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Greeks for Futures

A Financial asset Xt modeled by

dXt = Xt

(
r(t)dt + σ(Xt , t)dWt

)
, X0 given, Wt Brownian

A European put option Vt = e−r(T−t)E(K − XT )+

Compute the 1st and 2nd derivatives of V0 w.r. to K ,T ,X0, r ,σ, such as

Γ =
∂2V0

∂X 2
0

Need also to compute
∂2

∂X 2
0

∫ ∞
0

f (x)(K − x)+dx

The most straightforward approach is to

Γ =
1
h2

(
V0|X0+h − 2V0|X0 + V0|X0−h

)
It costs 3 times the computation of the option but is it precise?
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In Search of Automatic Differentiation

Let x = f (a) be programed in C by double f(double a). Find x ′a? by

double a=1., da=1e-4, dxda = (f(a+da)-f(a))/da

;

Figure: Example: f (a) = sin(a), a = 1. log-log plot of |dxda− cos(1.)|
Complex finite differences

Re[
f (a + iδa)− f (a)

iδa
] = Im

f (a + iδa)

δa
= f ′(a)− f (3) δa

2

6
+ o(δa3)

double a=1., da=1e-4, dxda = (f(a+I*da)/da).Im()
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Second Derivatives

Example: f (x) = (1− x)+ ⇒ f ′(x) = −1x<1, f ”(x) = δ(1− x)

f (x) = (1− x)+ ⇒ Maple code: plot(max(1-x,0))

plot((max(1-x-1e-8,0)-max(1-x,0))*1e8);
plot((max(1-x-3.5e-6,0)-2*max(1-x,0)+max(1-x+3.5e-6,0))*1e12)

Figure: 1st derivative with δx = 10−8, 2nd with δx = 10−3 and δx = 3.510−6.
Far right with complex difference
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Malliavin Calculus

Consider the payoff V of a future with spot price Xt(x) satisfying an SDE
with X0 = x .

Compute δ := ∂xE[V (XT (x))] and Γ := ∂xxE[V (XT (x))]

Proposition.
If the probability density p of XT is known,

∂xE[V (XT )] = ∂x

∫
Rd

V (s)p(s, x)ds =

∫
Rd

V (s)∂x log(p)pds = E[V (XT )∂x log(p)].

More generally, for two integrable random variables F and G , an
integration by part is said to hold if there exists an integrable random
variable H(F ;G ) such that for all smooth function Φ with compact support

E[Φ′(F )G ] = E[Φ(F )H(F ;G )].

Malliavin calculus gives a way to find Weight Function H(XT ; ∂xXT ).
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Malliavin Calculus Applied to the δ and Γ of a Vanila Put

For the 1st and 2nd derivatives with respect to initial conditions it gives

δ = E[e−rTV (XT )
WT

xσT
], Γ = E[

e−rTV (XT )

x2Tσ
(
W 2

T

σT
−WT −

1
σ

)],
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Figure: The δ with σ = 0.1, r = 0.1, T = 1, K = 100 for X0 ∈ (84, 118). Comparison
with stochastic centered finite differences, and AD on the PDE. Nb of M-C path is
50000 with 100 time step.

It works so long as the weight functions are known and T not too small
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Vibrato (McGiles)

Let θ be a parameter and the aim is to compute ∂θE[V (XT )]

dXt = b (θ,Xt) dt + σ(θ,Xt)dWt , X0 = x . (1)

Consider an Euler explicit scheme Xt :

X̄ n
k = X̄ n

k−1 + b(θ, X̄ n
k−1)h + σ(θ, X̄ n

k−1)
√
hZk , X̄0 = x , k = 1, . . . , n,

where Wtn
k
−Wtn

k−1
=
√
hZk .

First idea: write E
[
V (X̄ n

n )
]

= E
[
E
[
V (X̄ n

n ) | X̄ n
n−1
]]
.

Note that X̄ n
n = µn−1(θ) + σn−1(θ)Zn

√
h with

µn−1(θ) = X̄ n
n−1(θ) + b(θ, X̄ n

n−1(θ))h
σn−1(θ) = σ(θ, X̄ n

n−1(θ)). Then

∂

∂θi
E[V (X̄ n

n (θ))] = Ez

[
∂

∂θi

{
E[V (µ+ σZ

√
h)]
}
µ = µn−1(θ)
σ = σn−1(θ)

]
(2)

The last time step sees constant coefficient, so we have an explicit solution
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Vibrato(II)

The last time step has constant coefficient, the density p is known and
Second idea:
∂

∂θ

[
E[V (X (θ))]

]
=

∫
Rd

V (y)
∂ log p
∂θ

(θ, y)p(θ, y)dy = E
[
V (X (θ))

∂ log p
∂θ

(θ,X (θ))

]
Proposition

∂

∂θ
E[V (X̄ n

n (θ))] = E
[

1√
h

∂µ

∂θ
· Ez

[
V (µ+ σZ

√
h)σ−TZ

]
+

1
2
∂(σσT )

∂θ
: Ez

[
V (µ+ σZ

√
h)σ−T (ZZT − I )σ−1

]∣∣∣∣µ = µn−1(θ)
σ = σn−1(θ)


where µn−1(θ) = X̄ n

n−1(θ) + b(θ, X̄ n
n−1(θ))h and σn−1(θ) = σ(θ, X̄ n

n−1(θ)).
In the non constant case the tangent process Yt = ∂θXt is involved.
Note that V is not differentiated! CPU in the non constant case is twice
the evaluation of V (X0).
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Vibrato of Vibrato =Derivative of Vibrato formula

Works great but for 2nd derivatives Vibrato is twice as involve (and diffusive).
Proposition

∂2

∂θ2
E[V (XT )] =

E
[
∂2µ

∂θ2
E
[
V (µ + σ

√
hZ)

Z

σ
√
h

]
+

(
∂µ

∂θ

)2
E
[
V (µ + σ

√
hZ)

Z2 − 1

σ2h

]
+

(
∂σ

∂θ

)2
E
[
V (µ + σ

√
hZ)

Z4 − 5Z2 + 2

σ2h

]
+
∂2σ

∂θ2
E
[
V (µ + σ

√
hZ)

Z2 − 1

σ
√
h

]
+ 2

∂µ

∂θ

∂σ

∂θ
E
[
V (µ + σ

√
hZ)

Z3 − 3Z

σ2h

]]
(3)
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Figure: On the left the Vibrato idea. On the right the Γ versus price computed by
Vibrato + Vibrato compared with exact Γ. K = 100, σ = 20% and r = 5%, T = 1 year.
X0 ∈ (1, 200), 10, 000 M-C paths and 25 time steps.
Antithetic Variance reduction can be worked out (see paper)
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Principle of AD in Forward Mode

Fundamental: Relation between derivatives and differentials
Let J(u, x , a), u, x , a ∈ R its differential is

dJ = J ′u(u, x , a)du + J ′x(u, x , a)dx + J ′a(u, x , a)da

By taking dx = da = 0 and du = 1, we have J ′u(u, x , a) = dJ.

A simple example. Let J(u) = |u − ud |2, then its differential is

dJ = 2(u − ud)(du − dud), J ′u = 2(u − ud)(1.0− 0.0)

obtained by putting du = 1, dud = 0 in the first line of code.
So always manipulate the variable and its differential together (x B dx)
(Barak Pearlmutter[1]).
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A simple example

Fundamental: Each line of code is differentiable by hand exactly.
Let J(u) = |u − ud |2, then its differential is dJ = 2(u − ud)(du − dud).
Now suppose that J is programmed in C/C++ by

A program which computes J and its differential can be obtained by
writing above each differentiable line its differentiated form:
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A simple example (cont)

Note that if u-u_d is implemented as u.val[i]-u_d.val[i],i=1;2 then
double dz=du-du_d, z=u-u_d; ⇔ ddouble u,u_d, z=u-u_d;
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The class ddouble

Conclusion: the initial program is untouched except that all double have been
changed to ddouble and one variable has its .val[1]=1.
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Limitations

• Extend to Mth-derivative and N parameters but CPU ∼ O(N ×M).
• Operator overloading does not exits in all languages (not in java or in C)
•
√
x is not differentiable at x = 0

• Root finding by Newton algorithm is iterative:

f (x , α) = 0 ⇒ x ′f ′x + f ′α = 0 ⇒ x ′ = − f ′α
f ′x

program newtontest
x=0.0;
al=0.5 subroutine newton(x,n,al)
call newton(x,10,al) do i=1,n
write(*,*) x f = x-alpha*cos(x)
end fp= 1+alpha*sin(x)

x=x-f/fp
enddo
return
end
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Non Differentiable Functions

Automatic differentiation can be extended to handle derivatives of
discontinuous function by approximating the Dirac by(√

x
)′ ≈ 1

2
√
x + ε

, (1x>0)′ ≈ δa(x) =
1√
aπ

e−
x2
a

If f is discontinuous at x = z and smooth elsewhere. Let H(x) = 1x>0,

f (x) = f +(x)H(x − z) + f −(x)(1− H(x − z))
f ′z (x) = (f +)′z(x)H(x − z) + (f −)′z(x)(1− H(x − z))− (f +(z)− f −(z))δ(x − z)

Add to the library δa and add H(x), ramp(x)=x+ with derivatives δa(x)
and H(x) and in the computer program don’t write max(K-x,0) but write
ramp(K-x); then the second derivative in K will be δa(K − x) and∫ ∞

0
f (x)(K − x)+dx ≈ 1

N

∑
f (ξi )δ

a(K − ξi )

where ξi are the N quadrature or Monte-Carlo points used by the
programmer to approximate the integral.
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History and Pointers

The creator of Fortran in the sixties were aware of the capacity of
compilers to differentiate a program
The creator of modern AD is Andreas Griewank (Now in Germany)
Adol-C is based on operator overloading; it is open source
INRIA started with odyssee and rewrote it to tapenade (web based)
Similar functions available in NAG and fadBAD++

ADept by Robin Hogan, University of Reading. Easy to use, efficient,
but not maintained.

Uwe Naumann: The art of differentiating computer programs. SIAM
series. Pittsburg (2012).
Andreas Griewank and Alan Walther: Evaluating Derivatives: Principle
and Techniques of Algorithmic Differentiation. SIAM series. (2008).
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Comparison Vibrato+AD (VAD) with Malliavin Calculus

Malliavin estimator for the Gamma is:

Γ̃ = e−rTE
[
(XT − K )+ 1

X 2
0 σT

(
W 2

T

σT
− 1
σ
−WT

)]
(4)

Figure: L2-error with LR-PW, 2ndFD, 1stFD+AD, Malliavin, Vibrato+AD

CPU of VAD is similar to FD+AD, 2ndFD and roughly twice that of
Malliavin. The difference is in the precision (variance)
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Vibrato+AD on a plain vanila option
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Figure: On the left the Gamma versus Price is displayed when computed by
Vibrato + AD; the analytical exact Gamma is also displayed; both curves overlap.
On the right, the convergence history at one point X0 = 120 is displayed with
respect to the number of Monte Carlo samples MW . This is done for two values
of MZ (the number of the final time step), MZ = 1 (low curve) and MZ = 2
(upper curve).
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VAD on a Basket

Figure: Convergence of the computation of the Gamma of a Basket option in
d = 4 (left) and d = 7 (right) by VAD and by Finite differences, versus the
number of simulation paths.
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Other Derivatives

The Vanna is ∂X0,σV
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Figure: On the left the Vanna versus Price is displayed when computed by VAD;
the analytical exact Vanna is also displayed; both curves overlap. On the right,
the convergence history at one point X0 = 120 is displayed with respect to the
number of Monte Carlo samples MW . This is done for two values of MZ , MZ = 1
(red curve) and MZ = 2 (black curve).
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Third Derivatives by Vibrato of Vibrato + AD (VVAD)
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Figure: On the left ∂3V /∂X 3
0 versus Price is displayed when computed by VVAD;

the analytical exact curve is also displayed. On the right, the same for the
sensitivity of the Vanna with respect to changes in interest rate (∂3V /∂X0∂σ∂r).
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Vibrato+Reverse Mode AD (VRAD)



∂2V

∂X 2
0

∂2V

∂v∂X0

∂2V

∂r∂X0

∂2V

∂T∂X0
∂2V

∂X0∂σ

∂2V

∂σ2
∂2V

∂v∂r

∂2V

∂T∂v
∂2V

∂X0∂r

∂2V

∂v∂r

∂2V

∂r2
∂2V

∂T∂r
∂2V

∂X0∂T

∂2V

∂v∂T

∂2V

∂r∂T

∂2V

∂T 2


. (5)

Mode FD (MC) VRAD (MC)
Time (sec) 2.01 0.47

Table: CPU time to compute the Hessian matrix of a standard European Call
option (considering X0, σ, r , T as variables) in the Black-Scholes model.

Hi-tech implementation of class ddouble using traits shows that there is
no need to go to reverse mode AD when the number of partial derivatives
to be computed is less than 20. (Thesis of N. DiCesaré (now at Natixis))
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Greeks for American Options by AD

Vibrato + AD can be used within the Longstaff-Schwarz algorithm.
S σ T Price Stdr Error δ-Vibrato Stdr Error Γ-Vibrato Stdr Error
36 0.2 1 4.46289 0.013 0.68123 1.820e-3 0.06745 6.947e-5
36 0.2 2 4.81523 0.016 0.59934 1.813e-3 0.06398 6.846e-5
36 0.4 1 7.07985 0.016 0.51187 1.674e-3 0.03546 4.852e-5
36 0.4 2 8.45612 0.024 0.44102 1.488e-3 0.02591 5.023e-5
38 0.2 1 3.23324 0.013 0.53063 1.821e-3 0.07219 1.198e-4
38 0.2 2 3.72705 0.015 0.46732 1.669e-3 0.05789 1.111e-4
38 0.4 1 6.11209 0.016 0.45079 1.453e-3 0.03081 5.465e-5
38 0.4 2 7.61031 0.025 0.39503 1.922e-3 0.02342 4.827e-5
40 0.2 1 2.30565 0.012 0.40780 1.880e-3 0.05954 1.213e-4
40 0.2 2 2.86072 0.014 0.39266 1.747e-3 0.04567 5.175e-4

Linking to ddouble, can give
derivatives with respect
to any parameters.
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Figure: Sensitivity w.r. to K of an American Put vs asset price and T-t
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Reverse Mode

Consider J(u, x) where A(u)x = f (u). It models a typical computer
program where x are the intermediary variables. In computer programs A
may be nonlinear but it is lower triangular. Then

dJ = J ′udu + J ′xdx : Adx = (f ′u − A′ux)du

Introducing p leads to

ATp = J ′x ⇒ J ′xdx = dxATp = (Adx)p = p(f ′u − A′ux)du

Therefore dJ = (J ′u + p(f ′u − A′ux))du

Consider u ∈ Rm, x ∈ Rn, A is n × n and p ∈ Rn. p is independent of the
choice of the differentiation variable (u here) so it is advantageous when all
partial derivatives of J are the goal because they all use the same p.
For m derivatives direct mode is O(n ×m2), reverse mode is O(n ×m).
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Reverse Mode (II)

Builds the Lagrangian by associating to each program line a dual variable
p: each code line is seen as an equality constraint.

float E(u){float x1,x2;x1=(1+u)*log(u);x2=x1+cos(u);E=x1*x2;}

L = p1[x1 − (1 + u) log(u)] + p2[x2 − x1 − cos(u)] + E − x1x2.

Stationarity of L with respect to all variables
• ∂piL = 0 gives back the program
• ∂xiL = 0 gives the adjoint state
• ∂uL = dE/du gives the derivative
• ∂L
∂xi

= 0 must be written in reverse order (x2, x1)

∂L

∂x2
= 0 = p2 − x1

∂L

∂x1
= 0 = p1 − p2 − x2.

This gives p2 first and then p1. Now a theorem says that E ′u = L′u when
∂xiL = ∂piL = 0, so

dE

du
=
∂L

∂u
= p2x1 sin(u)− p1(log(u) +

1 + u

u
)
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Conclusion

AD is a simple and powerful tool
Good to know what happens behind the scenes
Fancy C++ for professional implementation
OK in Python, C#, a little in Fortran 95, not in Java
Reverse mode is for the professional

Thank you for the invitation
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