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Monte Carlo and extensions

Motivational Example:
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Let (2, F, P) be a complete probability
space and D be a bounded convex polygonal domain in RY.
following equation:

The solution v : D x Q — R here solves almost surely (a.s.) the
-V - (a(x;w)Vu(x;w)) = f(x;w)
0

for x € OD.
Goal: to approximate E[S] € R where S = W(u) for some
sufficiently “smooth” a, f and functional V.

u(x; w)

for x € D,
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Monte Carlo and extensions

Motivational Example: Let (2, F, P) be a complete probability
space and D be a bounded convex polygonal domain in RY.

The solution v : D x Q — R here solves almost surely (a.s.) the
following equation:

-V (a(x;w)Vu(x;w)) = f(x;w)  for x € D,
0 for x € OD.

u(x; w)

Goal: to approximate E[S] € R where S = W(u) for some
sufficiently “smooth” a, f and functional V.
Later, in our numerical example we use

s 2
S =100 (270?) 2 /Dexp <—”X20§0H2> u(x)dx.

for xg € D and ¢ > 0.
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MOnte CaI'IO (Metropolis and Ulam, 1949)
Recall the Monte Carlo method and its error splitting:
E[W(u(y))] - Z V(un(y gl‘yl;as(h) gsui.{at( )
|Ebas(M)] = [E[W(u(y)) — W(un(y))]| < Ch*
discretization error
std[WV(uy

£X,(M)] = [E[W(uny 1—*Zwuh Mis o2

VM

statistical error

The last approximation is motivated by the Central Limit Theorem.

P (et < o 2N g
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Assume: computational work for each u(y(wm)) is (’)(hf"ﬁ.‘““ST
Total work :  Mh=%7

(M) < Gh" + G

VM
We want now to choose optimally h and M. Here we minimize the
computational work subject to an accuracy constraint, i.e. we solve

minhyM M h—dv
st. Gih” + \/CTA” < TOL

Total error 1 |Ep..(h)| + |EY

stat

We can interpret the above as a tolerance splitting into statistical
and space discretization tolerances, TOL = TOLg + TOLy, such
that

TOL 1
T = 2wy 2 Ok T O (1 B (”2”’/("7))) |

The resulting complexity (error versus computational work) is then

W o TOL ™ (2+dv/w)
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Numerical Approximation
We assume:
o D=[]L,[0,D;] for D; C Ry be a
hypercube domain in R,

@ we have an approximation of u (FEM, FD, . / n
FV, ...) based on discretization parameters Tl
h; fori=1...d. Here

hi = hio B; %,
with 5; > 1 and the multi-index
a= (a,-)?:l e N¢,

Notation: S, is the approximation of S
calculated using a discretization defined by
Q.
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Left: Tensor domain, cylinder.

Center:
Right:

Non-tensor domain immersed in a tensor box.
Non-tensor domain with a structured mesh.
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Multilevel Monte Carlo (MLMC) (Heinrich, 1998) and (Giles, 2008)

Take B; = 8 and for each £ = 1,2, ... use discretizations with
a=({,...,0). Recall the standard MLMC difference operator

~ if /=
As, = So | (=0,
Se1— Sp—1y1 ifL>0.
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Multilevel Monte Carlo (MLMC) (Heinrich, 1998) and (Giles, 2008)

Take B; = 8 and for each £ = 1,2, ... use discretizations with
a=({,...,0). Recall the standard MLMC difference operator

~ if /=
AS, = So | (=0,
Se1— Sp—1y1 ifL>0.

Observe the telescopic identity

L
E[S] ~E[S.1] =Y E [854.
(=0
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Multilevel Monte Carlo (MLMC) (Heinrich, 1998) and (Giles, 2008)

Take B; = 8 and for each £ = 1,2, ... use discretizations with
a=({,...,0). Recall the standard MLMC difference operator

~ if /=
As, = So | (=0,
Se1— Sp—1y1 ifL>0.

Observe the telescopic identity

L
E[S] ~E[S.1] =Y E [854.
(=0

Then, using MC to approximate each level independently, the
MLMC estimator can be written as

Lo Mo
Amimc = Z I Z ASy(we,m)-
m=1

(=0
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Variance reduction: MLMC

Recall: With Monte Carlo we have to satisfy

((((r
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1 1
Var[Amc| = MVM[SL] ~ VLVar[S] < TOL?.

Main point: MLMC reduces the variance of the deepest level
using samples on coarser (less expensive) levels!

1
Var[AMme] 7\/&1 [50]

1
+ Z mVar[ASE] < TOL. \
/=1

Observe: Level 0 in MLMC is usually deter-

mined by both stability and accuracy, i.e.

Var[AS1] << Var[Sp] = Var[S] < occ.
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Classical assumptions for MLMC o
For every ¢, we assume the following:
Assumption 1 (Bias): E[S -S| <87,
Assumption 2 (Variance): Vy = Var [554 <Bg e,
Assumption 3 (Work): W, = Work(AS,) < g9,

for positive constants v, w and s < 2w.

Example: Our smooth linear elliptic PDE example approximated
with Multilinear piecewise cont. FEM: 2w =s=4,1 <~ < 3.

Work of MLMC: Work(MLMC) Z M, W,

Choose the samples (M,)5_, optimally so Var[Amimc] < TOL2,
2

L
Optimal Work of MLMC: Work(MLMC) < TOL 2 (Z N7 Wg)
=0
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MLMC Computational Complexity

(@

KAUST

Choose the number of levels L(TOL) to bound the bias
[E[S - S]] S 7™ < CTOL

> log(TOL™!) — log(C)

w log(/3) ’
Then the optimal work satisfies (Giles et al., 2008, 2011):

(9 (TOLiz), s> d’}/,
Work(MLMC) = { © (TOL_2 (Iog(TOL™Y)?), s = dn,
0 <TOL‘(2+“”WS))>

s < dv.
Recall: Work(MC) = O (TOL—(”‘%)).
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Questions related to MLMC

1. How to choose the mesh hierarchy h,? [H-ASNT, 2015]

2. How to efficiently and reliably estimate V;? How to find the
correct number of levels, L7 [CH-ASNT, 2015]

3. Can we do better? Especially for d > 17 [H-ANT, 2015]

[H-ASNT, 2015] A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. “Optimization of mesh

hierarchies in Multilevel Monte Carlo samplers”. arXiv:1403.2480, Stochastic
Partial Differential Equations: Analysis and Computations, 4(1):76-112, (2016).

[CH-ASNT, 2015] N. Collier, A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. T. “A continuation
multilevel Monte Carlo algorithm”. BIT Numerical Mathematics, 55(2):399-432,
(2015).

[H-ANT, 2015] A.-L. Haji-Ali, F. Nobile, and R. T. “Multi-Index Monte Carlo: When Sparsity

Meets Sampling”. Numerische Mathematik, 806:132-767, (2016).

Time adaptivity for MLMC in Itd SDEs: Stopping with optimal asymptotic Accuracy and Efficiency

@ Adaptive Multilevel Monte Carlo Simulation, by H. Hoel, E. von Schwerin, A. Szepessy and
R. T., Numerical Analysis of Multiscale Computations, 82, Lect. Notes Comput. Sci.
Eng., (2011).

@ Implementation and Analysis of an Adaptive Multi Level Monte Carlo Algorithm, by H.
Hoel, E. von Schwerin, A. Szepessy and R. T., Monte Carlo Methods and Applications. 20,
(2014).

@ Construction of a mean square error adaptive Euler-Maruyama method with applications in
multilevel Monte Carlo, by H. Hoel, J. Happdla, and R. T. To appear in MC and Q-MC
Methods 2014, Springer Verlag, (2016).
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Hybrid MLMC for Stochastic Reaction Networks

@ A Moraes, R. T., and P. Vilanova. Multilevel hybrid Chernoff tau-leap. BIT Numerical
Mathematics, April 2015.

@ A Moraes, R. T., and P. Vilanova. A multilevel adaptive reaction-splitting simulation
method for stochastic reaction networks. arXiv:1406.1989. To appear in SIAM Journal on
Scientific Computing (SISC), 2016.

@ C. Ben Hammouda, A. Moraes and R. T. Multilevel drift-implicit tau-leap,
arXiv:1512.00721. To appear in the Journal of Numerical Algorithms, 2016.
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) 20 exact paths Predicted work vs. Error bound, Simple stiff model
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Predicted work (runtime)
J : _ ~ J
Kurtz representation: X(t) = XO+Z Y; (/ aj(X(s))ds> vj, Tau-Leap: Xp41 = X,,+Z Pi(anAt)y;
= 0 j=1

with independent unit-rate Poisson processes { Yj(t)}¢>o and reaction channels {a;, ;}.
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Variance reduction: MLMC
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Variance reduction: Further potential

Y
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Multi-Index Monte Carlo (MlMC) (Haji Ali, Nobile, T. 2015)

For i =1,...,d, define the first order difference operators

Sa if i = O,
Ai504 = I “
Sa - Ya—e; |f a, > O,

AUST

and construct the first order mixed difference

AS, = (@,ilA,-)sa.
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Multi-Index Monte Carlo (MIMC)

(Haji Ali, Nobile, T. 2015)
For i =1,...,d, define the first order difference operators

Sa if i = O,
SOL - Yo—e;

if a; >0,
and construct the first order mixed difference

AS, = (@,ilA,-)sa.
Then the MIMC estimator can be written as

M
1 [e3
Amime = > o > ASa(wa,m)
acT ¥ m=1

for some properly chosen index set 7 C N? and samples (Mg )acr.

(@

KAUST
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Example: On mixed differences

Consider d = 2. In this case, let-
ting a = (a1, ), we have
As(al,az) = A2(A15(a1,a2))
= Ay (5a1,oz2 - 5041—17042)
= (5041,042 - 5a1—1,a2)

- (5041,042—1 - Soq—l,az—l) .

Notice that in general, AS, re-
quires 29 evaluations of S at dif- \
ferent discretization parameters,

the largest work of which corre-
sponds precisely to the index ap-
pearing in AS,, namely .
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Our objective is to build an estimator A = Amimc where " KAUST
P(]JA—E[S]]<TOL) >1—c¢ (1)

for a given accuracy TOL and a given confidence level determined
by 0 < e < 1. We instead impose the following, more restrictive,
two constraints:

Bias constraint: |E[A—S]| <(1-0)TOL, (2)
Statistical constraint: P (|A - E[A]| <TOL)>1—-e¢ (3)

For a given fixed 6 € (0,1). Moreover, motivated by the
asymptotic normality of the estimator, .4, we approximate (3) by

(4)

Var[A] < <9TOL>2.

€

Here, 0 < C is such that ®(C.) =1 — 5, where ® is the

cumulative distribution function of a standard normal random var.
16/57
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Given variance and work estimates we can already optimize for the
optimal number of samples M}, € R to satisfy the variance
constraint (4)

M, = (HTC(;L)Z\/»(Z \/—>

acl

Taking M}, < My < M}, + 1 such that M, € N and substituting
in the total work gives

Work(Z) < <0TOL> (ZW) + ) Wa

acl

N——
Min. cost of Z

Observe:The work now depends on 7 only.
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MIMC general analysis framework

Question: How do we find optimal index set Z for MIMC?

in Work(Z h that Bias = S E, < (1 — 6)TOL,
min, ork(Z) such that Bias o%:Ia_( )

Assumption: MIMC work is not dominated by the work to
compute a single sample corresponding to each a.

Then, minimizing equivalently \/Work(Z), the previous min
problem can be recast into a knapsack problem with profits defined
for each multi-index a.

The corresponding a profit is

Bias contribution E.

Po = Work contribution — /V, W,

18/57
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MIMC general analysis framework
Define the total error associated with an index-set 7 as
E(I)=> Ea
adl

and the corresponding total work estimate as

W) =Y v/ VaWa.

acl
Then we can show the following optimality result with respect to
&(Z) and 25(Z), namely:
Lemma (Optimal profit sets)
The index-set
I(v) ={a e N?: Py > v}

for Po = ﬁ is optimal in the sense that any other index-set,
7, with smaller work, 20(7) < 23(Z(v)), leads to a larger error,
E(Z) > &(Z(v)).
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MIMC general analysis framework
Once the shape of 7 is determined, we find Z(TOL) by the bias
¢(Z(TOL)) = ) Ea < (1-6)TOL
a¢Z(TOL)

yielding the corresponding computational work

2
2
< eTC6L> > VVaWa | <TOL )

a€cZ(TOL)

Particular assumptions for MIMC For every o, assume

d
Assumption 1 (Bias) : Eo = |E[ASL]] < I I'—1 e
d
Assumption 2 (Variance) : Vo = Var[AS,] S I |.71 s,
d
Assumption 3 (Work) : Wq = Work(ASe) < I |__1 B,

For positive constants ~;, wj,s; < 2w; and for i=1...d.
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Particular optimal index-set for MIMC
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In particular, under Assumptions 1-3, the optimal index-set can
be written (by the profit-thresholding Lemma defining 7) as

d
Ig(L):{QGNdZa'5:ZQi5i§ L}.
Here L € R,

(5)
i=1
5 log(B)(wi + 25%)
i — C6

)

forall i e {1---d},
d (6)
s
and G5 =) log(5))(w; + ).
j=1

Observe that 0 < §; < 1, since s; < 2w; and 7; > 0. Moreover,
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MIMC work estimate for particular assumptions

B . log(Bi)wi _ Yi — Si
= ie?;!pd} 5 ¢= ier{q?-)»(d} 2w;

5 5:#{ie{1...d}:%:<}.

Theorem (Work estimate with optimal weights)
Let the total-degree index set Z5(L) be given by (5) and (6), taking

L= % (Iog(TOL_l) +(3—1)log (% Iog(TOL_1)> + C) .

Under Assumptions 1-3, the bias constraint in (2) is satisfied asymptotically
and the total work, W(Zs), of the MIMC estimator, A, subject to the variance
constraint (4) satisfies:

limsup W(Zs)

< 00,
TOLJ0 TOL—2—2max(0,() (lOg (TOL_l))p o0

where 0 < p < 3d + 2(d — 1)¢ is known and depends on d,~,w,s and 3.
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Powers of the logarithmic term
f= min MTS g _alic{l-.d) sit
= | = ] e S = Sit
ie{l-dy v v
Yi —Si . Yi — Si
¢ Lo 3=#{ie{l---d} P C}
Cases for p:
A) if ( <0and (<&,
or(=¢=0 then p = 2d>.
B) if ¢ >0and ¢ >0 then p = 2(3 — 1)(C + 1).
C-D) if ¢ >0and £ =0 then p=d — 1+ 2(3 — 1)(¢ +1).
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Fully Isotropic Case: Smooth noise case

Assume w; = w, s; = 2w, B; = and y; = forall i € {1---d}
and d > 3. Then the optimal work is

Work(MC) = O (TOL— —d%).

Work(MLMC) =

Work(MIMC) =

(O (TOL™?), 2w > d,
O (TOL 2 (log (TOL™))?), 2w = dv,
O TOL—‘%), 2w < dn.

(O (TOL_Z), 2w > 7,
O (TOL2 (log (TOL_l))3(d_1)), 2w =7,

O (TOL™# (log (TOL 1))~ V7))

, 2w <7,

Up to a multiplicative logarithmic term, Work(MIMC) is the same as

solving just a one dimensional deterministic problem.
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Three dimensional PDE problem description o

—V - (a(x;w)Vu(x;w)) =1  for x € (0,1)°,
u(x;w)=0 for x € 8(0,1),

2Y1¢121(X) + 2Y2¢877(X)) .

/N

where a(x;w) =1+ exp

Here, Y1 and Y- are i.i.d. uniform random variables in the range [—1,1]. We
also take

Pk (x) = di(x1)j(x2)dx(x3),
cos ( '7rx) i is even,

(x) — 2
and %i(x) = {sm (Htrx) s odd,

Finally, the quantity of interest, S, is

-3 2
S =100 (271'02> ’ / exp <—HX27)2®”2) u(x)dx,
p %

and the selected parameters are 0 = 0.04 and xo = [0.5,0.2,0.6]. We have
’y,'=2, W,'=2, and 5,‘:4.
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— Numerical Results
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Numerical test: Computational Errors

10° ‘ ‘ ‘ —=
1071E _ e E
.

102 71 :

- X Several runs
-3 2 d .

10 " for different
10k LR * 1 TOL values.
3 x o} o9 o -
£ TN x X Error is
M 195 X 8 i x s .

x °8 x satisfied in

106 {  probability

w0-7l| - TOL o ] but not

xxx MIMC TD over-killed.
10~8 || oo MIMC FT E
000 MLMC
107° ‘ . ‘
1074 1073 102 107! 10°
TOL
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Numerical test: Maximum degrees of freedom

— Numerical Results

107
_ TOL70'5
. TOL™'?
106 | N xx x MIMC TD i
s=ss MIMCFT
. -‘\-_ (I} eee MLMC
B ’
S 107} :
g .
g e sn .
E 104 F ~ E
=~ x x FC )
Tx ~_ X
103 F x" % X 4
; T x X [ ]
x Tx~ <
102 L L L X s
1074 1073 1072 107! 10°
TOL

A
%

¢
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Maximum
number of
degrees of
freedom of a
sample PDE
solve for
different
TOL values.
This is an
indication of
required
memory.
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Numerical test: Running time, 3D problem
108
TOL™
107~ ToL® |l
Y MIMC TD
10"} MIMC FT |
3 MLMC
— 1 Recall that
£ the work
202} { complexity of
=]
g Monte Carlo
& 10t} 1 .
is
1000 | O (TOL_S)
1071 E
-2 . ) ~ .
100 10°° 102 100
TOL
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Numerical test: Running time, 4D problem
104 ~
103} E
A similar
PDE problem
() 2 -
£ 10 with d=4 .
¥ The work
=] .
5 10 complexity of
a Monte Carlo
-- TOL? is
10° ... oL 1 O (TOL_6)
 MiMc TD | &
¢—¢ MLMC .
10~1 b i L L N .
101 103 102 10 10°
TOL
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Numerical test: QQ-plot

1.0 . .
eee TOL=16x 107 X ,"r
xxx TOL=8x 10" xﬁ"
0.8f /,,ggg'
a
£
=
a 0.6 jtgag’
o
] 4
E "
2 04 e
’{, &
y %1
z0°
27
0.2 ngﬁf/
0.0, : ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0
Empirical CDF

0
A
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Numerical
verification of
asymptotic
normality of the
MIMC
estimator. A
corresponding
statement and
proof of the
normality of an
MIMC estimator
can be found in
(Haji-Ali et al.
2015).
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Conclusions and Extra Points
MIMC is a generalization of MLMC and performs better,
especially in higher dimensions, provided mixed regularity
between discretization parameters.
MIMC general analysis framework, identifying optimal
index-set through profit thresholding. Each set of regularity

assumptions yield its optimal index-set and related complexity.

A MIMC direction does not have to be a spatial dimension. It can
represent any form of discretization parameter!
Example: 1-DIM Stochastic Particle Systems, MIMC brings

complexity down from O(TOL™*) to O(TOL? log (TOL_1)2).

" A study of Monte Carlo methods for weak approximations of
stochastic particle systems in the mean-field”, by A. L. Haji Ali and
R. T. May 2016.

Observe, connection to Ensemble Kalman Filter (EnKF):
ML-MIMC can compute other statistics, for instance the
covariance.
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Stochastic Particle Systems in the Mean-field

@ Particle systems are a collection of coupled, usually identical
and simple, models that can be used to model complicated
phenomena.

e Molecular dynamics, Crowd simulation, Oscillators

@ Certain particles systems approach a mean-field limit as the
number of particles increase. Such limits can be useful to

understand their complicated phenomena.
1.0

0.8

0.6

0.4

0.2

04!
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— MIMC for Interacting Stochastic Particle Systems
Kuramoto oscillator model !
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Forp=1,2,...,P

dX, p(t) = < ZS'”( plp(t) — Xqp(t ))) dt + odWjp(t)
Xolp(0) = X2|P

where we are interested in

Total disorder = (; Zcos (XPP(T))> + (/13 Zsin (XPP(T))> :

=1
a real number between zero and one that measures the level of
synchronization of the oscillators

TY Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984
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Kuramoto oscillator model !

Forp=1,2,...,P

dXyp(t) = <19 +PZS|n( L1p() = X p(t )))dt-l—Udep(t)

Xo1p(0) = x3p

where we are interested in

P
1
P=5 Zcos (Xpp(T
p=1

Mean-field limit: op — ¢ = E [cos(Xp|oo(T))} as P7Too

TY. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
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Kuramoto oscillator model T, Euler-Maruyama

Forp=1,2,...,P
| | 1o | \ T \
n|N n—1|N . n|N n|N n|N
Xlp = X" = <Q9P+PZS|n(XpP —qu,,)> 5 oAV
q=1

ON _ 0
XP|P — “plP

where we are interested in

P
1
N _ NIN
op = FZCOS (XP‘P ) ,
p=1

Mean-field limit: Op — P = E[cos(Xp‘oo(T))] as P7Too

TY. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
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((

MIMC, with partitioning samplers

o Let Py, =2° and N,, = 2°2.

@ Build correlated samples by

e Sampling 2%t and sub-sampling two identically-distributed,
independent groups of 221~ particles out of them.

o At the same time, by using the same Brownian paths discretized
with different meshes 222 and 29271,

o Use MIMC levels: Mixed differences!
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¢

MIMC, with partitioning samplers

o Let Py, =2° and N,, = 2°2.

100 ‘ ‘ ‘Expe‘ctatio‘n ‘ ‘ ‘ ‘ ‘ Var‘iance‘ ‘ ‘ ‘
107?
107! E|
10-2 { 10
10-3f 1 10-7|:
1 D a=(i.0
1071 i 107
r % a=(0,)
10°° 1 oo FF o=,
= i
6 N 4
10 10718 27%
107 1 -t
15
10-8 1 1077 F
109 1 1077
10-10 . . L . . . S 10-19 i~
0 3 6 9 12 15 18 21 24 0 24

w1, W = 1,51 = S =2
Notice higher rates for mixed difference.
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MIMC, with partitioning samplers

o Let Py, =2° and N,, = 2°2.

; Time
10? — : ——

10!

10°
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¢

MIMC, with partitioning samplers

o Let Py, =2° and N,, = 2°2.

Summary:

W1:W2:1 s s

s1=%5 =2 :>C:max<712 1,722 2)20
w w:

N =27=2 ! 2

@ The optimal set

(L) = {(al,ag) eN? : 207 +3ap < L}

The optimal work of the asymptotically unbiased MIMC is
O (TOL2l0g (TOL™)?)
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Summary
Method | Work complexity
Monte Carlo | O (TOL* )
MLMC in N | O (TOL™3)
MLMC in P | O (TOL"™ )
MLMC in P, partitioning | O (TOL™3log(TOL™)?)
MLMC in P and N | O (TOL™ 4)
MLMC in P and N, partitioning | O (TOL )
MIMC | O (TOL"2log (TOL1)?)
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Numerical Example: MIMC vs. MLMC

ﬂ(({

KAUST

n|N n—1|N n|N n\N n|N
Xop = Xgp " = |0 +—Zsm o — Xap) N+O4AW|P

X3l ~ N(0,0.2)

where ¥, ~ U(—0.2,0.2). The quantity of interested is

Z COs ( :lII‘DN>

for T =1.
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Numerical Example: MIMC vs. MLMC
for T =1.
10! T T T T
-- TOL
10-2| =% MIMC ||
ooo MLMC
1073} *'ki]i!] %gg ]
¥
¥ 5 § ' °

1074 Ygxo ,
£ * g o * *
S ~ ok R, . *
& - I _—

107°F -7 i g% : * o * * E

- *
e HE P * *
. PEICLC
1075k~ RS ]
* ’ * * * ? #*
x *
* o
1077 1
o
*
10—8 L L L L 3
1076 1079 10~ 1073 1072 107!
TOL
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Numerical Example: MIMC vs. MLMC

for T =1.

10"

=)
KAUST

(]

1001

1094

108}

1074

108}

Work Estimate

10°F

104

103}

TOL 2log(TOL™)?
TOL ™
MIMC
MLMC

T

1074
TOL
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Numerical Example: MIMC vs. MLMC
for T =1.
10° - - -
- - TOL%log(TOL™!)?
10t -~ TOL™ !
= MIMC
. ¢ MLMC
108
o 102k E
E
w
£ 10t} J
|
~
100 1
1071 E
10-2 . . W
107° 1074 1073 1072 107!
TOL

) ]

KAUST
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. . . > causT
Multi Level computation of the Covariance, Cov[S]

Let now S be a vector valued output quantity of the solution of a
stochastic differential equation, and S; its approximation based on
a level ¢ discretization. Our goal is to approximate the covariance.
Monte Carlo: based on M iid samples, {SL,i}il\iy compute the
sample mean and sample covariance

LM
E[Si; M] Y Z Siis

m=1
Cov[Sy; M] = Z(sL, E[Se; M1)(SLi — E[Su: M])T

Multilevel Monte Carlo: [Blerlg—Chernov,2014]

L

COVML = Z {COV[Sg; M[] - COV[Sg_l; Mg]}
£=0

Observe: both Cov[Sy; My] and Cov[Sy_1; My] use the same noise.
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Filtering problem description
Consider the underlying and unobservable (stochastic) dynamics

and observations,
Upt1 = W(Un),
Yn+1 = HUnJrl + Yntr1s, Yo+l ™~ N(O, r)

Assume ug € LP(Q) for any p > 1 and H € Rk*4,

The observation noise is iid and independent of the noise driving
the dynamics.

Objective: Let Y, := (y1,y2,...,yn) and let Y2 be a sequence
of fixed observations. Construct an efficient method for tracking
up|(Yn = YOP%). That is, approximate

E|é(un)|Yn = Yr?bs

for a given observable ¢ : RY — R.
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K/\UST

Ensemble Kalman Filtering (Evensen 94)
Predict

1. Compute (numerical solutions of) M particle paths one step
forward

Vn—i—l,i = \Il(v,,,,-,w,-) for i = ]., 2, N M.
2. Compute their sample mean and covariance

n+1 - EM[VfH-l]

Gl = Covm[Vnia]

M
~ 1 -
where  Ep[Vpy1] := o g Vntl,i
i=1

and  Covm[Vnt1] := Em[Va+1V) 1] — Em[Vas1)(Em[Vasa]) "
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. . K/\UST
Ensemble Kalman Filtering Il

Update

1. Generate signal observations for the ensemble of particles
Fnr1i =y + vns fori=1,2..., M,

with i.i.d. y,411 ~ N(0,T).
2. Use signal observations to update, for i = 1,2..., M, particle
paths

Vart,i = (I = KYGH) Va1 + K}y\f}?nﬂ,i,
KMC T
where K \§ = Cn+1 T(H Cn+1H 4+t

Note: After the first update step, all particles are correlated due
to KMS.
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Reducing computational cost of EnKF with MLEnK

((

Idea: In Multilevel EnKF, we aim to produce similar computational
gains wrt EnKF as Multilevel MC does wrt MC. The Multilevel
approximation is done to the state covariance!

@ H. Hoel, K. J. H. Law, R. T., "Multilevel Ensemble Kalman
Filtering”. Accepted for publication, SINUM (2016).

@ A. Beskos, Ajay Jasra, K. Law, R. T. and Y. Zhou, Multilevel
Sequential Monte Carlo Samplers. Submitted, 2015.
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Multilevel EnKF (MLEnKF)

6

K/\UST

Prediction Step

@ Compute an ensemble of particle paths on a hierarchy of
accuracy levels

~ ¢ ~
n—‘r::ll..l - 'LUZ 1( nll7w/r-,i)7 Vrt;—i-].,l' = WZ(V;;HW/ i))

for the levels £ =0,1,...,Land i =1,2,..., M,.

e Multilevel approximation of mean and covariance matrices:

AML
My = E :£5A41[Vﬁ—%1 n—kl

L
i = > { Covu, [7g.4] — Covan 17511}
£{=0

Notice the MLMC telescoping properties hold by construction.
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Multi Level EnKF update step

Update Step
For £=0,1,....Land i=1,2,..., M,

<0 b ¢ , ¢
yn+1i:yr‘1)+sl+7n+1 i ii.d. Tnt1,i ~ N(07 r)
- ML pj\l—1 ML ~¢
n+11 = (I = Ky piH), n+1 i+ KoiiVng1,is

¢ _ M ML ~¢
Vn+1,i_(l Ky 1H) Vint1,i K+1yn+117

where  KM5 = CMUHT(HCMY HT 4+ 0y~
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Beyond MIMC: Multi-Index Stochastic Collocation

@ Can we do even better if additional smoothness is available?

[MISC1, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.

“Multi-Index Stochastic Collocation for random
PDEs". arXiv:1508.07467. Computers and
Mathematics with Applications, Vol. 306, pp.
95-122, July 2016.

[MISC2, 2015] A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. T.

" Multi-Index Stochastic Collocation convergence

rates for random PDEs with parametric regularity”.

arXiv:1511.05393v1. Submitted, November 2015.

Idea: Use sparse quadrature to carry the integration in MIMC!
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MISC Assumptions
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For some strictly positive constant Qw, gj, wi, Cyork and ~; for
i=1...dandj=1...n, there holds

A" (A%Sar)| < Qw f[exp(—%)
j=1

d
(H exp(—w,-a,-)) .
i=1

This a simplified presentation that can be easily generalized to
nested points.

Work (A” (Adsa,‘r)> < CGuork Jf[lTJ (f[l eXP(%‘Oéi))
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. KAUST
MISC work estimate

Theorem (Work estimate with optimal weights)
[MISC1, 2015] Under (our usual) assumptions on the error and
work convergence there exists an index-set I such that
i Amisc(Z) — E[S]|
TOLJ0 TOL

d |. WOrk[AMlsc(Z)] B
an T(I)rﬂo — —1))\(G-1)(¢+1)
TOL™¢ (log (TOL™'))

<1

C(n,d) < o0

(7)

where ( = max¥_, %

Tiwandy=#{i=1,...d : %:C}.
Note that the rate is independent of the number of random
variables n. Moreover, d appears only in the logarithmic power.
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MISC numerical comparison [MISC1, 2015]
Comparison with MIMC and Quasi Optimal (QO) Single &

Multilevel Level Sparse Grid Stochastic Collocation

10!
102
1073
104
5
£ 107
=

10-6

1077

10-%

<D

> KAUST

a-prior MISC
a-post MISC

ScC

MIMC

SGSC-QO

a-prior MLSC-QO
a-post MLSC-QO
E = Wlog(W)°
E=W-05

1079
10

10"

10?

10°

10" 10° 10° 107

Work

10°
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MISC (parametric regularity, N = oo) [MISC2,

N

We use MISC to compute on a hypercube domain B ¢ R?

OK/\IJS]]

-V (a(x,y)Vu(x,y))—f( ) in B

u(x,y) =0 on 0B,
where
a(x,y) = "N with k(x,y) = > wi(x)y;

JENY
Here, y are iid uniform and the regularity of a (and hence u) is
determined through the decay of the norm of the derivatives of
1pj € C*°(B). Given the sequences
bsj =

max

D®y;||L>(B
max D% L=(B)

; j=1
we assume that there exist 0 < pp < ps

l . Ps
< g st {bsj}icy, €07
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Theorem (MISC convergence theorem)

[MISC2, 2015] Under technical assumptions the profit-based
MISC estimator built using Stochastic Collocation over
Clenshaw-Curtis points and piecewise multilinear finite elements for
solving the deterministic problems, we have, for § > 0,

IE[S] — Amisc[S]| < Cp(5) Work [Apsc[S]] 5

The rate nyrsc is as follows:

> _Ps ” _ rEEM
Case 1 if - M+7 > 15, then nusc 5

< Ps
Case 2 if —L— rFEMJW <15 then

) B _
NMISC = ( - 2) (7,05130 + 1>
Po 'FEMPOPs
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@ Shift theorem: From regularity of a and f to regularity of
ue HS(B) = ue HH9(B), for0<q<s/d.

o Extend holomorphically u(-, z) € H**7(B) on polyellipse
z € ¥, (use p, summability of b,) to get stochastic rates and
estimates for A.

@ Use weighted summability of knapsack profits to prove
convergence rates.
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Example: log uniform field with parametric regularity
[MISC2, 2015]

Here, the regularity of k = log(a) is determined through v > 0
Gy, ym 1-4;
x,y)= Z Ak Z ykgH(cos< kxj)) (sm (ijxj)) ,
keNd £e{0,1}4
where the coefficients Ay are taken as

1/+d/2

Ay= (\@)270(1+ Ik|2)~

We have

> (Yt B d s (vl B
Po=\d ™2 and. ps d 2)
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Application of main theorem [MISC2, 2015]
2.0 - P‘"ﬁ'" st 2.0
:_:‘:* /
15 15 D prioblem
*
210 210
=—— Theory =—— Theory
----- Improved we Improved
0.5 ==+ Square summ. 0.5 ==+ Square summ.
«++ Square summ., improved «+ Square summ., improved
*%& Observed for d = 1 *%% Observed for d =3

0 1 2 3 4 5 6 7 8 9 0 5 10 15 20 25 30 35

Error oc Work™"misc(vd)

A similar analysis shows the corresponding v-dependent
convergence rates of MIMC but based on ¢? summability of bs and
Fernique type of results.
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MISC numerical results [MISC2, 2015]

0
> KAUST
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Left: d =1,v =2.5. Right: d =3,v =4..

Error oc Work™"misc(v:d)

55/57



ML-MIMC [R. Tempone]

L Multi-index Stochastic Collocation (MISC)

MISC numerical results [MISC2, 2015]
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(((L

Deterministic runs, numerical results [MISC2, 2015u]

These plots shows the non-asymptotic effect of the logarithmic
factor for d > 1 (as discussed in [Thm. 1][MISC1, 2015]) on the
linear convergence fit in log-log scale.

10

o-¢ Simplified
. s . a-posteriori
& - pye % o powi

S . AN — E=W"l

B(W)?

jvg 10° 107
Wi

Left: d = 1. Right: d = 3.
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