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Monte Carlo (MC)

Monte Carlo and extensions

Motivational Example: Let (Ω,F ,P) be a complete probability
space and D be a bounded convex polygonal domain in Rd .
The solution u : D × Ω→ R here solves almost surely (a.s.) the
following equation:

−∇ · (a(x ;ω)∇u(x ;ω)) = f (x ;ω) for x ∈ D,
u(x ;ω) = 0 for x ∈ ∂D.

Goal: to approximate E[S ] ∈ R where S = Ψ(u) for some
sufficiently “smooth” a, f and functional Ψ.

Later, in our numerical example we use

S = 100
(
2πσ2

)−3
2

∫
D

exp

(
−‖x − x0‖2

2

2σ2

)
u(x)dx .

for x0 ∈ D and σ > 0.

2/57



ML-MIMC [R. Tempone]

Monte Carlo (MC)

Monte Carlo and extensions

Motivational Example: Let (Ω,F ,P) be a complete probability
space and D be a bounded convex polygonal domain in Rd .
The solution u : D × Ω→ R here solves almost surely (a.s.) the
following equation:

−∇ · (a(x ;ω)∇u(x ;ω)) = f (x ;ω) for x ∈ D,
u(x ;ω) = 0 for x ∈ ∂D.

Goal: to approximate E[S ] ∈ R where S = Ψ(u) for some
sufficiently “smooth” a, f and functional Ψ.
Later, in our numerical example we use

S = 100
(
2πσ2

)−3
2

∫
D

exp

(
−‖x − x0‖2

2

2σ2

)
u(x)dx .

for x0 ∈ D and σ > 0.

2/57



ML-MIMC [R. Tempone]

Monte Carlo (MC)

Monte Carlo (Metropolis and Ulam, 1949)

Recall the Monte Carlo method and its error splitting:

E[Ψ(u(y))]− 1

M

M∑
m=1

Ψ(uh(y(ωm))) = EΨ
bias(h) + EΨ

stat(M)

|EΨ
bias(h)| = |E [Ψ(u(y))−Ψ(uh(y))]|︸ ︷︷ ︸

discretization error

≤ Chw

|EΨ
stat(M)| = |E [Ψ(uh(y))]− 1

M

M∑
m=1

Ψ(uh(y(ωm)))|︸ ︷︷ ︸
statistical error

. c0
std[Ψ(uh)]√

M

The last approximation is motivated by the Central Limit Theorem.

P

(
|EΨ

stat(M)| ≤ c0
std[Ψ(uh)]√

M

)
≈ 1− ε
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Monte Carlo (MC)

Assume: computational work for each u(y(ωm)) is O(h−dγ).

Total work : Mh−dγ

Total error : |EΨ
bias(h)|+ |EΨ

stat(M)| ≤ C1h
w +

C2√
M

We want now to choose optimally h and M. Here we minimize the
computational work subject to an accuracy constraint, i.e. we solve{

minh,M M h−dγ

s.t. C1h
w + C2√

M
≤ TOL

We can interpret the above as a tolerance splitting into statistical
and space discretization tolerances, TOL = TOLS + TOLh, such
that

TOLh =
TOL

(1 + 2w/(dγ))
and TOLS = TOL

(
1− 1

(1 + 2w/(dγ))

)
.

The resulting complexity (error versus computational work) is then

W ∝ TOL−(2+dγ/w)
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Monte Carlo (MC)

Numerical Approximation
We assume:

D =
∏d

i=1[0,Di ] for Di ⊂ R+ be a
hypercube domain in Rd .

we have an approximation of u (FEM, FD,
FV, . . . ) based on discretization parameters
hi for i = 1 . . . d . Here

hi = hi ,0 β
−αi
i ,

with βi > 1 and the multi-index

α = (αi )
d
i=1 ∈ Nd .

Notation: Sα is the approximation of S
calculated using a discretization defined by
α.
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Monte Carlo (MC)

Left: Tensor domain, cylinder.
Center: Non-tensor domain immersed in a tensor box.
Right: Non-tensor domain with a structured mesh.
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Multilevel Monte Carlo (MLMC)

Multilevel Monte Carlo (MLMC) (Heinrich, 1998) and (Giles, 2008)

Take βi = β and for each ` = 1, 2, . . . use discretizations with
α = (`, . . . , `). Recall the standard MLMC difference operator

∆̃S` =

{
S0 if ` = 0,

S`·1 − S(`−1)·1 if ` > 0.

Observe the telescopic identity

E[S ] ≈ E[SL·1] =
L∑
`=0

E
[
∆̃S`

]
.

Then, using MC to approximate each level independently, the
MLMC estimator can be written as

AMLMC =
L∑
`=0

1

M`

M∑̀
m=1

∆̃S`(ω`,m).
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Multilevel Monte Carlo (MLMC)

Variance reduction: MLMC

Recall: With Monte Carlo we have to satisfy

Var[AMC ] =
1

ML
Var[SL] ≈ 1

ML
Var[S ] ≤ TOL2.

Main point: MLMC reduces the variance of the deepest level
using samples on coarser (less expensive) levels!

Var[AMLMC] =
1

M0
Var[S0]

+
L∑
`=1

1

M`
Var[∆S`] ≤ TOL2.

Observe: Level 0 in MLMC is usually deter-
mined by both stability and accuracy, i.e.
Var[∆S1] << Var[S0] ≈ Var[S ] <∞.
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Multilevel Monte Carlo (MLMC)

Classical assumptions for MLMC
For every `, we assume the following:

Assumption 1̃ (Bias): |E[S − S`]| . β−w`,

Assumption 2̃ (Variance): V` = Var
[
∆̃S`

]
. β−s`,

Assumption 3̃ (Work): W` = Work(∆̃S`) . βdγ`,

for positive constants γ,w and s ≤ 2w .

Example: Our smooth linear elliptic PDE example approximated
with Multilinear piecewise cont. FEM: 2w = s = 4, 1 ≤ γ ≤ 3.

Work of MLMC: Work(MLMC) =
L∑
`=0

M`W`

Choose the samples (M`)
L
`=0 optimally so Var[AMLMC] . TOL2.

Optimal Work of MLMC: Work(MLMC) . TOL−2

(
L∑
`=0

√
V`W`

)2
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Multilevel Monte Carlo (MLMC)

MLMC Computational Complexity

Choose the number of levels L(TOL) to bound the bias

|E[S − SL]| . β−Lw ≤ CTOL ⇒ L ≥ log(TOL−1)− log(C )

w log(β)
,

Then the optimal work satisfies (Giles et al., 2008, 2011):

Work(MLMC) =


O
(
TOL−2

)
, s > dγ,

O
(
TOL−2

(
log(TOL−1)

)2
)
, s = dγ,

O
(
TOL

−
(

2+ (dγ−s)
w

))
, s < dγ.

Recall: Work(MC) = O
(
TOL−(2+ dγ

w
)
)
.
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Multilevel Monte Carlo (MLMC)

Questions related to MLMC

1. How to choose the mesh hierarchy h`? [H-ASNT, 2015]

2. How to efficiently and reliably estimate V`? How to find the
correct number of levels, L? [CH-ASNT, 2015]

3. Can we do better? Especially for d > 1? [H-ANT, 2015]

[H-ASNT, 2015] A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. “Optimization of mesh
hierarchies in Multilevel Monte Carlo samplers”. arXiv:1403.2480, Stochastic
Partial Differential Equations: Analysis and Computations, 4(1):76–112, (2016).

[CH-ASNT, 2015] N. Collier, A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. “A continuation
multilevel Monte Carlo algorithm”. BIT Numerical Mathematics, 55(2):399-432,
(2015).

[H-ANT, 2015] A.-L. Haji-Ali, F. Nobile, and R. T. “Multi-Index Monte Carlo: When Sparsity
Meets Sampling”. Numerische Mathematik, 806:132–767, (2016).

Time adaptivity for MLMC in Itô SDEs: Stopping with optimal asymptotic Accuracy and Efficiency

Adaptive Multilevel Monte Carlo Simulation, by H. Hoel, E. von Schwerin, A. Szepessy and
R. T., Numerical Analysis of Multiscale Computations, 82, Lect. Notes Comput. Sci.
Eng., (2011).

Implementation and Analysis of an Adaptive Multi Level Monte Carlo Algorithm, by H.
Hoel, E. von Schwerin, A. Szepessy and R. T., Monte Carlo Methods and Applications. 20,
(2014).

Construction of a mean square error adaptive Euler-Maruyama method with applications in
multilevel Monte Carlo, by H. Hoel, J. Häppöla, and R. T. To appear in MC and Q-MC
Methods 2014, Springer Verlag, (2016).
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Multilevel Monte Carlo (MLMC)

Hybrid MLMC for Stochastic Reaction Networks
A. Moraes, R. T., and P. Vilanova. Multilevel hybrid Chernoff tau-leap. BIT Numerical
Mathematics, April 2015.
A. Moraes, R. T., and P. Vilanova. A multilevel adaptive reaction-splitting simulation
method for stochastic reaction networks. arXiv:1406.1989. To appear in SIAM Journal on
Scientific Computing (SISC), 2016.
C. Ben Hammouda, A. Moraes and R. T. Multilevel drift-implicit tau-leap,
arXiv:1512.00721. To appear in the Journal of Numerical Algorithms, 2016.
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Kurtz representation: X (t) = x0+
J∑

j=1

Yj

(∫ t

0

aj (X (s))ds

)
νj , Tau-Leap: X̄n+1 = X̄n+

J∑
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Pj (an∆t)νj

with independent unit-rate Poisson processes {Yj (t)}t≥0 and reaction channels {aj , νj}.
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Multilevel Monte Carlo (MLMC)

Variance reduction: MLMC
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Multilevel Monte Carlo (MLMC)

Variance reduction: Further potential
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Multi-Index Monte Carlo (MIMC)

Multi-Index Monte Carlo (MIMC) (Haji Ali, Nobile, T. 2015)

For i = 1, . . . , d , define the first order difference operators

∆iSα =

{
Sα if αi = 0,

Sα − Sα−ei if αi > 0,

and construct the first order mixed difference

∆Sα =
(
⊗d

i=1∆i

)
Sα.

Then the MIMC estimator can be written as

AMIMC =
∑
α∈I

1

Mα

Mα∑
m=1

∆Sα(ωα,m)

for some properly chosen index set I ⊂ Nd and samples (Mα)α∈I .
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Multi-Index Monte Carlo (MIMC)

Example: On mixed differences

Consider d = 2. In this case, let-
ting α = (α1, α2), we have

∆S(α1,α2) = ∆2(∆1S(α1,α2))

= ∆2 (Sα1,α2 − Sα1−1,α2)

= (Sα1,α2 − Sα1−1,α2)

− (Sα1,α2−1 − Sα1−1,α2−1) .

Notice that in general, ∆Sα re-
quires 2d evaluations of S at dif-
ferent discretization parameters,
the largest work of which corre-
sponds precisely to the index ap-
pearing in ∆Sα, namely α.

α1

α2
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Multi-Index Monte Carlo (MIMC)

Our objective is to build an estimator A = AMIMC where

P(|A − E[S ]| ≤ TOL) ≥ 1− ε (1)

for a given accuracy TOL and a given confidence level determined
by 0 < ε� 1. We instead impose the following, more restrictive,
two constraints:

Bias constraint: |E[A− S ]| ≤ (1− θ)TOL, (2)

Statistical constraint: P (|A − E[A]| ≤ θTOL) ≥ 1− ε. (3)

For a given fixed θ ∈ (0, 1). Moreover, motivated by the
asymptotic normality of the estimator, A, we approximate (3) by

Var[A] ≤
(
θTOL

Cε

)2

. (4)

Here, 0 < Cε is such that Φ(Cε) = 1− ε
2 , where Φ is the

cumulative distribution function of a standard normal random var.
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Multi-Index Monte Carlo (MIMC) – Choosing the Multi-Index Set in MIMC

Given variance and work estimates we can already optimize for the
optimal number of samples M∗α ∈ R to satisfy the variance
constraint (4)

M∗α =

(
Cε

θTOL

)2√ Vα
Wα

(∑
α∈I

√
VαWα

)
.

Taking M∗α ≤ Mα ≤ M∗α + 1 such that Mα ∈ N and substituting
in the total work gives

Work(I) ≤
(

Cε
θTOL

)2
(∑
α∈I

√
VαWα

)2

+
∑
α∈I

Wα︸ ︷︷ ︸
Min. cost of I

.

Observe:The work now depends on I only.
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Multi-Index Monte Carlo (MIMC) – Choosing the Multi-Index Set in MIMC

MIMC general analysis framework

Question: How do we find optimal index set I for MIMC?

min
I⊂Nd

Work(I) such that Bias =
∑
α/∈I

Eα ≤ (1− θ)TOL,

Assumption: MIMC work is not dominated by the work to
compute a single sample corresponding to each α.

Then, minimizing equivalently
√
Work(I), the previous min

problem can be recast into a knapsack problem with profits defined
for each multi-index α.

The corresponding α profit is

Pα =
Bias contribution

Work contribution
=

Eα√
VαWα
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Multi-Index Monte Carlo (MIMC) – Choosing the Multi-Index Set in MIMC

MIMC general analysis framework
Define the total error associated with an index-set I as

E(I) =
∑
α/∈I

Eα

and the corresponding total work estimate as

W(I) =
∑
α∈I

√
VαWα.

Then we can show the following optimality result with respect to
E(I) and W(I), namely:

Lemma (Optimal profit sets)

The index-set
I(ν) = {α ∈ Nd : Pα ≥ ν}

for Pα = Eα√
VαWα

is optimal in the sense that any other index-set,

Ĩ, with smaller work, W(Ĩ) <W(I(ν)), leads to a larger error,
E(Ĩ) > E(I(ν)).

19/57



ML-MIMC [R. Tempone]

Multi-Index Monte Carlo (MIMC) – Choosing the Multi-Index Set in MIMC

MIMC general analysis framework
Once the shape of I is determined, we find I(TOL) by the bias

E(I(TOL)) =
∑

α/∈I(TOL)

Eα ≤ (1− θ)TOL

yielding the corresponding computational work(
Cε

θTOL

)2
 ∑
α∈I(TOL)

√
VαWα

2

. TOL−(2+p)

Particular assumptions for MIMC For every α, assume

Assumption 1 (Bias) : Eα = |E[∆Sα]| .
∏d

i=1
β−αiwi
i

Assumption 2 (Variance) : Vα = Var[∆Sα] .
∏d

i=1
β−αi si
i ,

Assumption 3 (Work) : Wα = Work(∆Sα) .
∏d

i=1
βαiγi
i ,

For positive constants γi ,wi , si ≤ 2wi and for i = 1 . . . d .
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Multi-Index Monte Carlo (MIMC) – Choosing the Multi-Index Set in MIMC

Particular optimal index-set for MIMC
In particular, under Assumptions 1-3, the optimal index-set can
be written (by the profit-thresholding Lemma defining I) as

Iδ(L) = {α ∈ Nd : α · δ =
d∑

i=1

αiδi ≤ L}. (5)

Here L ∈ R,

δi =
log(βi )(wi + γi−si

2 )

Cδ
, for all i ∈ {1 · · · d},

and Cδ =
d∑

j=1

log(βj)(wj +
γj − sj

2
).

(6)

Observe that 0 < δi ≤ 1, since si ≤ 2wi and γi > 0. Moreover,∑d
i=1 δi = 1.
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Multi-Index Monte Carlo (MIMC) – Choosing the Multi-Index Set in MIMC

s

L

α1

α2
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Multi-Index Monte Carlo (MIMC) – Main Theorem

MIMC work estimate for particular assumptions

η = min
i∈{1···d}

log(βi )wi

δi
, ζ = max

i∈{1···d}

γi − si
2wi

, z = #{i ∈ {1 · · · d} :
γi − si

2wi
= ζ}.

Theorem (Work estimate with optimal weights)
Let the total-degree index set Iδ(L) be given by (5) and (6), taking

L =
1

η

(
log(TOL−1) + (z− 1) log

(
1

η
log(TOL−1)

)
+ C

)
.

Under Assumptions 1-3, the bias constraint in (2) is satisfied asymptotically
and the total work, W (Iδ), of the MIMC estimator, A, subject to the variance
constraint (4) satisfies:

lim sup
TOL↓0

W (Iδ)

TOL−2−2 max(0,ζ)
(
log
(
TOL−1

))p <∞,
where 0 ≤ p ≤ 3d + 2(d − 1)ζ is known and depends on d ,γ,w , s and β.
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Multi-Index Monte Carlo (MIMC) – Main Theorem

Powers of the logarithmic term

ξ = min
i∈{1···d}

2wi − si
γi

, d2 = #{i ∈ {1 · · · d} : γi = si},

ζ = max
i∈{1···d}

γi − si
2wi

, z = #{i ∈ {1 · · · d} :
γi − si

2wi
= ζ}.

Cases for p:

A) if ζ ≤ 0 and ζ < ξ,
or ζ = ξ = 0 then p = 2d2.

B) if ζ > 0 and ξ > 0 then p = 2(z− 1)(ζ + 1).

C-D) if ζ ≥ 0 and ξ = 0 then p = d − 1 + 2(z− 1)(ζ + 1).
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Multi-Index Monte Carlo (MIMC) – Comparisons

Fully Isotropic Case: Smooth noise case
Assume wi = w , si = 2w , βi = β and γi = γ for all i ∈ {1 · · · d}
and d ≥ 3. Then the optimal work is

Work(MC) = O
(
TOL−2− dγ

w

)
.

Work(MLMC) =


O
(
TOL−2

)
, 2w > dγ,

O
(
TOL−2

(
log
(
TOL−1

))2
)
, 2w = dγ,

O
(
TOL−

dγ
w

)
, 2w < dγ.

Work(MIMC) =


O
(
TOL−2

)
, 2w > γ,

O
(
TOL−2

(
log
(
TOL−1

))3(d−1)
)
, 2w = γ,

O
(
TOL−

γ
w

(
log
(
TOL−1

))(d−1)(1+γ/w)
)
, 2w < γ,

Up to a multiplicative logarithmic term, Work(MIMC) is the same as

solving just a one dimensional deterministic problem.
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Multi-Index Monte Carlo (MIMC) – Numerical Results

Three dimensional PDE problem description

−∇ · (a(x ;ω)∇u(x ;ω)) = 1 for x ∈ (0, 1)3,

u(x ;ω) = 0 for x ∈ ∂(0, 1)3,

where a(x ;ω) = 1 + exp
(

2Y1Φ121(x) + 2Y2Φ877(x)
)
.

Here, Y1 and Y2 are i.i.d. uniform random variables in the range [−1, 1]. We
also take

Φijk(x) = φi (x1)φj(x2)φk(x3),

and φi (x) =

{
cos
(
i
2
πx
)

i is even,
sin
(
i+1

2
πx
)

i is odd,

Finally, the quantity of interest, S , is

S = 100
(

2πσ2
)−3

2

∫
D

exp

(
−‖x − x0‖2

2

2σ2

)
u(x)dx ,

and the selected parameters are σ = 0.04 and x0 = [0.5, 0.2, 0.6]. We have
γi = 2, wi = 2, and si = 4.
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Multi-Index Monte Carlo (MIMC) – Numerical Results

Numerical test: Computational Errors
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over-killed.
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Multi-Index Monte Carlo (MIMC) – Numerical Results

Numerical test: Maximum degrees of freedom
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Multi-Index Monte Carlo (MIMC) – Numerical Results

Numerical test: Running time, 3D problem
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O
(
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)
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Multi-Index Monte Carlo (MIMC) – Numerical Results

Numerical test: Running time, 4D problem
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)
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Multi-Index Monte Carlo (MIMC) – Numerical Results

Numerical test: QQ-plot
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corresponding
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can be found in
(Haji-Ali et al.

2015).
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Multi-Index Monte Carlo (MIMC) – Conclusions

MIMC Conclusions and Extra Points
MIMC is a generalization of MLMC and performs better,
especially in higher dimensions, provided mixed regularity
between discretization parameters.
MIMC general analysis framework, identifying optimal
index-set through profit thresholding. Each set of regularity
assumptions yield its optimal index-set and related complexity.
A MIMC direction does not have to be a spatial dimension. It can
represent any form of discretization parameter!
Example: 1-DIM Stochastic Particle Systems, MIMC brings

complexity down from O(TOL−4) to O(TOL−2 log
(
TOL−1

)2
).

”A study of Monte Carlo methods for weak approximations of

stochastic particle systems in the mean-field”, by A. L. Haji Ali and

R. T. May 2016.

Observe, connection to Ensemble Kalman Filter (EnKF):
ML-MIMC can compute other statistics, for instance the
covariance.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Stochastic Particle Systems in the Mean-field

Particle systems are a collection of coupled, usually identical
and simple, models that can be used to model complicated
phenomena.

Molecular dynamics, Crowd simulation, Oscillators

Certain particles systems approach a mean-field limit as the
number of particles increase. Such limits can be useful to
understand their complicated phenomena.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Kuramoto oscillator model †

For p = 1, 2, . . . ,P

dXp|P(t) =

(
ϑp +

1

P

P∑
q=1

sin(Xp|P(t)− Xq|P(t))

)
dt + σdWp|P(t)

Xp|P(0) = x0
p|P

where we are interested in

Total disorder =

(
1

P

P∑
p=1

cos
(
Xp|P(T )

))2

+

(
1

P

P∑
p=1

sin
(
Xp|P(T )

))2

:

a real number between zero and one that measures the level of
synchronization of the oscillators.

†
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Kuramoto oscillator model †

For p = 1, 2, . . . ,P

dXp|P(t) =

(
ϑp +

1

P

P∑
q=1

sin(Xp|P(t)− Xq|P(t))

)
dt + σdWp|P(t)

Xp|P(0) = x0
p|P

where we are interested in

φP =
1

P

P∑
p=1

cos
(
Xp|P(T )

)
,

Mean-field limit: φP → φ∞ = E
[
cos(Xp|∞(T ))

]
as P ↑ ∞

†
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Kuramoto oscillator model †, Euler-Maruyama

For p = 1, 2, . . . ,P

X
n|N
p|P − X

n−1|N
p|P =

(
ϑp +

1

P

P∑
q=1

sin(X
n|N
p|P − X

n|N
q|P )

)
T

N
+ σ∆W

n|N
p|P

X
0|N
p|P = x0

p|P

where we are interested in

φNP =
1

P

P∑
p=1

cos
(
X

N|N
p|P

)
,

Mean-field limit: φP → φ∞ = E
[
cos(Xp|∞(T ))

]
as P ↑ ∞

†
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

MIMC, with partitioning samplers

Let Pα1 = 2α1 and Nα2 = 2α2 .

Build correlated samples by

Sampling 2α1 and sub-sampling two identically-distributed,
independent groups of 2α1−1 particles out of them.

At the same time, by using the same Brownian paths discretized
with different meshes 2α2 and 2α2−1.

Use MIMC levels: Mixed differences!
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

MIMC, with partitioning samplers

Let Pα1 = 2α1 and Nα2 = 2α2 .
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Notice higher rates for mixed difference.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

MIMC, with partitioning samplers

Let Pα1 = 2α1 and Nα2 = 2α2 .
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

MIMC, with partitioning samplers

Let Pα1 = 2α1 and Nα2 = 2α2 .

Summary:

w1 = w2 = 1
s1 = s2 = 2
γ1 = 2γ2 = 2

 =⇒ ζ = max

(
γ1 − s1

2w1
,
γ2 − s2

2w2

)
= 0

The optimal set

I(L) =
{

(α1, α2) ∈ N2 : 2α1 + 3α2 ≤ L
}

The optimal work of the asymptotically unbiased MIMC is

O
(
TOL−2 log

(
TOL−1

)2
)
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Summary

Method Work complexity
Monte Carlo O

(
TOL−4

)
MLMC in N O

(
TOL−3

)
MLMC in P O

(
TOL−4

)
MLMC in P, partitioning O

(
TOL−3 log(TOL−1)2

)
MLMC in P and N O

(
TOL−4

)
MLMC in P and N, partitioning O

(
TOL−3

)
MIMC O

(
TOL−2 log

(
TOL−1

)2
)
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Numerical Example: MIMC vs. MLMC

X
n|N
p|P − X

n−1|N
p|P =

ϑp +
0.4

P

P∑
q=1

sin(X
n|N
p|P − X

n|N
q|P )

 T

N
+ 0.4∆W

n|N
p|P

X
0|N
p|P ∼ N (0, 0.2)

where ϑp ∼ U(−0.2, 0.2). The quantity of interested is

φNP =
1

P

P∑
p=1

cos
(
X

N|N
p|P

)
.

for T = 1.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Numerical Example: MIMC vs. MLMC
for T = 1.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Numerical Example: MIMC vs. MLMC
for T = 1.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Numerical Example: MIMC vs. MLMC
for T = 1.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Multi Level computation of the Covariance, Cov [S ]
Let now S be a vector valued output quantity of the solution of a
stochastic differential equation, and S` its approximation based on
a level ` discretization. Our goal is to approximate the covariance.
Monte Carlo: based on M iid samples, {SL,i}Mi=1, compute the
sample mean and sample covariance

E [SL;M] =
1

M

M∑
m=1

SL,i ,

Cov [SL;M] =
1

M − 1

M∑
m=1

(SL,i − E [SL;M])(SL,i − E [SL;M])T

Multilevel Monte Carlo: [Bierig-Chernov,2014]

CovML =
L∑
`=0

{Cov [S`;M`]− Cov [S`−1;M`]}

Observe: both Cov [S`;M`] and Cov [S`−1;M`] use the same noise.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Filtering problem description
Consider the underlying and unobservable (stochastic) dynamics
and observations,

un+1 = Ψ(un),

yn+1 = Hun+1 + γn+1, γn+1 ∼ N(0, Γ).

Assume u0 ∈ Lp(Ω) for any p ≥ 1 and H ∈ Rk×d .
The observation noise is iid and independent of the noise driving
the dynamics.

Objective: Let Yn := (y1, y2, . . . , yn) and let Y obs
n be a sequence

of fixed observations. Construct an efficient method for tracking
un|(Yn = Y obs

n ). That is, approximate

E
[
φ(un)|Yn = Y obs

n

]
for a given observable φ : Rd → R.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Ensemble Kalman Filtering (Evensen 94)

Predict

1. Compute (numerical solutions of) M particle paths one step
forward

v̂n+1,i = Ψ(vn,i , ωi ) for i = 1, 2, . . . ,M.

2. Compute their sample mean and covariance

m̂MC
n+1 = EM [v̂n+1]

ĈMC
n+1 = CovM [v̂n+1]

where EM [v̂n+1] :=
1

M

M∑
i=1

v̂n+1,i

and CovM [v̂n+1] := EM [v̂n+1v̂
T
n+1]− EM [v̂n+1](EM [v̂n+1])T .
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Ensemble Kalman Filtering II

Update

1. Generate signal observations for the ensemble of particles

ỹn+1,i = yobsn+1 + γn+1,i for i = 1, 2 . . . ,M,

with i.i.d. γn+1,1 ∼ N(0, Γ).

2. Use signal observations to update, for i = 1, 2 . . . ,M, particle
paths

vn+1,i = (I − KMC
n+1H)v̂n+1,i + KMC

n+1ỹn+1,i ,

where KMC
n+1 = ĈMC

n+1H
T (HĈMC

n+1H
T + Γ)−1.

Note: After the first update step, all particles are correlated due
to KMC

n+1.
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Multi-Index Monte Carlo (MIMC) – MIMC for Interacting Stochastic Particle Systems

Reducing computational cost of EnKF with MLEnKF

Idea: In Multilevel EnKF, we aim to produce similar computational
gains wrt EnKF as Multilevel MC does wrt MC. The Multilevel
approximation is done to the state covariance!

H. Hoel, K. J. H. Law, R. T., ”Multilevel Ensemble Kalman
Filtering”. Accepted for publication, SINUM (2016).

A. Beskos, Ajay Jasra, K. Law, R. T. and Y. Zhou, Multilevel
Sequential Monte Carlo Samplers. Submitted, 2015.
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Multilevel ensemble Kalman filtering

Multilevel EnKF (MLEnKF)

Prediction Step

Compute an ensemble of particle paths on a hierarchy of
accuracy levels

v̂ `−1
n+1,i = Ψ`−1(v `−1

n,i , ω`,i ), v̂ `n+1,i = Ψ`(v `n,i , ω`,i ),

for the levels ` = 0, 1, . . . , L and i = 1, 2, . . . ,M`.

Multilevel approximation of mean and covariance matrices:

m̂ML
n+1 =

L∑
`=0

EM`
[v̂ `n+1 − v̂ `−1

n+1],

ĈML
n+1 =

L∑
`=0

{
CovM`

[v̂ `n+1]− CovM`
[v̂ `−1

n+1]
}

Notice the MLMC telescoping properties hold by construction.
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Multilevel ensemble Kalman filtering

Multi Level EnKF update step

Update Step

For ` = 0, 1, . . . , L and i = 1, 2, . . . ,M`,

ỹ `n+1,i = yobsn+1 + γ`n+1,i , i.i.d. γ`n+1,i ∼ N(0, Γ)

v `−1
n+1,i = (I − KML

n+1H)v̂ `−1
n+1,i + KML

n+1ỹ
`
n+1,i ,

v `n+1,i = (I − KML
n+1H)v̂ `n+1,i + KML

n+1ỹ
`
n+1,i ,

where KML
n+1 = ĈML

n+1H
T(HĈML

n+1H
T + Γ)−1.
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Multi-index Stochastic Collocation (MISC)

Beyond MIMC: Multi-Index Stochastic Collocation

Can we do even better if additional smoothness is available?

[MISC1, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
“Multi-Index Stochastic Collocation for random
PDEs”. arXiv:1508.07467. Computers and
Mathematics with Applications, Vol. 306, pp.
95–122, July 2016.

[MISC2, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.
”Multi-Index Stochastic Collocation convergence
rates for random PDEs with parametric regularity”.
arXiv:1511.05393v1. Submitted, November 2015.

Idea: Use sparse quadrature to carry the integration in MIMC!
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Multi-index Stochastic Collocation (MISC)

MISC Assumptions

For some strictly positive constant QW , gj , wi , Cwork and γi for
i = 1 . . . d and j = 1 . . . n, there holds

∣∣∣∆n
(
∆dSα,τ

)∣∣∣ ≤ QW

 n∏
j=1

exp(−gjτj)

( d∏
i=1

exp(−wiαi )

)
.

Work
(
∆n

(
∆dSα,τ

))
≤ Cwork

 n∏
j=1

τj

( d∏
i=1

exp(γiαi )

)
.

This a simplified presentation that can be easily generalized to
nested points.
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Multi-index Stochastic Collocation (MISC)

MISC work estimate

Theorem (Work estimate with optimal weights)

[MISC1, 2015] Under (our usual) assumptions on the error and
work convergence there exists an index-set I such that

lim
TOL↓0

|AMISC(I)− E[S ]|
TOL

≤ 1

and lim
TOL↓0

Work[AMISC(I)]

TOL−ζ
(
log
(
TOL−1

))(z−1)(ζ+1)
= C (n, d) <∞

(7)
where ζ = maxdi=1

γi
wi

and z = #{i = 1, . . . d : wi
γi

= ζ}.
Note that the rate is independent of the number of random
variables n. Moreover, d appears only in the logarithmic power.
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Multi-index Stochastic Collocation (MISC)

MISC numerical comparison [MISC1, 2015]

Comparison with MIMC and Quasi Optimal (QO) Single &
Multilevel Level Sparse Grid Stochastic Collocation
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Multi-index Stochastic Collocation (MISC)

MISC (parametric regularity, N =∞) [MISC2, 2015]
We use MISC to compute on a hypercube domain B ⊂ Rd

−∇ · (a(x , y)∇u(x , y)) = f (x) in B

u(x , y) = 0 on ∂B,

where

a(x , y) = eκ(x ,y), with κ(x , y) =
∑
j∈N+

ψj(x)yj .

Here, y are iid uniform and the regularity of a (and hence u) is
determined through the decay of the norm of the derivatives of
ψj ∈ C∞(B). Given the sequences

bs,j = max
s∈Nd :|s|≤s

‖Dsψj‖L∞(B) , j ≥ 1,

we assume that there exist 0 < p0 ≤ ps <
1
2 s.t. {bs,j}j∈N+

∈ `ps .
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Multi-index Stochastic Collocation (MISC)

Theorem (MISC convergence theorem)

[MISC2, 2015] Under technical assumptions the profit-based
MISC estimator built using Stochastic Collocation over
Clenshaw-Curtis points and piecewise multilinear finite elements for
solving the deterministic problems, we have, for δ > 0,∣∣E[S ]−AMISC[S ]

∣∣ ≤ C̃P(δ)Work[AMISC[S ]]−rMISC+δ .

The rate rMISC is as follows:

Case 1 if γ
rFEM+γ ≥

ps
1−ps , then rMISC = rFEM

γ ,

Case 2 if γ
rFEM+γ ≤

ps
1−ps , then

rMISC =

(
1

p0
− 2

)(
γ

ps − p0

rFEMp0ps
+ 1

)−1

.
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Multi-index Stochastic Collocation (MISC)

Ideas for proofs in [MISC2, 2015]

Shift theorem: From regularity of a and f to regularity of
u ∈ H1+s(B)⇒ u ∈ H1+q

mix (B), for 0 < q < s/d .

Extend holomorphically u(·, z) ∈ H1+r (B) on polyellipse
z ∈ Σr (use pr summability of br ) to get stochastic rates and
estimates for ∆.

Use weighted summability of knapsack profits to prove
convergence rates.
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Multi-index Stochastic Collocation (MISC)

Example: log uniform field with parametric regularity
[MISC2, 2015]

Here, the regularity of κ = log(a) is determined through ν > 0

κ(x , y) =
∑
k∈Nd

Ak
∑

`∈{0,1}d
yk,`

d∏
j=1

(
cos
(π
L
kjxj

))`j (
sin
(π
L
kjxj

))1−`j
,

where the coefficients Ak are taken as

Ak=
(√

3
)

2
|k|0

2 (1 + |k |2)−
ν+d/2

2 .

We have

p0 >

(
ν

d
+

1

2

)−1

and ps >

(
ν − s

d
+

1

2

)−1

.
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Multi-index Stochastic Collocation (MISC)

Application of main theorem [MISC2, 2015]
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A similar analysis shows the corresponding ν-dependent
convergence rates of MIMC but based on `2 summability of bs and
Fernique type of results.
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Multi-index Stochastic Collocation (MISC)

MISC numerical results [MISC2, 2015]
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Multi-index Stochastic Collocation (MISC)

MISC numerical results [MISC2, 2015]
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Error ∝Work−rMISC (ν,d)

56/57



ML-MIMC [R. Tempone]

Multi-index Stochastic Collocation (MISC)

Deterministic runs, numerical results [MISC2, 2015]

These plots shows the non-asymptotic effect of the logarithmic
factor for d > 1 (as discussed in [Thm. 1][MISC1, 2015]) on the
linear convergence fit in log-log scale.
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