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Introduction: rare events and dependability

in telecommunication networks: loss probability of a small unit of
information (a packet, or a cell in ATM networks), connectivity of a
set of nodes,

in dependability analysis: probability that a system is failed at a given
time, availability, mean-time-to-failure,

in air control systems: probability of collision of two aircrafts,

in particle transport: probability of penetration of a nuclear shield,

in biology: probability of some molecular reactions,

in insurance: probability of ruin of a company,

in finance: value at risk (maximal loss with a given probability in a
predefined time),

...
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Robustness properties

In rare-event simulation models, we often parameterize with a rarity
parameter ε > 0 such that µ = E[X (ε)]→ 0 as ε→ 0.

An estimator X (ε) is said to have bounded relative variance (or
bounded relative error) if σ2(X (ε))/µ2(ε) is bounded uniformly in ε.

Interpretation: estimating µ(ε) with a given relative accuracy can be
achieved with a bounded number of replications even if ε→ 0.

Weaker property: asymptotic optimality (or logarithmic efficiency) if
limε→0 ln(E[X 2(ε)])/ ln(µ(ε)) = 2.

Stronger property: vanishing relative variance: σ2(X (ε))/µ2(ε)→ 0
as ε→ 0. Asymptotically, we get the zero-variance estimator.

Other robustness measures exist (based on higher degree moments,
on the Normal approximation, on simulation time...).

L’Ecuyer, Blanchet, T., Glynn, ACM ToMaCS 2010
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Graph model
M links can fail independently, elementary unreliability qe = 1− re for edge
e.

What is the probability that the set K of (grey) nodes is connected (in the
underlying random partial graph of G)?

X = (X1, . . . ,XM) (random) configuration with Xe = 1 if edge e works, 0
otherwise.

state of the system: φ(X ), where φ(X ) = 1 iff K not connected.

u = E[φ(X )] =
∑

x∈{0,1}M φ(x)P[X = x ].

We have to sum over the 2M configurations.
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Crude simulation

Consider n independent copies X (i) = (X
(i)
1 , . . . ,X

(i)
m ) of X , and

compute Y (i) = φ(X (i)).

The crude estimator of q is then

Ŷn =
1

n

n∑
i=1

Y (i).

Confidence interval built from the central limit theorem.

Rarity issue:
I We assume qe → 0 ∀e, so that u → 0.
I The relative error is proportional to√

Var[Ŷn]

E[Y ]
=

√
u(1− u)

u
√
n − 1

→∞

as u → 0.
I As a consequence, more and more paths are required to get a specified

relative error as u → 0.
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Zero-variance est. L’Ecuyer, Rubino, Saggadi & T., IEEE Trans. Rel. 2011

Idea: sample the links one after the other, with an IS probability that
depends on the state of previously sampled links.

Let um(x1, · · · , xm−1), with xi ∈ {0, 1}, be the unreliability of the
graph G given the states of the links 1 to m− 1: if xi = 1 the link i is
operational, otherwise it is failed.

Then u = u1().
Sample state of link m, giving 1 with probability:

q̃m = u′m(x1, · · · , xm−1) =
qmum+1(x1, · · · , xm−1, 0)

(1− qm)um+1(x1, · · · , xm−1, 1) + qmum+1(x1, · · · , xm−1, 0)
.

Remark (by conditionning) that

um(x1, · · · , xm−1) = (1− qm)um+1(x1, · · · , xm−1, 1) + qmum+1(x1, · · · , xm−1, 0).

The resulting unbiased estimator is φ(X )L(X ), with

L(x) =
∏̀
i=1

Li (xi ) =
∏̀
i=1

(
xi

1− qi
1− q̃i

+ (1− xi )
qi
q̃i

)
.
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Where does it come from?

From the zero-variance IS for a DTMC (Yj)j trying to compute

µ(Y0) =
τ∑

j=1

c(Yj−1,Yj)

Use change of probability transitions

P̃(y , z) =
P(y , z)(c(y , z) + µ(z))∑
w P(y ,w)(c(y ,w) + µ(w))

=
P(y , z)(c(y , z) + µ(z))

µ(y)

This yields the unique Markov chain implementation of the
zero-variance estimator.
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Zero-variance estimation and approximation

Proposition

Using this IS, the estimator has zero variance (always yields u).

Problem: the um(·) are not known, otherwise no need to simulate.

Principle: approach um(·) by some ûm(·) and use

q̃m =
qmûm+1(x1, · · · , xm−1, 0)

qmûm+1(x1, · · · , xm−1, 0) + (1− qm)ûm+1(x1, · · · , xm−1, 1)
.
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Approximation of the zero-variance estimator

Our proposal: ûm(x1, · · · , xm−1) is the probability of a mincut of the graph
with highest probability, given the state of links 1 to m − 1.

I A cut (or K-cut) is a set of edges such that, if we remove them, the nodes in
K are not in the same connected component.

I A mincut (minimal cut) is a cut that contains no other cut than itself.

Intuition: the unreliability is the probability of union of all cuts, the most
crucial one(s) being the mincut(s) with highest probability.

Cuts can be obtained in polynomial time.
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Results

In a given state (x1, · · · , xm−1), we need to determine
ûm+1(x1, · · · , xm−1, 1) and ûm+1(x1, · · · , xm−1, 0).

This adds some computational burden, but should substantially
reduce the variance.

Proposition

Bounded relative error proved in general,
Vanishing relative error under identified conditions.
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Ex: dodecahedron topology, all links with unreliability ε
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qe = ε Estimation Confidence interval Std deviation Relative error
10−1 2.8960 10−3 (2.8276 10−3, 2.9645 10−3) 3.49 10−3 1.2
10−2 2.0678 10−6 (2.0611 10−6, 2.0744 10−6) 3.42 10−7 0.17
10−3 2.0076 10−9 (2.0053 10−9, 2.0099 10−9) 1.14 10−10 0.057
10−4 2.0007−12 (2.0000 10−12, 2.0014 10−12) 3.46 10−14 0.017

With respect to crude MC, a computational time increase of 16.
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Larger networks: 3 dodecahedrons in parallel

A dodec. 1

dodec. 2

dodec. 3

B

qe = ε Estimate 95% confidence interval std dev. Relative Error

10−1 2.3573× 10−8 (2.2496× 10−8, 2.4650× 10−8) 5.49× 10−8 2.3

5× 10−2 2.5732× 10−11 (2.5138× 10−11, 2.6327× 10−11) 3.03× 10−11 1.2

10−2 8.7655× 10−18 (8.7145× 10−18, 8.8165× 10−18) 2.60× 10−18 0.30

Vanishing relative error observed

For 3 dodecahedron in series, Bounded relative error observed

Works very well for such topologies with close to 100 links, and larger.
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Improving ZVIS by applying graph reductions when
sampling links

Each time a link state is generated by the ZVIS algorithm, the graph
evolves according to these rules: at step i (1 ≤ i ≤ `),

I either Xi = 0 which means that the link is removed,
I or X1 = 1 which means that the link is fixed, and can then be removed

by merging the two nodes it links.

At each step, we can therefore search if graph reductions can be
applied, in order to simplify the topology, and potentially gain in
terms of

I variance
I computational time (because the size of the graph is smaller).
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Considered graph reductions

Series reduction:
I If node s ∈ N has only two incident links, l1 and l2, connecting it to

nodes s1 and s2 respectively
I If s 6∈ K, node s can be removed and links l1 and l2 merged into a

single one, with unreliability q = 1− (1− ql1 )(1− ql2 ).
⇒q1 q2 1− (1− q1)(1− q2)

I The case s ∈ K can hardly be treated without further topology
information.

Parallel reduction:
I if there are two (parallel) links l1 and l2 both connecting nodes s1 and s2

I those two links merged into a single one, with unreliability q = ql1ql2 .

⇒
q1

q2
q1q2
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Two possible combinations with ZVIS
Posterior reduction (PR)

I link i sampled with failed probability

q̂
(1)
i =

qi ûi+1(Gri , 0)

qi ûi+1(Gri , 0) + (1− qi )ûi+1(Gri , 1)
,

where Gri graph resulting from previous link samplings and reductions
I link i is removed if Xi = 0 and compressed if Xi = 1
I new reductions are searched , leading to a new graph Gri+1.

Look-ahead reduction (LAR)
I the probability that i is failed:

q̂
(2)
i =

qi ûi+1(Gri,0)

qi ûi+1(Gri,0) + (1− qi )ûi+1(Gri,1)
,

where Gri,k for k ∈ {0, 1} is the graph reduced after setting Xi = k
I This requires to make two copies of the graph, setting Xi = 0 for the

first and Xi = 1 for the other,
I those two resulting graphs being reduced according to the above rules
I When link i effectively sampled, we choose the appropriate already

reduced graph.
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Expected gain

Computational time:
I Time for graph reduction searches and making copies of the graph
I but it decreases the number of links to sample and the number of

mincut-maxprob approximations to be computed.

Variance:
I better mincut-maxprob approximation of the graph unreliabilities at the

different steps, usually resulting in smaller variance.

Comparing the two implementations:
I LAR requires additional time to make copies of the graph and to

perform twice more reductions at any given step
I but computing the mincut-maxprob on an already reduced graph takes

a shorter time than before proceeding to a reduction.
I Moreover we usually get a better approximation of the zero-variance IS

with this procedure.
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Toy example with cascading reductions

A
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First sample link 1.
If X1 = 1,

I the graph can then be reduced by compressing link 1, merging nodes A
and B,

I then a parallel reduction of links 2 and 3 can be applied.
I This new link is then in series with link 5, leading to a reduction.
I The resulting graph is then just made of two parallel links which can

therefore be reduced.
I By IS, the link is necessarily considered failed. Just one link sampled!
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Toy example with cascading reductions

A

B

C

D

1
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5

3

If X1 = 0, proceeding similarly,
I Link 1 is removed.
I Links 3 and 4 are then in series and can be reduced,
I the resulting link becomes a parallel link with link 5, reduced
I to a link in series with link 2, which can be reduced to lead to a single

link, necessarily failed under IS. Just one link sampled too!
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In terms of variance

The algorithms have the following robustness properties, as failures of
individual links go to zero:

On our toy example:
I With PR, VRE is obtained
I While with LAR, zero variance is obtained (perfect approximation of

unreliabilities).

With full generality,

Proposition

Our algorithms satisfy BRE.

Bruno Tuffin (INRIA) IS and dependability analysis Int. Conf. on Monte Carlo 22 / 41



s

t

1

2

3

4

5

67

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27
28

2930

qi = ε ∀i
Met. ε Variance RE. Time

ZVIS 10−1 1.1048× 10−5 1.1733 15.18

ZVIS 10−2 1.1670× 10−13 0.1652 14.35

ZVIS 10−3 1.2714× 10−20 0.0561 14.88

PR 10−1 5.5452× 10−6 0.8190 12.14

PR 10−2 9.8889× 10−14 0.1522 15.33

PR 10−3 9.5548× 10−21 0.0487 13.87

LAR 10−1 3.9203× 10−6 0.6880 10.29

LAR 10−2 4.4955× 10−14 0.1028 7.48

LAR 10−3 2.4094× 10−21 0.0244 7.55
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Limits of the above ZVIS approximation

Shown to be very efficient for very low link unreliabilities

But system failure rarity may come from other reasons. Ex: large
number of possible paths.

s

2

1

k − 1

k

k + 2

k + 1

2k − 1

2k

t

Increasing k but keeping the same
overall unreliability

k qe 108û R̂E ûmc
1 (∅) = qr

2 7× 10−5 1.46 0.33 4.9× 10−9

5 0.02 1.06 0.46 3.2× 10−9

10 0.1245 1.11 1.8 8.9× 10−10

30 0.371 1.14 7.9 1.2× 10−13

40 0.427 1.05 9.9 1.6× 10−15

50 0.4665 1.08 31 2.7× 10−17

70 0.521 1.35 22 1.5× 10−20

100 0.575 1.48 40 9.2× 10−25

200 0.655 0.48 44 1.8× 10−37
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Minpath-based approximation

Path: set P of links such that when up, the nodes in K are connected.
Minpath: path with no strict subset that is a path.
Minpath-maxprob approximation: max probability of a minpath,
ûmp(G) = 1−maxP∈FG p(P).
Computed thanks to Dijkstra algorithm.
Replacing the mincut-maxprob approximation in ZVIS

s

2

1

k − 1

k

k + 2

k + 1

2k − 1

2k

t

k qe 108û R̂E ûmp
1 (∅)

2 0.00007 1.68 66 0.0002
5 0.02 3.18 160 0.058
10 0.1245 1.15 110 0.32
30 0.371 1.36 75 0.75
40 0.427 1.20 36 0.81
50 0.4665 0.98 26 0.84
70 0.521 1.58 17 0.89
90 0.559 1.19 6.6 0.91
100 0.575 1.52 9.8 0.92
200 0.655 1.13 3.9 0.95
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What if we combine both approximations?

Indeed, ûmc ≤ u ≤ ûmp.

Take at each step

ûi+1(x1, . . . , xi ) = αûmc
i+1(x1, . . . , xi ) + (1− α)ûmp

i+1(x1, . . . , xi ).

Should always be closer to the unreliability.

How to determine the best α?

First heuristic:
I Compute a rough estimate ûn0 (G) of u
I Take

α = αtot
def
=

ûmp(∅)− ûn0 (G)

ûmp(∅)− ûmc(∅)
,

the α leading to the above equality with this rough estimate. for the
full network unreliability.
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Learning through a Robbins-Monro algorithm

Goal: compute the α minimizing the variance, i.e., st V ′(α) = 0.

1 ` = 0, start with a α0 (the one from the heuristic)

1 ` = `+ 1
2 estimate V̂ ′(α`)
3 Stop when it seems to have converged, or update again.

2 Launch the real simulation with the last α`.

I skip the computation of the derivative and choice of parameters
(paper available on requests).
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Ex: transport network of ANTEL
s

t
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method q û R̂E α̂ ûmc(∅) ûmp(∅)

MC

10−2 1.22× 10−2 108
10−3 2.11× 10−4 103
10−4 1.92× 10−6 109

MP

10−2 7.58× 10−3 2.5
10−3 7.48× 10−5 8.4
10−4 6.74× 10−7 25

heuristic

10−2 7.49× 10−3 2.7 0.92873 10−4 0.18209
10−3 7.37× 10−5 11 0.977225 10−6 0.019811
10−4 7.25× 10−7 7.2 0.99770 10−8 1.998× 10−3

SA

10−2 7.54× 10−3 1.9 0.59887
10−3 7.27× 10−5 2.8 0.99838
10−4 7.26× 10−7 2.8 0.999843
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Recursive Variance Reduction (RVR)

Principle: select a K-cutset, i.e., a set C of links whose failure ensures
the system failure.

If all links in C are failed (probability qC), the system is failed.
Clearly, qC ≤ q.

Bj=“the j − 1 first links of C are down, but the j-th is up”

P[Bj ] =
(∏j−1

k=1 qk
)
rj

Define pj = P[Bj | at least one link is working] = P[Bj ]/(1− qC)
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Recursive Variance Reduction (RVR)

The RVR estimator:

Select a cut, and compute qC and the pjs.

Pick an edge at random in C according to the probability distribution
(pj)j=1,··· ,|C|

Let the chosen edge be the jth. Call Gj the graph obtained from G by
deleting the first j − 1 edges of C and by contracting the jth.

The value yRVR returned by the RVR estimator of q(G), the
unreliability of G, is recursively defined as

yRVR(G) = qC + (1− qC)yRVR(Gj).
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RVR estimator
Formally, the RVR estimator of q(G) is the random variable

YRVR = qC + (1− qC)

|C|∑
j=1

1Bj

1− qC
YRVR(Gj).

Theorem

The estimator is unbiased: E[YRVR ] = q(G) = q.
Second moment computed as

E[Y 2
RVR ] = q2

C + 2qC(1− qC)

 |C|∑
j=1

P[Bj ]

1− qC
E[YRVR(Gj)]


+(1− qC)2

 |C|∑
j=1

P[Bj ]

1− qC
E[Y 2

RVR(Gj)]

 .

But no BRE as ε→ 0.
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Zero-variance Approximation RVR

Zero-variance change of measure: chooses the appropriate (ideally the
best) IS for the first working link on the cut:

choose B ′j with probability p̃j in the IS estimator, with

p̃j =
P[Bj ]q(Gj)∑|C|

k=1 P[Bk ]q(Gk)
(1)

Resulting estimator:

YZRVR = qC +

 |C|∑
k=1

P[Bk ]q(Gk)

 |C|∑
j=1

1B′j (G)
1

q(Gj)
YZRVR(Gj).

Theorem

YZRVR has variance Var[YZRVR ] = 0.

Implementing it requires the knowledge of the q(Gi ), but in that case,
no need to simulate!
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Zero Variance Approximation
Instead, use some approximation q̂(Gi ) of q(Gi ) plugged into (1).

YAZRVR = qC +

 |C|∑
k=1

P[Bk ]q̂(Gk)

 |C|∑
j=1

1B′j (G)
1

q̂(Gj)
YAZRVR(Gj).

Proposition

If ∀1 ≤ j ≤ |C|, q̂(Gj) = Θ(q(Gj)) as ε→ 0, YAZRVR verifies BRE property.

Define the mincut-maxprob approximation q̂(G) of q(G) as maximal
probability of a mincut of graph G (computed in polynomial time).

Proposition

With the mincut-maxprob approximation, q̂(Gj) = Θ(q(Gj)) as ε→ 0, therefore
BRE property is obtained.

Proposition

If, q̂(Gj) = q(Gj) + o(q(Gj)) as ε→ 0 for all 1 ≤ j ≤ |C|, the Vanishing relative
(VRE) property (the RE tends to 0, stronger than just being bounded) is verified.
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Three topologies: arpanet, C6, dodecahedron

s

t

s t

s

t
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Network (qe) Q(G) N × Var(SMC) N × Var(RVR) N × Var(AZV )

Arp (5.00 e−01) 9.63989 e-01 3.47133 e-02 3.71795 e-03 1.69321 e-01
Arp(3.00 e-01) 6.81507 e-01 2.17055 e-01 4.74801 e-02 8.45549 e-01
Arp (1.00 e-01) 9.54229 e-02 8.63174 e-02 1.46865 e-02 9.55806 e-02
Arp (1.00 e-02) 6.54074 e-04 6.53646 e-04 1.63753 e-05 3.06912 e-06
Arp (1.00 e-03) 6.05581 e-06 6.05577 e-06 1.60407 e-08 3.43246 e-11
Arp (1.00 e-04) 6.00560 e-08 6.00560 e-08 1.60041 e-11 3.47090 e-16
Arp (1.00 e-05) 6.00056 e-10 6.00056 e-10 1.60004 e-14 3.47477 e-21
Arp (1.00 e-06) 6.00006 e-12 6.00006 e-12 1.60000 e-17 3.47512 e-26
C6 (5.00 e-01) 7.64160 e-02 7.05766 e-02 7.72612 e-05 7.27858 e-05
C6 (3.00 e-01) 5.26728 e-03 5.23953 e-03 2.56429 e-07 2.27577 e-07
C6 (1.00 e-01) 2.00766 e-05 2.00762 e-05 1.28070 e-13 1.17223 e-13
C6 (1.00 e-02) 2.00001 e-10 2.00001 e-10 1.01244 e-26 1.00225 e-26
C6 (1.00 e-03) 2.00000 e-15 2.00000 e-15 1.00102 e-39 1.00002 e-039
C6 (1.00 e-04) 2.00000 e-20 2.00000 e-20 1.00000 e-52 1.00000 e-52
C6 (1.00 e-05) 2.00000 e-25 2.00000 e-25 1.42434 e-65 1.42434 e-65
Dod (5.00 e-01) 7.09745 e-01 2.06007 e-01 1.57246 e-02 1.34634 e-01
Dod (3.00 e-01) 1.68518 e-01 1.40120 e-01 9.22721 e-03 1.68222 e-02
Dod (1.00 e-01) 2.87960 e-03 2.87131 e-03 5.80985 e-06 6.32871 e-07
Dod (1.00 e-02) 2.06189 e-06 2.06189 e-06 2.17456 e-12 1.12133 e-14
Dod (1.00 e-03) 2.00602 e-09 2.00602 e-09 2.01614 e-18 1.01110 e-21
Dod (1.00 e-04) 2.00060 e-12 2.00060 e-12 2.00160 e-24 1.00110 e-28
Dod (1.00 e-05) 2.00006 e-15 2.00006 e-15 2.00016 e-30 1.00011 e-35
Dod (1.00 e-06) 2.00001 e-18 2.00001 e-18 2.00002 e-36 1.00001 e-42
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A summary of best existing methods for static reliability
estimation on the dodecahedron

Without presenting all implementations.

(Normalized) relative error
√
n×RE
cα

for various methods and unreliabilities ε of links on the

dodecahedron topology
Method ε = 0.1 ε = 10−2 ε = 10−3 ε = 10−4

Conditioning, Fishman 86 2.6 e+00 1.3 e+00 4.3 e−01 1.4 e−02
GS Botev et al. 13 4.0 e+00 6.2 e+00 7.7 e+00 8.9 e+00
Splitting, Murray et al. 13 4.6 e+00 7.1 e+00 8.6 e+00 8.8 e+00
Permutation MC Gerbatsh 3.0 e+00 4.2 e+00 4.3 e+00 4.4 e+00
IS: ZVA 2010 1.2 e+00 1.7 e−01 5.7 e−02 1.7 e−02
RVR Cancela, Khadiri 1995 8.4 e−01 7.1 e−01 7.1 e−01 7.1 e−01
IS+ RVR: BRD 14 9.5 e−01 7.0 e-01 7.1 e−01 7.1 e−01
IS+RVR: AZVRD 14 2.8 e−01 5.1 e−02 1.6 e−02 5.0 e−03
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Work in progress

Railway Data Communication System (DCS), with failing nodes

Depot
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Dependability including logistics: return to a dynamic model. Two
challenges

I Non-Markovian model
I more complicated assumptions with logistics on repair teams, spares.
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Example: Highly Reliable Markovian Systems (HRMS)

System with c types of
components. Y = (Y1, . . . ,Yc)
with Yi number of up
components.

1: state with all components up.

Markov chain. Failure rates are
O(ε), but not repair rates. Failure
propagations possible.

System down when in grey
state(s) (in ∆).

Goal: compute µ(y) probability to
hit ∆ before 1.

µ(1) important in dependability
analysis,

Small if ε small.
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Highly Reliable Markovian Systems (HRMS)

Failure rates are O(ε), but not repair rates. Failure propagations
possible.

Simulation using the embedded DTMC. Failure probabilities are O(ε)
(except from 1). How to improve (accelerate) this?

Existing method: ∀y 6= 1, increase the probability of the set of
failures to constant 0.5 < q < 0.9 and use individual probabilities
proportional to the original ones (SFB), or uniformly (BFB).

Failures not rare anymore. BRE property verified for BFB.
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HRMS Example, and IS

Figure: Original probabilities Figure: Probabilities under IS/BFB

Bruno Tuffin (INRIA) IS and dependability analysis Int. Conf. on Monte Carlo 3 / 5



HRMS, Zero-variance IS L’Ecuyer & T., ANOR, 2011

Complicates the previous model due to the multidimensional
description of a state.

The idea is to approach µ(y) by the probability of the path from y to
∆ with the largest probability

Intuition: as ε→ 0, we get a good idea of the probability.

Proposition

Bounded Relative Error proved (as ε→ 0) in general.
Even Vanishing Relative Error if µ̂(y) contains all the paths with the
smallest degree in ε.

Other simple version: approach µ(y) by the (sum of) probability of
paths from y with only failure components of a given type.

Gain of several orders of magnitudes + stability of the results with
respect to the literature.
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HRMS: numerical illustrations

Comparison of BFB and Zero-Variance Approximation (ZVA).

c = 3 types of components, ni of type i

λ1 = ε, λ2 = 1.5ε, and λ3 = 2ε2, µ = 1

System is down whenever fewer than two components of any one type are
operational.

ni ε µ0 BFB est ZVA est BFB σ2 ZVA σ2

3 0.001 2.6× 10−3 2.7× 10−3 2.6× 10−3 6.2× 10−5 2.2× 10−8

6 0.01 1.8× 10−7 1.9× 10−7 1.8× 10−7 6.3× 10−11 2.0× 10−14

6 0.001 1.7× 10−11 1.8× 10−11 1.7× 10−11 8.8× 10−19 1.2× 10−23

12 0.1 6.0× 10−8 4.8× 10−8 6.0× 10−8 8.1× 10−10 1.6× 10−10

12 0.001 3.9× 10−28 (1.8× 10−40) 3.9× 10−28 (3.2× 10−74) 1.4× 10−55

Bruno Tuffin (INRIA) IS and dependability analysis Int. Conf. on Monte Carlo 5 / 5


	Rare events, Static reliability estimation
	Graph reductions to decrease the work-normalized variance
	An adaptive ZVIS approximtation
	Combination with Recursive Variance Reduction
	Recursive Variance Reduction (RVR) algorithm
	Zero-variance Approximation RVR

	Conclusions
	Appendix

