\left(2+\frac{d \gamma}{w}\right)}\right)$.

## Questions related to MLMC

1. How to choose the mesh hierarchy $\boldsymbol{h}_{\ell}$ ? [H-ASNT, 2015]
2. How to efficiently and reliably estimate $V_{\ell}$ ? How to find the correct number of levels, L? [CH-ASNT, 2015]
3. Can we do better? Especially for $d>1$ ? [H-ANT, 2015]
[H-ASNT, 2015] A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. "Optimization of mesh hierarchies in Multilevel Monte Carlo samplers". arXiv:1403.2480, Stochastic Partial Differential Equations: Analysis and Computations, 4(1):76-112, (2016).
[CH-ASNT, 2015] N. Collier, A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. "A continuation multilevel Monte Carlo algorithm". BIT Numerical Mathematics, 55(2):399-432, (2015).
[H-ANT, 2015] A.-L. Haji-Ali, F. Nobile, and R. T. "Multi-Index Monte Carlo: When Sparsity Meets Sampling". Numerische Mathematik, 806:132-767, (2016).
Time adaptivity for MLMC in Itô SDEs: Stopping with optimal asymptotic Accuracy and Efficiency

- Adaptive Multilevel Monte Carlo Simulation, by H. Hoel, E. von Schwerin, A. Szepessy and R. T., Numerical Analysis of Multiscale Computations, 82, Lect. Notes Comput. Sci. Eng., (2011).
- Implementation and Analysis of an Adaptive Multi Level Monte Carlo Algorithm, by H. Hoel, E. von Schwerin, A. Szepessy and R. T., Monte Carlo Methods and Applications. 20 (2014).
- Construction of a mean square error adaptive Euler-Maruyama method with applications in multilevel Monte Carlo, by H. Hoel, J. Häppöla, and R. T. To appear in MC and Q-MC Methods 2014, Springer Verlag, (2016).


## Hybrid MLMC for Stochastic Reaction Networks

- A. Moraes, R. T., and P. Vilanova. Multilevel hybrid Chernoff tau-leap. BIT Numerical Mathematics, April 2015.
- A. Moraes, R. T., and P. Vilanova. A multilevel adaptive reaction-splitting simulation method for stochastic reaction networks. arXiv:1406.1989. To appear in SIAM Journal on Scientific Computing (SISC), 2016.
- C. Ben Hammouda, A. Moraes and R. T. Multilevel drift-implicit tau-leap, arXiv:1512.00721. To appear in the Journal of Numerical Algorithms, 2016.


Predicted work vs. Error bound, Simple stiff model


Kurtz representation: $X(t)=x_{0}+\sum_{j=1}^{J} Y_{j}\left(\int_{0}^{t} a_{j}(X(s)) d s\right) \nu_{j}$, Tau-Leap: $\bar{X}_{n+1}=\bar{X}_{n}+\sum_{j=1}^{J} \mathcal{P}_{j}\left(a_{n} \Delta t\right) \nu_{j}$
with independent unit-rate Poisson processes $\left\{Y_{j}(t)\right\}_{t \geq 0}$ and reaction channels $\left\{a_{j}, \nu_{j}\right\}$.

ML-MIMC [R. Tempone]
L Multilevel Monte Carlo (MLMC)

## Variance reduction: MLMC



ML-MIMC [R. Tempone]
$\left\llcorner_{\text {Multilevel Monte Carlo (MLMC) }}\right.$

## Variance reduction: Further potential



## Multi-Index Monte Carlo (MIMC)

For $i=1, \ldots, d$, define the first order difference operators

$$
\Delta_{i} S_{\alpha}= \begin{cases}S_{\alpha} & \text { if } \alpha_{i}=0 \\ S_{\alpha}-S_{\alpha-\boldsymbol{e}_{i}} & \text { if } \alpha_{i}>0\end{cases}
$$

and construct the first order mixed difference

$$
\Delta S_{\alpha}=\left(\otimes_{i=1}^{d} \Delta_{i}\right) S_{\alpha}
$$

## Multi-Index Monte Carlo (MIMC)

For $i=1, \ldots, d$, define the first order difference operators

$$
\Delta_{i} S_{\alpha}= \begin{cases}S_{\alpha} & \text { if } \alpha_{i}=0 \\ S_{\alpha}-S_{\alpha-\boldsymbol{e}_{i}} & \text { if } \alpha_{i}>0\end{cases}
$$

and construct the first order mixed difference

$$
\Delta S_{\alpha}=\left(\otimes_{i=1}^{d} \Delta_{i}\right) S_{\alpha}
$$

Then the MIMC estimator can be written as

$$
\mathcal{A}_{\mathrm{MIMC}}=\sum_{\alpha \in \mathcal{I}} \frac{1}{M_{\alpha}} \sum_{m=1}^{M_{\alpha}} \Delta S_{\alpha}\left(\omega_{\alpha, m}\right)
$$

for some properly chosen index set $\mathcal{I} \subset \mathbb{N}^{d}$ and samples $\left(M_{\alpha}\right)_{\alpha \in \mathcal{I}}$.

## Example: On mixed differences

Consider $d=2$. In this case, letting $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$, we have

$$
\begin{aligned}
\Delta S_{\left(\alpha_{1}, \alpha_{2}\right)}= & \Delta_{2}\left(\Delta_{1} S_{\left(\alpha_{1}, \alpha_{2}\right)}\right) \\
= & \Delta_{2}\left(S_{\alpha_{1}, \alpha_{2}}-S_{\alpha_{1}-1, \alpha_{2}}\right) \\
= & \left(S_{\alpha_{1}, \alpha_{2}}-S_{\alpha_{1}-1, \alpha_{2}}\right) \\
& -\left(S_{\alpha_{1}, \alpha_{2}-1}-S_{\alpha_{1}-1, \alpha_{2}-1}\right) .
\end{aligned}
$$

Notice that in general, $\Delta S_{\alpha}$ requires $2^{d}$ evaluations of $S$ at different discretization parameters, the largest work of which corresponds precisely to the index appearing in $\Delta S_{\alpha}$, namely $\boldsymbol{\alpha}$.


Our objective is to build an estimator $\mathcal{A}=\mathcal{A}_{\text {MIMC }}$ where

$$
\begin{equation*}
P(|\mathcal{A}-\mathrm{E}[S]| \leq \mathrm{TOL}) \geq 1-\epsilon \tag{1}
\end{equation*}
$$

for a given accuracy TOL and a given confidence level determined by $0<\epsilon \ll 1$. We instead impose the following, more restrictive, two constraints:

$$
\begin{array}{rr}
\text { Bias constraint: } & |\mathrm{E}[\mathcal{A}-S]| \leq(1-\theta) \mathrm{TOL}, \\
\text { Statistical constraint: } & P(|\mathcal{A}-\mathrm{E}[\mathcal{A}]| \leq \theta \mathrm{TOL}) \geq 1-\epsilon \tag{3}
\end{array}
$$

For a given fixed $\theta \in(0,1)$. Moreover, motivated by the asymptotic normality of the estimator, $\mathcal{A}$, we approximate (3) by

$$
\begin{equation*}
\operatorname{Var}[\mathcal{A}] \leq\left(\frac{\theta \mathrm{TOL}}{C_{\epsilon}}\right)^{2} \tag{4}
\end{equation*}
$$

Here, $0<C_{\epsilon}$ is such that $\Phi\left(C_{\epsilon}\right)=1-\frac{\epsilon}{2}$, where $\Phi$ is the cumulative distribution function of a standard normal random var.

Given variance and work estimates we can already optimize for the optimal number of samples $M_{\alpha}^{*} \in \mathbb{R}$ to satisfy the variance constraint (4)

$$
M_{\alpha}^{*}=\left(\frac{C_{\epsilon}}{\theta \mathrm{TOL}}\right)^{2} \sqrt{\frac{V_{\alpha}}{W_{\alpha}}}\left(\sum_{\alpha \in \mathcal{I}} \sqrt{V_{\alpha} W_{\alpha}}\right)
$$

Taking $M_{\alpha}^{*} \leq M_{\alpha} \leq M_{\alpha}^{*}+1$ such that $M_{\alpha} \in \mathbb{N}$ and substituting in the total work gives

$$
\operatorname{Work}(\mathcal{I}) \leq\left(\frac{C_{\epsilon}}{\theta \mathrm{TOL}}\right)^{2}\left(\sum_{\alpha \in \mathcal{I}} \sqrt{V_{\alpha} W_{\alpha}}\right)^{2}+\underbrace{\sum_{\alpha \in \mathcal{I}} W_{\alpha}}_{\text {Min. cost of } \mathcal{I}} .
$$

Observe: The work now depends on $\mathcal{I}$ only.

## MIMC general analysis framework

Question: How do we find optimal index set $\mathcal{I}$ for MIMC?

$$
\min _{\mathcal{I} \subset \mathbb{N}^{d}} \operatorname{Work}(\mathcal{I}) \quad \text { such that Bias }=\sum_{\alpha \notin \mathcal{I}} E_{\alpha} \leq(1-\theta) \mathrm{TOL},
$$

Assumption: MIMC work is not dominated by the work to compute a single sample corresponding to each $\boldsymbol{\alpha}$.
Then, minimizing equivalently $\sqrt{\operatorname{Work}(\mathcal{I})}$, the previous min problem can be recast into a knapsack problem with profits defined for each multi-index $\boldsymbol{\alpha}$.

The corresponding $\alpha$ profit is

$$
\mathcal{P}_{\alpha}=\frac{\text { Bias contribution }}{\text { Work contribution }}=\frac{E_{\alpha}}{\sqrt{V_{\alpha} W_{\alpha}}}
$$

## MIMC general analysis framework

Define the total error associated with an index-set $\mathcal{I}$ as

$$
\mathfrak{E}(\mathcal{I})=\sum_{\alpha \notin \mathcal{I}} E_{\alpha}
$$

and the corresponding total work estimate as

$$
\mathfrak{W}(\mathcal{I})=\sum_{\alpha \in \mathcal{I}} \sqrt{V_{\alpha} W_{\alpha}}
$$

Then we can show the following optimality result with respect to $\mathfrak{E}(\mathcal{I})$ and $\mathfrak{W}(\mathcal{I})$, namely:
Lemma (Optimal profit sets)
The index-set

$$
\mathcal{I}(\nu)=\left\{\boldsymbol{\alpha} \in \mathbb{N}^{d}: \mathcal{P}_{\boldsymbol{\alpha}} \geq \nu\right\}
$$

for $\mathcal{P}_{\alpha}=\frac{E_{\alpha}}{\sqrt{V_{\alpha} W_{\alpha}}}$ is optimal in the sense that any other index-set, $\tilde{\mathcal{I}}$, with smaller work, $\mathfrak{W}(\tilde{\mathcal{I}})<\mathfrak{W}(\mathcal{I}(\nu))$, leads to a larger error, $\mathfrak{E}(\tilde{\mathcal{I}})>\mathfrak{E}(\mathcal{I}(\nu))$.

## MIMC general analysis framework

Once the shape of $\mathcal{I}$ is determined, we find $\mathcal{I}(T O L)$ by the bias

$$
\mathfrak{E}(\mathcal{I}(\mathrm{TOL}))=\sum_{\alpha \notin \mathcal{I}(\mathrm{TOL})} E_{\alpha} \leq(1-\theta) \mathrm{TOL}
$$

yielding the corresponding computational work

$$
\left(\frac{C_{\epsilon}}{\theta \mathrm{TOL}}\right)^{2}\left(\sum_{\alpha \in \mathcal{I}(\mathrm{TOL})} \sqrt{V_{\alpha} W_{\alpha}}\right)^{2} \lesssim \mathrm{TOL}^{-(2+p)}
$$

Particular assumptions for MIMC For every $\boldsymbol{\alpha}$, assume
Assumption 1 (Bias) : $E_{\alpha}=\left|\mathrm{E}\left[\Delta S_{\alpha}\right]\right| \lesssim \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i} w_{i}}$
Assumption 2 (Variance): $\quad V_{\alpha}=\operatorname{Var}\left[\Delta S_{\alpha}\right] \lesssim \prod_{i=1}^{d} \beta_{i}^{-\alpha_{i} s_{i}}$,
Assumption 3 (Work): $\quad W_{\alpha}=\operatorname{Work}\left(\Delta S_{\alpha}\right) \lesssim \prod_{i=1}^{d} \beta_{i}^{\alpha_{i} \gamma_{i}}$,
For positive constants $\gamma_{i}, w_{i}, s_{i} \leq 2 w_{i}$ and for $i=1 \ldots d$.

## Particular optimal index-set for MIMC

In particular, under Assumptions 1-3, the optimal index-set can be written (by the profit-thresholding Lemma defining $\mathcal{I}$ ) as

$$
\begin{equation*}
\mathcal{I}_{\boldsymbol{\delta}}(L)=\left\{\boldsymbol{\alpha} \in \mathbb{N}^{d}: \boldsymbol{\alpha} \cdot \boldsymbol{\delta}=\sum_{i=1}^{d} \boldsymbol{\alpha}_{i} \delta_{i} \leq L\right\} \tag{5}
\end{equation*}
$$

Here $L \in \mathbb{R}$,

$$
\begin{align*}
\delta_{i} & =\frac{\log \left(\beta_{i}\right)\left(w_{i}+\frac{\gamma_{i}-s_{i}}{2}\right)}{C_{\delta}}, \quad \text { for all } i \in\{1 \cdots d\} \\
\text { and } \quad C_{\delta} & =\sum_{j=1}^{d} \log \left(\beta_{j}\right)\left(w_{j}+\frac{\gamma_{j}-s_{j}}{2}\right) \tag{6}
\end{align*}
$$

Observe that $0<\delta_{i} \leq 1$, since $s_{i} \leq 2 w_{i}$ and $\gamma_{i}>0$. Moreover, $\sum_{i=1}^{d} \delta_{i}=1$.

L Multi-Index Monte Carlo (MIMC) - Choosing the Multi-Index Set in MIMC


## MIMC work estimate for particular assumptions

$\eta=\min _{i \in\{1 \cdots d\}} \frac{\log \left(\beta_{i}\right) w_{i}}{\delta_{i}}, \quad \zeta=\max _{i \in\{1 \cdots d\}} \frac{\gamma_{i}-s_{i}}{2 w_{i}}, \quad \mathfrak{z}=\#\left\{i \in\{1 \cdots d\}: \frac{\gamma_{i}-s_{i}}{2 w_{i}}=\zeta\right\}$.

Theorem (Work estimate with optimal weights)
Let the total-degree index set $\mathcal{I}_{\delta}(L)$ be given by (5) and (6), taking

$$
L=\frac{1}{\eta}\left(\log \left(\mathrm{TOL}^{-1}\right)+(\mathfrak{z}-1) \log \left(\frac{1}{\eta} \log \left(\mathrm{TOL}^{-1}\right)\right)+C\right) .
$$

Under Assumptions 1-3, the bias constraint in (2) is satisfied asymptotically and the total work, $W\left(\mathcal{I}_{\delta}\right)$, of the MIMC estimator, $\mathcal{A}$, subject to the variance constraint (4) satisfies:

$$
\limsup _{\mathrm{TOL} \downarrow 0} \frac{W\left(\mathcal{I}_{\boldsymbol{\delta}}\right)}{\mathrm{TOL}^{-2-2 \max (0, \zeta)}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{\mathfrak{p}}}<\infty
$$

where $0 \leq \mathfrak{p} \leq 3 d+2(d-1) \zeta$ is known and depends on $d, \gamma, \boldsymbol{w}, \boldsymbol{s}$ and $\boldsymbol{\beta}$.

## Powers of the logarithmic term

$$
\begin{array}{ll}
\xi=\min _{i \in\{1 \cdots d\}} \frac{2 w_{i}-s_{i}}{\gamma_{i}}, & d_{2}=\#\left\{i \in\{1 \cdots d\}: \gamma_{i}=s_{i}\right\}, \\
\zeta=\max _{i \in\{1 \cdots d\}} \frac{\gamma_{i}-s_{i}}{2 w_{i}}, & \mathfrak{z}=\#\left\{i \in\{1 \cdots d\}: \frac{\gamma_{i}-s_{i}}{2 w_{i}}=\zeta\right\} .
\end{array}
$$

Cases for $\mathfrak{p}$ :

$$
\begin{array}{rlr}
\text { A) } & \text { if } \zeta \leq 0 \text { and } \zeta<\xi, & \\
\text { or } \zeta=\xi=0 & \text { then } \mathfrak{p}=2 d_{2} . \\
\text { B) } & \text { if } \zeta>0 \text { and } \xi>0 & \text { then } \mathfrak{p}=2(\mathfrak{z}-1)(\zeta+1) . \\
\text { C-D) } \text { if } \zeta \geq 0 \text { and } \xi=0 & \text { then } \mathfrak{p}=d-1+2(\mathfrak{z}-1)(\zeta+1) .
\end{array}
$$

## Fully Isotropic Case: Smooth noise case

Assume $w_{i}=w, s_{i}=2 w, \beta_{i}=\beta$ and $\gamma_{i}=\gamma$ for all $i \in\{1 \cdots d\}$ and $d \geq 3$. Then the optimal work is

$$
\begin{aligned}
\text { Work }(\mathrm{MC}) & =\mathcal{O}\left(\mathrm{TOL}^{-2-\frac{d \gamma}{w}}\right) . \\
\text { Work }(\mathrm{MLMC}) & = \begin{cases}\mathcal{O}\left(\mathrm{TOL}^{-2}\right), & 2 w>d \gamma \\
\mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{2}\right), & 2 w=d \gamma \\
\mathcal{O}\left(\mathrm{TOL}^{-\frac{d \gamma}{w}}\right), & 2 w<d \gamma\end{cases} \\
\text { Work }(\mathrm{MIMC}) & = \begin{cases}\mathcal{O}\left(\mathrm{TOL}^{-2}\right), & 2 w>\gamma, \\
\mathcal{O}\left(\mathrm{TOL}^{-2}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{3(d-1)}\right), & 2 w=\gamma, \\
\mathcal{O}\left(\mathrm{TOL}^{-\frac{\gamma}{w}}\left(\log \left(\mathrm{TOL}^{-1}\right)\right)^{(d-1)(1+\gamma / w)}\right), & 2 w<\gamma,\end{cases}
\end{aligned}
$$

Up to a multiplicative logarithmic term, Work(MIMC) is the same as solving just a one dimensional deterministic problem.

## Three dimensional PDE problem description

$$
\begin{array}{r}
-\nabla \cdot(a(x ; \omega) \nabla u(x ; \omega))=1 \quad \text { for } \boldsymbol{x} \in(0,1)^{3} \\
u(\boldsymbol{x} ; \omega)=0 \quad \text { for } \boldsymbol{x} \in \partial(0,1)^{3}, \\
\text { where } \quad a(\boldsymbol{x} ; \omega)=1+\exp \left(2 Y_{1} \Phi_{121}(\boldsymbol{x})+2 Y_{2} \Phi_{877}(\boldsymbol{x})\right) .
\end{array}
$$

Here, $Y_{1}$ and $Y_{2}$ are i.i.d. uniform random variables in the range $[-1,1]$. We also take

$$
\begin{aligned}
\Phi_{i j k}(x) & =\phi_{i}\left(x_{1}\right) \phi_{j}\left(x_{2}\right) \phi_{k}\left(x_{3}\right), \\
\text { and } \quad \phi_{i}(x) & = \begin{cases}\cos \left(\frac{i}{2} \pi x\right) & i \text { is even, } \\
\sin \left(\frac{i+1}{2} \pi x\right) & i \text { is odd }\end{cases}
\end{aligned}
$$

Finally, the quantity of interest, $S$, is

$$
S=100\left(2 \pi \sigma^{2}\right)^{\frac{-3}{2}} \int_{\mathcal{D}} \exp \left(-\frac{\left\|x-x_{0}\right\|_{2}^{2}}{2 \sigma^{2}}\right) u(x) d x
$$

and the selected parameters are $\sigma=0.04$ and $x_{0}=[0.5,0.2,0.6]$. We have $\gamma_{i}=2, w_{i}=2$, and $s_{i}=4$.

ML-MIMC [R. Tempone]
L Multi-Index Monte Carlo (MIMC) - Numerical Results

## Numerical test: Computational Errors



Several runs for different TOL values.

Error is satisfied in probability but not over-killed.

## Numerical test: Maximum degrees of freedom



Maximum number of degrees of freedom of a sample PDE solve for different TOL values. This is an indication of required memory.

ML-MIMC [R. Tempone]
$\left\llcorner_{\text {Multi-Index Monte Carlo (MIMC) - Numerical Results }}\right.$

## Numerical test: Running time, 3D problem



> Recall that the work complexity of Monte Carlo is
> $\mathcal{O}\left(\mathrm{TOL}^{-5}\right)$

ML-MIMC [R. Tempone]
L Multi-Index Monte Carlo (MIMC) - Numerical Results

## Numerical test: Running time, 4D problem



A similar PDE problem with $d=4$. The work complexity of Monte Carlo is
$\mathcal{O}\left(\mathrm{TOL}^{-6}\right)$

## Numerical test: QQ-plot

## MIMC Conclusions and Extra Points

- MIMC is a generalization of MLMC and performs better, especially in higher dimensions, provided mixed regularity between discretization parameters.
- MIMC general analysis framework, identifying optimal index-set through profit thresholding. Each set of regularity assumptions yield its optimal index-set and related complexity.
- A MIMC direction does not have to be a spatial dimension. It can represent any form of discretization parameter!
Example: 1-DIM Stochastic Particle Systems, MIMC brings complexity down from $\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$ to $\mathcal{O}\left(\mathrm{TOL}^{-2} \log \left(\mathrm{TOL}^{-1}\right)^{2}\right)$. "A study of Monte Carlo methods for weak approximations of stochastic particle systems in the mean-field", by A. L. Haji Ali and R. T. May 2016.
- Observe, connection to Ensemble Kalman Filter (EnKF): ML-MIMC can compute other statistics, for instance the covariance.


## Stochastic Particle Systems in the Mean-field

- Particle systems are a collection of coupled, usually identical and simple, models that can be used to model complicated phenomena.
- Molecular dynamics, Crowd simulation, Oscillators
- Certain particles systems approach a mean-field limit as the number of particles increase. Such limits can be useful to understand their complicated phenomena.




## Kuramoto oscillator model ${ }^{\dagger}$

For $p=1,2, \ldots, P$

$$
\begin{aligned}
\mathrm{d} X_{p \mid P}(t) & =\left(\vartheta_{P}+\frac{1}{P} \sum_{q=1}^{P} \sin \left(X_{p \mid P}(t)-X_{q \mid P}(t)\right)\right) \mathrm{d} t+\sigma \mathrm{d} W_{p \mid P}(t) \\
X_{p \mid P}(0) & =x_{p \mid P}^{0}
\end{aligned}
$$

where we are interested in

Total disorder $=\left(\frac{1}{P} \sum_{p=1}^{P} \cos \left(X_{p \mid P}(T)\right)\right)^{2}+\left(\frac{1}{P} \sum_{p=1}^{P} \sin \left(X_{p \mid P}(T)\right)\right)^{2}$ :
a real number between zero and one that measures the level of synchronization of the oscillators.

[^0]
## Kuramoto oscillator model ${ }^{\dagger}$

For $p=1,2, \ldots, P$

$$
\begin{aligned}
\mathrm{d} X_{p \mid P}(t) & =\left(\vartheta_{p}+\frac{1}{P} \sum_{q=1}^{P} \sin \left(X_{p \mid P}(t)-X_{q \mid P}(t)\right)\right) \mathrm{d} t+\sigma \mathrm{d} W_{p \mid P}(t) \\
X_{p \mid P}(0) & =x_{p \mid P}^{0}
\end{aligned}
$$

where we are interested in

$$
\phi_{P}=\frac{1}{P} \sum_{p=1}^{P} \cos \left(X_{\rho \mid P}(T)\right),
$$

Mean-field limit:

$$
\phi_{P} \rightarrow \phi_{\infty}=\mathrm{E}\left[\cos \left(X_{p \mid \infty(T)}\right)\right] \quad \text { as } \quad P \uparrow \infty
$$

[^1]
## Kuramoto oscillator model ${ }^{\dagger}$, Euler-Maruyama

For $p=1,2, \ldots, P$

$$
\begin{aligned}
X_{p \mid P}^{n \mid N}-X_{p \mid P}^{n-1 \mid N} & =\left(\vartheta_{p}+\frac{1}{P} \sum_{q=1}^{P} \sin \left(X_{p \mid P}^{n \mid N}-X_{q \mid P}^{n \mid N}\right)\right) \frac{T}{N}+\sigma \Delta W_{p \mid P}^{n \mid N} \\
X_{p \mid P}^{0 \mid N} & =x_{p \mid P}^{0}
\end{aligned}
$$

where we are interested in

$$
\phi_{P}^{N}=\frac{1}{P} \sum_{p=1}^{P} \cos \left(X_{p \mid P}^{N \mid N}\right)
$$

Mean-field limit:

$$
\phi_{P} \rightarrow \phi_{\infty}=\mathrm{E}\left[\cos \left(X_{p \mid \infty(T)}\right)\right] \quad \text { as } \quad P \uparrow \infty
$$

[^2]
## MIMC, with partitioning samplers

- Let $P_{\alpha_{1}}=2^{\alpha_{1}}$ and $N_{\alpha_{2}}=2^{\alpha_{2}}$.
- Build correlated samples by
- Sampling $2^{\alpha_{1}}$ and sub-sampling two identically-distributed, independent groups of $2^{\alpha_{1}-1}$ particles out of them.
- At the same time, by using the same Brownian paths discretized with different meshes $2^{\alpha_{2}}$ and $2^{\alpha_{2}-1}$.
- Use MIMC levels: Mixed differences!


## MIMC, with partitioning samplers

- Let $P_{\alpha_{1}}=2^{\alpha_{1}}$ and $N_{\alpha_{2}}=2^{\alpha_{2}}$.



$$
w_{1}, w_{2}=1, s_{1}=s_{2}=2
$$

Notice higher rates for mixed difference.

ML-MIMC [R. Tempone]
ᄂ Multi-Index Monte Carlo (MIMC) - MIMC for Interacting Stochastic Particle Systems

## MIMC, with partitioning samplers

- Let $P_{\alpha_{1}}=2^{\alpha_{1}}$ and $N_{\alpha_{2}}=2^{\alpha_{2}}$.



## MIMC, with partitioning samplers

- Let $P_{\alpha_{1}}=2^{\alpha_{1}}$ and $N_{\alpha_{2}}=2^{\alpha_{2}}$.
- Summary:

$$
\left.\begin{array}{c}
w_{1}=w_{2}=1 \\
s_{1}=s_{2}=2 \\
\gamma_{1}=2 \gamma_{2}=2
\end{array}\right\} \Longrightarrow \zeta=\max \left(\frac{\gamma_{1}-s_{1}}{2 w_{1}}, \frac{\gamma_{2}-s_{2}}{2 w_{2}}\right)=0
$$

- The optimal set

$$
\mathcal{I}(L)=\left\{\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}^{2}: 2 \alpha_{1}+3 \alpha_{2} \leq L\right\}
$$

- The optimal work of the asymptotically unbiased MIMC is

$$
\mathcal{O}\left(\mathrm{TOL}^{-2} \log \left(\mathrm{TOL}^{-1}\right)^{2}\right)
$$

## Summary

| Method | Work complexity |
| ---: | :--- |
| Monte Carlo | $\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$ |
| MLMC in $N$ | $\mathcal{O}\left(\mathrm{TOL}^{-3}\right)$ |
| MLMC in $P$ | $\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$ |
| MLMC in $P$, partitioning | $\mathcal{O}\left(\mathrm{TOL}^{-3} \log \left(\mathrm{TOL}^{-1}\right)^{2}\right)$ |
| MLMC in $P$ and $N$ | $\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$ |
| MLMC in $P$ and $N$, partitioning | $\mathcal{O}\left(\mathrm{TOL}^{-3}\right)$ |
| MIMC | $\mathcal{O}\left(\mathrm{TOL}^{-2} \log \left(\mathrm{TOL}^{-1}\right)^{2}\right)$ |

## Numerical Example: MIMC vs. MLMC

$$
\begin{aligned}
X_{p \mid P}^{n \mid N}-X_{p \mid P}^{n-1 \mid N} & =\left(\vartheta_{p}+\frac{0.4}{P} \sum_{q=1}^{P} \sin \left(X_{p \mid P}^{n \mid N}-X_{q \mid P}^{n \mid N}\right)\right) \frac{T}{N}+0.4 \Delta W_{p \mid P}^{n \mid N} \\
X_{p \mid P}^{0 \mid N} & \sim \mathcal{N}(0,0.2)
\end{aligned}
$$

where $\vartheta_{p} \sim \mathcal{U}(-0.2,0.2)$. The quantity of interested is

$$
\phi_{P}^{N}=\frac{1}{P} \sum_{p=1}^{P} \cos \left(X_{p \mid P}^{N \mid N}\right)
$$

for $T=1$.

ML-MIMC [R. Tempone]
$\left\llcorner_{\text {Multi-Index Monte Carlo (MIMC) - MIMC for Interacting Stochastic Particle Systems }}\right.$

## Numerical Example: MIMC vs. MLMC

 for $T=1$.

ML-MIMC [R. Tempone]
L Multi-Index Monte Carlo (MIMC) - MIMC for Interacting Stochastic Particle Systems

## Numerical Example: MIMC vs. MLMC

 for $T=1$.

ML-MIMC [R. Tempone]
L Multi-Index Monte Carlo (MIMC) - MIMC for Interacting Stochastic Particle Systems

## Numerical Example: MIMC vs. MLMC

 for $T=1$.

Let now $S$ be a vector valued output quantity of the solution of a stochastic differential equation, and $S_{\ell}$ its approximation based on a level $\ell$ discretization. Our goal is to approximate the covariance. Monte Carlo: based on $M$ iid samples, $\left\{S_{L, i}\right\}_{i=1}^{M}$, compute the sample mean and sample covariance

$$
\begin{aligned}
E\left[S_{L} ; M\right] & =\frac{1}{M} \sum_{m=1}^{M} S_{L, i}, \\
\operatorname{Cov}\left[S_{L} ; M\right] & =\frac{1}{M-1} \sum_{m=1}^{M}\left(S_{L, i}-E\left[S_{L} ; M\right]\right)\left(S_{L, i}-E\left[S_{L} ; M\right]\right)^{T}
\end{aligned}
$$

Multilevel Monte Carlo: [Bierig-Chernov, 2014]

$$
\operatorname{Cov}_{M L}=\sum_{\ell=0}^{L}\left\{\operatorname{Cov}\left[S_{\ell} ; M_{\ell}\right]-\operatorname{Cov}\left[S_{\ell-1} ; M_{\ell}\right]\right\}
$$

Observe: both $\operatorname{Cov}\left[S_{\ell} ; M_{\ell}\right]$ and $\operatorname{Cov}\left[S_{\ell-1} ; M_{\ell}\right]$ use the same noise.

## Filtering problem description

Consider the underlying and unobservable (stochastic) dynamics and observations,

$$
\begin{aligned}
& u_{n+1}=\Psi\left(u_{n}\right), \\
& y_{n+1}=H u_{n+1}+\gamma_{n+1}, \quad \gamma_{n+1} \sim N(0, \Gamma) .
\end{aligned}
$$

Assume $u_{0} \in L^{p}(\Omega)$ for any $p \geq 1$ and $H \in \mathbb{R}^{k \times d}$. The observation noise is iid and independent of the noise driving the dynamics.
Objective: Let $Y_{n}:=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and let $Y_{n}^{o b s}$ be a sequence of fixed observations. Construct an efficient method for tracking $u_{n} \mid\left(Y_{n}=Y_{n}^{o b s}\right)$. That is, approximate

$$
\mathrm{E}\left[\phi\left(u_{n}\right) \mid Y_{n}=Y_{n}^{o b s}\right]
$$

for a given observable $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

## Ensemble Kalman Filtering (Evensen 94)

## Predict

1. Compute (numerical solutions of) $M$ particle paths one step forward

$$
\widehat{v}_{n+1, i}=\Psi\left(v_{n, i}, \omega_{i}\right) \quad \text { for } i=1,2, \ldots, M
$$

2. Compute their sample mean and covariance

$$
\begin{aligned}
\widehat{m}_{n+1}^{\mathrm{MC}} & =E_{M}\left[\widehat{v}_{n+1}\right] \\
\widehat{C}_{n+1}^{\mathrm{MC}} & =\operatorname{Cov}_{M}\left[\widehat{v}_{n+1}\right]
\end{aligned}
$$

where $\quad E_{M}\left[\widehat{v}_{n+1}\right]:=\frac{1}{M} \sum_{i=1}^{M} \widehat{v}_{n+1, i}$
and $\operatorname{Cov}_{M}\left[\widehat{v}_{n+1}\right]:=E_{M}\left[\widehat{v}_{n+1} \widehat{v}_{n+1}^{T}\right]-E_{M}\left[\widehat{v}_{n+1}\right]\left(E_{M}\left[\widehat{v}_{n+1}\right]\right)^{T}$.

## Ensemble Kalman Filtering II

## Update

1. Generate signal observations for the ensemble of particles

$$
\tilde{y}_{n+1, i}=y_{n+1}^{o b s}+\gamma_{n+1, i} \quad \text { for } i=1,2 \ldots, M
$$

with i.i.d. $\gamma_{n+1,1} \sim N(0, \Gamma)$.
2. Use signal observations to update, for $i=1,2 \ldots, M$, particle paths

$$
\begin{aligned}
v_{n+1, i} & =\left(I-K_{n+1}^{\mathrm{MC}} H\right) \widehat{v}_{n+1, i}+K_{n+1}^{\mathrm{MC}} \tilde{y}_{n+1, i}, \\
\text { where } \quad K_{n+1}^{\mathrm{MC}} & =\widehat{C}_{n+1}^{\mathrm{MC}} H^{T}\left(H \widehat{C}_{n+1}^{\mathrm{MC}} H^{T}+\Gamma\right)^{-1}
\end{aligned}
$$

Note: After the first update step, all particles are correlated due to $K_{n+1}^{\mathrm{MC}}$.

## Reducing computational cost of EnKF with MLEnKF ${ }^{\text {KUT }}$

Idea: In Multilevel EnKF, we aim to produce similar computational gains wrt EnKF as Multilevel MC does wrt MC. The Multilevel approximation is done to the state covariance!

- H. Hoel, K. J. H. Law, R. T., "Multilevel Ensemble Kalman Filtering". Accepted for publication, SINUM (2016).
- A. Beskos, Ajay Jasra, K. Law, R. T. and Y. Zhou, Multilevel Sequential Monte Carlo Samplers. Submitted, 2015.


## Multilevel EnKF (MLEnKF)

## Prediction Step

- Compute an ensemble of particle paths on a hierarchy of accuracy levels

$$
\widehat{v}_{n+1, i}^{\ell-1}=\Psi^{\ell-1}\left(v_{n, i}^{\ell-1}, \omega_{\ell, i}\right), \quad \widehat{v}_{n+1, i}^{\ell}=\Psi^{\ell}\left(v_{n, i}^{\ell}, \omega_{\ell, i}\right)
$$

for the levels $\ell=0,1, \ldots, L$ and $i=1,2, \ldots, M_{\ell}$.

- Multilevel approximation of mean and covariance matrices:

$$
\begin{aligned}
& \widehat{m}_{n+1}^{\mathrm{ML}}=\sum_{\ell=0}^{L} E_{M_{\ell}}\left[\widehat{v}_{n+1}^{\ell}-\widehat{v}_{n+1}^{\ell-1}\right], \\
& \widehat{C}_{n+1}^{\mathrm{ML}}=\sum_{\ell=0}^{L}\left\{\operatorname{Cov}_{M_{\ell}}\left[\widehat{v}_{n+1}^{\ell}\right]-\operatorname{Cov}_{M_{\ell}}\left[\widehat{v}_{n+1}^{\ell-1}\right]\right\}
\end{aligned}
$$

Notice the MLMC telescoping properties hold by construction.

## Multi Level EnKF update step

## Update Step

For $\ell=0,1, \ldots, L$ and $i=1,2, \ldots, M_{\ell}$,

$$
\begin{gathered}
\tilde{y}_{n+1, i}^{\ell}=y_{n+1}^{\text {obs }}+\gamma_{n+1, i}^{\ell}, \quad \text { i.i.d. } \gamma_{n+1, i}^{\ell} \sim N(0, \Gamma) \\
v_{n+1, i}^{\ell-1}=\left(I-K_{n+1}^{\mathrm{ML}} H\right) \widehat{v}_{n+1, i}^{\ell-1}+K_{n+1}^{\mathrm{ML}} \tilde{y}_{n+1, i}^{\ell}, \\
v_{n+1, i}^{\ell}=\left(I-K_{n+1}^{\mathrm{ML}} H\right) \widehat{v}_{n+1, i}^{\ell}+K_{n+1}^{\mathrm{ML}} \tilde{y}_{n+1, i}^{\ell}, \\
\quad \text { where } \quad K_{n+1}^{\mathrm{ML}}=\widehat{C}_{n+1}^{\mathrm{ML}} H^{\top}\left(H \widehat{C}_{n+1}^{\mathrm{ML}} H^{\top}+\Gamma\right)^{-1} .
\end{gathered}
$$

## Beyond MIMC: Multi-Index Stochastic Collocation

- Can we do even better if additional smoothness is available?
[MISC1, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
"Multi-Index Stochastic Collocation for random
PDEs". arXiv:1508.07467. Computers and Mathematics with Applications, Vol. 306, pp. 95-122, July 2016.
[MISC2, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
"Multi-Index Stochastic Collocation convergence rates for random PDEs with parametric regularity". arXiv:1511.05393v1. Submitted, November 2015.

Idea: Use sparse quadrature to carry the integration in MIMC!

## MISC Assumptions

For some strictly positive constant $Q_{W}, g_{j}, w_{i}, C_{\text {work }}$ and $\gamma_{i}$ for $i=1 \ldots d$ and $j=1 \ldots n$, there holds

$$
\begin{aligned}
& \left|\Delta^{n}\left(\Delta^{d} S_{\alpha, \tau}\right)\right| \leq Q_{W}\left(\prod_{j=1}^{n} \exp \left(-g_{j} \tau_{j}\right)\right)\left(\prod_{i=1}^{d} \exp \left(-w_{i} \alpha_{i}\right)\right) . \\
& \text { Work }\left(\boldsymbol{\Delta}^{n}\left(\boldsymbol{\Delta}^{d} S_{\alpha, \tau}\right)\right) \leq C_{\text {work }}\left(\prod_{j=1}^{n} \tau_{j}\right)\left(\prod_{i=1}^{d} \exp \left(\gamma_{i} \alpha_{i}\right)\right) .
\end{aligned}
$$

This a simplified presentation that can be easily generalized to nested points.

## MISC work estimate

Theorem (Work estimate with optimal weights)
[MISC1, 2015] Under (our usual) assumptions on the error and work convergence there exists an index-set $\mathcal{I}$ such that

$$
\text { and } \lim \quad \lim _{\text {TOL } \downarrow 0} \frac{\left|\mathcal{A}_{\text {MISC }}(\mathcal{I})-\mathrm{E}[S]\right|}{\operatorname{TOL}} \leq 1
$$

where $\zeta=\max _{i=1}^{d} \frac{\gamma_{i}}{w_{i}}$ and $\mathfrak{z}=\#\left\{i=1, \ldots d: \frac{w_{i}}{\gamma_{i}}=\zeta\right\}$.
Note that the rate is independent of the number of random variables $n$. Moreover, $d$ appears only in the logarithmic power.

## MISC numerical comparison [MISC1, 2015]

Comparison with MIMC and Quasi Optimal (QO) Single \& Multilevel Level Sparse Grid Stochastic Collocation


| $\bullet-$ | a-prior MISC |
| :--- | :--- |
| $\longmapsto$ | a-post MISC |
| $\varpi$ | SCC |
| $\nabla-\nabla$ | MIMC |
| $\Delta \Delta$ | SGSC-QO |
| $\triangleright$ | a-prior MLSC-QO |
| $\longleftrightarrow \triangleleft$ | a-post MLSC-QO |
| $--\cdot$ | $E=W^{-2} \log (W)^{6}$ |
| $\cdots$ | $E=W^{-0.5}$ |

## MISC (parametric regularity, $N=\infty$ ) [MISC2, 2015]

We use MISC to compute on a hypercube domain $B \subset \mathbb{R}^{d}$

$$
\begin{aligned}
&-\nabla \cdot(a(\boldsymbol{x}, \boldsymbol{y}) \nabla u(\boldsymbol{x}, \boldsymbol{y}))=f(\boldsymbol{x}) \text { in } \\
& u(\boldsymbol{x}, \boldsymbol{y})=0 \text { on } \\
& \partial B,
\end{aligned}
$$

where

$$
a(\boldsymbol{x}, \boldsymbol{y})=e^{k(x, y)}, \text { with } \kappa(\boldsymbol{x}, \boldsymbol{y})=\sum_{j \in \mathbb{N}_{+}} \psi_{j}(\boldsymbol{x}) y_{j} .
$$

Here, $\boldsymbol{y}$ are iid uniform and the regularity of $a$ (and hence $u$ ) is determined through the decay of the norm of the derivatives of $\psi_{j} \in C^{\infty}(\mathcal{B})$. Given the sequences

$$
b_{s, j}=\max _{s \in \mathbb{N}^{d}|s| \leq s}\left\|D^{s} \psi_{j}\right\| L^{\infty}(B), \quad j \geq 1,
$$

we assume that there exist $0<p_{0} \leq p_{s}<\frac{1}{2}$ s.t. $\left\{b_{s, j}\right\}_{j \in \mathbb{N}_{+}} \in \ell^{p_{s}}$.

Theorem (MISC convergence theorem)
[MISC2, 2015] Under technical assumptions the profit-based MISC estimator built using Stochastic Collocation over
Clenshaw-Curtis points and piecewise multilinear finite elements for solving the deterministic problems, we have, for $\delta>0$,

$$
\left|\mathrm{E}[S]-\mathcal{A}_{\text {MIS }}[S]\right| \leq \tilde{C}_{P}(\delta) \operatorname{Work}\left[\mathcal{A}_{M I S C}[S]\right]^{-r_{\mathrm{MIISC}}+\delta} .
$$

The rate $r_{\text {MISC }}$ is as follows:
Case 1 if $\frac{\gamma}{r_{\text {FEM }}+\gamma} \geq \frac{p_{s}}{1-p_{s}}$, then $r_{\text {MISC }}=\frac{r_{\text {FEM }}}{\gamma}$,
Case 2 if $\frac{\gamma}{r_{\text {FEM }}+\gamma} \leq \frac{p_{s}}{1-p_{s}}$, then

$$
r_{\mathrm{MISC}}=\left(\frac{1}{p_{0}}-2\right)\left(\gamma \frac{p_{s}-p_{0}}{r_{\mathrm{FEM}} p_{0} p_{s}}+1\right)^{-1}
$$

## Ideas for proofs in [MISC2, 2015]

- Shift theorem: From regularity of $a$ and $f$ to regularity of $u \in H^{1+s}(B) \Rightarrow u \in \mathcal{H}_{\text {mix }}^{1+q}(B), \quad$ for $0<q<s / d$.
- Extend holomorphically $u(\cdot, \boldsymbol{z}) \in H^{1+r}(B)$ on polyellipse $\boldsymbol{z} \in \Sigma_{r}$ (use $p_{r}$ summability of $\boldsymbol{b}_{r}$ ) to get stochastic rates and estimates for $\Delta$.
- Use weighted summability of knapsack profits to prove convergence rates.

Example: log uniform field with parametric regularity [MISC2, 2015]

Here, the regularity of $\kappa=\log (a)$ is determined through $\nu>0$
$\kappa(\boldsymbol{x}, \boldsymbol{y})=\sum_{\boldsymbol{k} \in \mathbb{N}^{d}} A_{\boldsymbol{k}} \sum_{\ell \in\{0,1\}^{d}} y_{\boldsymbol{k}, \ell} \prod_{j=1}^{d}\left(\cos \left(\frac{\pi}{L} k_{j} x_{j}\right)\right)^{\ell_{j}}\left(\sin \left(\frac{\pi}{L} k_{j} x_{j}\right)\right)^{1-\ell_{j}}$,
where the coefficients $A_{\boldsymbol{k}}$ are taken as

$$
A_{\boldsymbol{k}}=(\sqrt{3}) 2^{\frac{|\boldsymbol{k}|_{0}}{2}}\left(1+|\boldsymbol{k}|^{2}\right)^{-\frac{\nu+d / 2}{2}} .
$$

We have

$$
p_{0}>\left(\frac{\nu}{d}+\frac{1}{2}\right)^{-1} \quad \text { and } \quad p_{s}>\left(\frac{\nu-s}{d}+\frac{1}{2}\right)^{-1}
$$

ML-MIMC [R. Tempone]
$\left\llcorner_{\text {Multi-index Stochastic Collocation (MISC) }}\right.$

## Application of main theorem [MISC2, 2015]




$$
\text { Error } \propto \text { Work }^{-r_{\text {MIISC }}(\nu, d)}
$$

A similar analysis shows the corresponding $\nu$-dependent convergence rates of MIMC but based on $\ell^{2}$ summability of $\boldsymbol{b}_{s}$ and Fernique type of results.

ML-MIMC [R. Tempone]
$\left\llcorner_{\text {Multi-index Stochastic Collocation (MISC) }}\right.$

## MISC numerical results [MISC2, 2015]




Left: $d=1, \nu=2.5$. Right: $d=3, \nu=4.5$.
Error $\propto$ Work $^{-r_{\text {MISC }}(\nu, d)}$

ML-MIMC [R. Tempone]
ᄂ Multi-index Stochastic Collocation (MISC)

## MISC numerical results [MISC2, 2015]




Left: $d=1, \nu=2.5$. Right: $d=3, \nu=4.5$.
Error $\propto$ Work $^{-r_{\text {MISC }}(\nu, d)}$

ML-MIMC [R. Tempone]
ᄂ Multi-index Stochastic Collocation (MISC)
Deterministic runs, numerical results [MISC2, 2015]

These plots shows the non-asymptotic effect of the logarithmic factor for $d>1$ (as discussed in [Thm. 1][MISC1, 2015]) on the linear convergence fit in log-log scale.



Left: $d=1$. Right: $d=3$.


[^0]:    ${ }^{\dagger}$ Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.

[^1]:    ${ }^{\dagger}$ Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.

[^2]:    ${ }^{\dagger}$ Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.

