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Industrial Trend: big data enabled intelligent systems

big data + complex model + large scale computing
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Machine Learning Pipeline
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Problem Scale: Image Classification

training data size: ∼ 10 million
classes: ∼ 104

model: deep neural networks
training time: ∼ week on GPU servers
near human accuracy
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Problem Scale: Speech Recognition

training data size: ∼ billion instances (tens of thousands recordings)
model: deep neural networks
training time: ∼ weeks on GPU servers
near human performance
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Problem Scale: Computational Advertising

Statistical Problem:
click through rate (CTR)
estimation

the probability a user
clicks an ad

Big data linear or nonlinear logistic regression:

training data size: up to n ∼ 100 billion
high dimension: up to dim(xi) ∼ 100 billion

each instance has no more than a few hundred nonzeros

training time: hours to days on hundreds of CPU servers
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Challenges for Big Data Intelligence

System:
distributed computing with many machines
hybrid computing (cpu + gpu)
real time streaming computing

Statistics:
complex nonlinear models (deep neural networks)

Optimization:
efficient methods for solving large scale machine learning problems
Monte Carlo sampling methods
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Mathematical Problem

Big Data Optimization Problem in machine learning:

min
w

f (w) f (w) =
1
n

n∑
i=1

fi(w)

Special structure: sum over data: large n

Assumptions on loss function

λ-strong convexity:

f (w ′) ≥ f (w) +∇f (w)>(w ′ − w) +
λ

2
‖w ′ − w‖2

2︸ ︷︷ ︸
quadratic lower bound

L-smoothness:

fi (w ′) ≤ fi (w) +∇fi (w)>(w ′ − w) +
L
2
‖w ′ − w‖2

2︸ ︷︷ ︸
quadratic upper bound
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Example: Computational Advertising

Large scale regularized logistic regression

min
w

1
n

n∑
i=1

ln(1 + e−w>xi yi ) +
λ

2
‖w‖22︸ ︷︷ ︸

fi (w)


data (xi , yi) with yi ∈ {±1} ; model parameter vector w .
λ strongly convex
L = 0.25 maxi ‖xi‖22 + λ smooth.

Problem size:
big data: n ∼ 10− 100 billion
high dimension: dim(xi) ∼ 10− 100 billion

How to solve big optimization problems efficiently?

T. Zhang Big Data Optimization 10 / 44



Example: Computational Advertising

Large scale regularized logistic regression

min
w

1
n

n∑
i=1

ln(1 + e−w>xi yi ) +
λ

2
‖w‖22︸ ︷︷ ︸

fi (w)


data (xi , yi) with yi ∈ {±1} ; model parameter vector w .
λ strongly convex
L = 0.25 maxi ‖xi‖22 + λ smooth.

Problem size:
big data: n ∼ 10− 100 billion
high dimension: dim(xi) ∼ 10− 100 billion

How to solve big optimization problems efficiently?

T. Zhang Big Data Optimization 10 / 44



Example: Computational Advertising

Large scale regularized logistic regression

min
w

1
n

n∑
i=1

ln(1 + e−w>xi yi ) +
λ

2
‖w‖22︸ ︷︷ ︸

fi (w)


data (xi , yi) with yi ∈ {±1} ; model parameter vector w .
λ strongly convex
L = 0.25 maxi ‖xi‖22 + λ smooth.

Problem size:
big data: n ∼ 10− 100 billion
high dimension: dim(xi) ∼ 10− 100 billion

How to solve big optimization problems efficiently?
T. Zhang Big Data Optimization 10 / 44



Outline of the Talk

Modern stochastic optimization for convex big data machine learning

Use techniques from Monte Carlo Methods for variance reduction

Background: stochastic gradient versus batch gradient
SVRG (Stochastic Variance Reduced Gradient): control variates
Importance sampling and stratefied sampling approaches
SAGA (Stochastic Average Gradient Ameliore)
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Batch Optimization Method: Gradient Descent

Solve

w∗ = arg min
w

f (w) f (w) =
1
n

n∑
i=1

fi(w).

Gradient Descent (GD):

wk = wk−1 − ηk∇fi(wk−1) = wk−1 − ηk
1
n

n∑
i=1

∇fi(wk−1).

How fast does this method converge to the optimal solution?

For λ-strongly convex and L-smooth problems, it is linear rate:

f (wk )− f (w∗) = O((1− ρ)k ),

where ρ = O(λ/L) is the inverse condition number
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How to deal with big data? sampling!

Objective function:

f (w) =
1
n

n∑
i=1

fi(w)

sample objective function: only optimize approximate objective

1st order gradient

∇f (w) =
1
n

n∑
i=1

∇fi(w)

sample 1st order gradient (stochastic gradient):
converge to exact optimal
variance reduction leads to fast rate
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Stochastic Approximate Gradient Computation

If

f (w) =
1
n

n∑
i=1

fi(w),

GD requires the computation of full gradient, which is extremely costly

∇f (w) =
1
n

n∑
i=1

∇fi(w)

Idea: stochastic optimization employs random sample (mini-batch) B

to approximate

∇f (w) ≈ 1
|B|

∑
i∈B

∇fi(w)

It is an unbiased estimator
more efficient computation but introduces variance
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SGD versus GD example

For ridge regression,

f (w) =
1
n

n∑
i=1

(w>xi − yi)
2 +

λ

2
‖w‖22︸ ︷︷ ︸

fi (w)

GD rule is

wt = (1− ηλ)wt−1 − 2η · 1
n

n∑
i=1

(w>t−1xi − yi)xi

SGD rule (with |B| = 1) is

wt = (1− ηλ)wt−1 − 2η (w>t−1xi − yi)xi
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SGD versus GD

SGD:
faster computation per step
Sublinear convergence: due to the variance of gradient
approximation.

f (wt )− f (w∗) = Õ(1/t).

GD:
slower computation per step
Linear convergence:

f (wt )− f (w∗) = O((1− ρ)t ).

Overall: sgd is fast in the beginning but slow asymptotically
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SGD versus GD

stochastic gradient descent

computational cost

training error

gradient descent

One strategy:
use sgd first to train
after a while switch to batch methods such as LBFGS.

However, one can do better
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Improving SGD via Variance Reduction

GD converges fast but computation is slow
SGD computation is fast but converges slowly

slow convergence due to inherent variance

SGD as a statistical estimator of gradient:
let gi = ∇fi .
unbaisedness: E gi = 1

n

∑n
i=1 gi = ∇f .

error of using gi to approx ∇f : variance E‖gi − Egi‖2
2.

Statistical thinking:
relating variance to optimization
design other unbiased gradient estimators with smaller variance
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Relating Statistical Variance to Optimization

Want to optimize
min

w
f (w)

Full gradient ∇f (w).

Given unbiased random estimator gi of ∇f (w), and SGD rule

w → w − ηgi ,

reduction of objective is

Ef (w − ηgi) ≤ f (w)− (η − η2L/2)‖∇f (w)‖22︸ ︷︷ ︸
non-random

+
η2L
2

E‖g− Eg‖22︸ ︷︷ ︸
variance

.

Smaller variance implies bigger reduction
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Improving SGD using Variance Reduction

Idea: design unbiased stochastic gradient estimator with small
variance.

The idea leads to modern stochastic algorithms for big data machine
learning with fast convergence rate

Representative work

Le Roux, Schmidt, Bach (NIPS 2012): A variant of SGD called SAG
(stochastic average gradient) and later SAGA
Johnson and Z (NIPS 2013): SVRG (Stochastic variance reduced
gradient)
Shalev-Schwartz and Z (JMLR 2013): SDCA (Stochastic Dual
Coordinate Ascent) , and later a variant with Zheng Qu and Peter
Richtarik
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Outline

Background: stochastic gradient versus batch gradient
SVRG (Stochastic Variance Reduced Gradient): control variates
Importance sampling and stratefied sampling approaches
SAGA (Stochastic Average Gradient Ameliore)
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Monte Carlo Methods: Variance Reduction Techniques

Given unbiased estimator gi of ∇f ; how to design other unbiased
estimators with reduce variance?

Control variates.
find g̃i ≈ gi
use compensated estimator

g′i := gi − g̃i + E g̃i .

Importance sampling:
sample gi proportional to ρi (Eρi = 1)
use estimator gi/ρi

Stratified sampling (a minibatch of b = b1 + . . .+ bK ):
divide {g1, . . . ,gn} into K subsets {G` : ` = 1, . . . ,K} with small within
group variance
use estimator n−1 ∑K

`=1(|G`|/b`)
∑b`

j=1 g`,j where g`,j uniformly drawn
from G`
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Stochastic Variance Reduced Gradient: Derivation

Objective function

f (w) =
1
n

n∑
i=1

fi(w) =
1
n

n∑
i=1

f̃i(w),

where the gradient compensated objective is:

f̃i(w) = fi(w)− (∇fi(w̃)−∇f (w̃))>w︸ ︷︷ ︸
sum to zero

.

Pick w̃ to be an approximate solution (close to w∗).

SVRG rule:

wt = wt−1 − ηt∇f̃i(wt−1) = wt−1 − ηt [∇fi(wt−1)−∇fi(w̃) +∇f (w̃)]︸ ︷︷ ︸
small variance

.

Compare to SGD rule:

wt = wt−1 − ηt ∇fi(wt−1)︸ ︷︷ ︸
large variance
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Variance Reduction of SVRG

SVRG rule:

wt = wt−1 − ηt [∇fi(wt−1)−∇fi(w̃) +∇f (w̃)].

If w̃ → w∗ and wt−1 → w∗, then

∇fi(wt−1)−∇fi(w̃) +∇f (w̃) ≈ ∇fi(w∗)−∇fi(w∗) +∇f (w∗)→ 0.

Variance of SVRG estimator converges to zero.

rf(w̃)

rf2(w̃)

rf1(w̃)

rf3(w̃)

rf3(w)
rf1(w)

rf2(w)

rf2(w) �rf2(w̃) + rf(w̃)
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SVRG Algorithm

Procedure SVRG

Parameters update frequency m and learning rate η
Initialize w̃0
Iterate: for s = 1,2, . . .

w̃ = w̃s−1
µ̃ = 1

n
∑n

i=1∇fi(w̃)
w0 = w̃
Iterate: for t = 1,2, . . . ,m

Randomly pick it ∈ {1, . . . ,n} and update weight
wt = wt−1 − η(∇fit (wt−1)−∇fit (w̃) + µ̃)

end
Set w̃s = wm

end
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SVRG v.s. Batch Gradient Descent: fast convergence

Assume L-smooth loss and λ strongly convex objective function. One
can prove linear convergence for SVRG:

Ef (wt )− f (w∗) = O((1− ρ̃)t ),

where ρ̃ = O(λn/(L + λn); convergence is faster than GD.

Number of examples needed to achieve ε accuracy:

Batch GD: Õ(n · L/λ log(1/ε))

SVRG: Õ((n + L/λ) log(1/ε))

SVRG has fast convergence — condition number effectively reduced

The gain of SVRG over batch algorithm is significant when n is large.
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SVRG: variance
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SVRG: convergence
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Outline

Background: stochastic gradient versus batch gradient
SVRG (Stochastic Variance Reduced Gradient): control variates
Importance sampling and stratefied sampling approaches
SAGA (Stochastic Average Gradient Ameliore)
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Importance Sampling

Objective function

f (w) =
1
n

n∑
i=1

fi(w)

Gradient

∇f (w) =
1
n

n∑
i=1

∇fi(w)

SGD (uniform sampling), uniform sample i from {1, . . . ,n} and use

∇fi(w)

SGD with importance sampling: sample i from {1, . . . ,n} with
probability {pi} (

∑
i pi = 1), and use estimator

gi = (1/npi) ∇fi(w)
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Importance Sampled SGD

Importance weighted estimator gi is an unbiased estimator of ∇f (w).
Let Ui be an upperbound of ‖∇fi(w)‖22:

Ui ≥ ‖∇fi(w)‖22.

Variance of {gi} is

1
n2

∑
i

‖∇fi(w)− npi∇f (w)‖22/pi ≤
1
n2

∑
i

Ui/pi .

Take optimal pi =
√

Ui/
∑

j
√

Uj , the minimum variance is

V (w) ≤ (n−1
∑

i

√
Ui)

2.
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SGD with Importance Sampling

Procedure ISGD

Parameters gradient upperbounds {Ui} and learning rate η
Initialize w0, and pi =

√
Ui/

∑
j
√

Uj

Iterate: for t = 1,2, . . . ,T
Randomly pick it ∈ {1, . . . ,n} according to {pi}, and update weight

wt = wt−1 − η
pit
∇fit (wt−1)

end
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SGD: uniform versus importance sampling
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SVRG with Importance Sampling

f (w) =
1
n

n∑
i=1

fi(w).

Li : smoothness of fi(w); λ: strong convexity of f (w)

Number of examples needed to achieve ε accuracy:
With uniform sampling:

Õ((n + L/λ) log(1/ε)),

where L = maxi Li

With importance sampling: pi ∝ Li

Õ((n + L̄/λ) log(1/ε)),

where L̄ = n−1 ∑n
i=1 Li
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SVRG: importance sampling example
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Smoothed hinge loss SVM on w8a. 
Loss gradient is 3.33e+01 Lip. smooth. 2.01e-05 strong convexity.

Uniform sampling
Global smoothness sampling
Local smoothness sampling
Empirical SVRG
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Stratified Sampling

Can be applied to minibatch SGD for multiclass problem
Algorithm

For each class: do k -means clustering separately to divide the sample
into K groups
Stratified sampling of gradient with these groups
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SGD: uniform versus stratified sampling
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Summary of Modern Stochastic Optimization

Solve

w∗ = arg min
w

f (w) f (w) =
1
n

n∑
i=1

fi(w).

Optimization employs 1st order gradient

∇f (w) =
1
n

n∑
i=1

∇fi(w)

sample of 1st order gradient leads to stochastic optimization
Monte Carlo variance reduction leads to fast linear convergence
Many many follow-up work
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Outline

Background: stochastic gradient versus batch gradient
SVRG (Stochastic Variance Reduced Gradient): control variates
Importance sampling and stratefied sampling approaches
SAGA (Stochastic Average Gradient Ameliore)
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Motivation

Solve

w∗ = arg min
w

f (w) f (w) =
1
n

n∑
i=1

fi(w).

SGD with variance reduction via SVRG:

wt = wt−1 − ηt [∇fi(wt−1)−∇fi(w̃) +∇f (w̃)]︸ ︷︷ ︸
small variance

.

Compute full gradient ∇f (w̃) periodically at an intermediate w̃

How to avoid computing ∇f (w̃)?
Answer: keeping previously calculated gradients.
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Stochastic Average Gradient ameliore: SAGA

Initialize: g̃i = ∇fi(w0) and g̃ = 1
n
∑n

j=1 g̃j

SAGA update rule: randomly select i , and

wt =wt−1 − ηt [∇fi(wt−1)− g̃i + g̃]

g̃ =g̃ + (∇fi(wt−1)− g̃i)/n
g̃i =∇fi(wt−1)

Equivalent to:

wt = wt−1 − ηt [∇fi(wt−1)−∇fi(w̃i) +
1
n

n∑
j=1

∇fj(w̃j)]

︸ ︷︷ ︸
small variance

w̃i = wt−1.

Compare to SVRG:

wt = wt−1 − ηt [∇fi(wt−1)−∇fi(w̃) +∇f (w̃)]︸ ︷︷ ︸
small variance

.
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Variance Reduction

The gradient estimator of SAGA is unbiased:

E

∇fi(wt−1)−∇fi(w̃i) +
1
n

n∑
j=1

∇fj(w̃j)

 = ∇f (wt−1).

Since w̃i → w∗, we have∇fi(wt−1)−∇fi(w̃i) +
1
n

n∑
j=1

∇fj(w̃j)

→ 0.

Therefore variance of the gradient estimator goes to zero.
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Theory of SAGA

Similar to SVRG, we have fast convergence for SAGA.
Number of examples needed to achieve ε accuracy:

Batch GD: Õ(n · L/λ log(1/ε))

SVRG: Õ((n + L/λ) log(1/ε))

SAGA: Õ((n + L/λ) log(1/ε))

Assume L-smooth loss fi and λ strongly convex objective function.
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Summary

Optimization is important in big data machine learning
special structure: sum over data

Traditional methods: gradient based batch algorithms
do not take advantage of special structure

Recent progress: stochastic optimization with fast rate
employs Monte Carlo variance reduction
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