Fast generic MCMC for targets with expensive likelihoods

C.Sherlock (Lancaster), A.Golightly (Ncl) & D.Henderson (Ncl); this talk by: Jere Koskela (Warwick)

Monte Carlo Techniques, Paris, July 2016

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

Metropolis-Hastings (MH) algorithms create a realisation: $\theta^{(1)}, \theta^{(2)}, \ldots$ from a Markov chain with stationary density $\pi(\theta)$. For each $\theta^{(i)}$ we evaluate $\pi(\theta^{(i)})$ - and then discard it.

Pseudo-marginal MH algorithms create a realisation of $\hat{\pi}(\theta^{(i)}, u^{(i)})$ - and then discard it.

In many applications evaluating $\pi(\theta)$ or $\hat{\pi}(\theta, u)$ is computationally expensive.

We would like to reuse these values to create a more efficient MH algorithm that still targets the correct stationary distribution.

Motivation

Metropolis-Hastings (MH) algorithms create a realisation: $\theta^{(1)}, \theta^{(2)}, \ldots$ from a Markov chain with stationary density $\pi(\theta)$. For each $\theta^{(i)}$ we evaluate $\pi(\theta^{(i)})$ - and then discard it.

Pseudo-marginal MH algorithms create a realisation of $\hat{\pi}(\theta^{(i)}, u^{(i)})$ - and then discard it.

In many applications evaluating $\pi(\theta)$ or $\hat{\pi}(\theta, u)$ is computationally expensive.

We would like to reuse these values to create a more efficient MH algorithm that still targets the correct stationary distribution.

We will focus on the [pseudo-marginal] random walk Metropolis (RWM) with a Gaussian proposal:

 $\theta'|\theta \sim \mathsf{N}(\theta, \lambda^2 V).$

This talk

- Creating an approximation to $\pi(\theta')$: k-NN.
- Using an approximation: Delayed acceptance [PsM]MH.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Storing the values: KD-trees.
- Algorithm: adaptive da-[PsM]MH; ergodicity.
- Choice of P(fixed kernel).
- Simulation study.

At iteration *n* of the MH we have $\pi(\theta^{(1)}), \pi(\theta^{(2)}), \ldots, \pi(\theta^{(n)})$, and we would like to create $\hat{\pi}_a(\theta') \approx \pi(\theta')$.

At iteration *n* of the MH we have $\pi(\theta^{(1)}), \pi(\theta^{(2)}), \ldots, \pi(\theta^{(n)})$, and we would like to create $\hat{\pi}_a(\theta') \approx \pi(\theta')$.

Gaussian process to $\log \pi$?:

At iteration *n* of the MH we have $\pi(\theta^{(1)}), \pi(\theta^{(2)}), \ldots, \pi(\theta^{(n)})$, and we would like to create $\hat{\pi}_a(\theta') \approx \pi(\theta')$.

Gaussian process to $\log \pi$?:

[problems with cost of fitting and evaluating as $n \uparrow$]

At iteration *n* of the MH we have $\pi(\theta^{(1)}), \pi(\theta^{(2)}), \ldots, \pi(\theta^{(n)})$, and we would like to create $\hat{\pi}_a(\theta') \approx \pi(\theta')$.

Gaussian process to $\log \pi$?: [problems with cost of fitting and evaluating as $n \uparrow$]

Weighted average of k-nearest neighbour π values: (i) Fitting cost: 0 (actually $O(n_0)$).

At iteration *n* of the MH we have $\pi(\theta^{(1)}), \pi(\theta^{(2)}), \ldots, \pi(\theta^{(n)})$, and we would like to create $\hat{\pi}_a(\theta') \approx \pi(\theta')$.

Gaussian process to $\log \pi$?: [problems with cost of fitting and evaluating as $n \uparrow$]

Weighted average of k-nearest neighbour π values: (i) Fitting cost: 0 (actually $\mathcal{O}(n_0)$). (ii) Per-iteration cost: $\mathcal{O}(n)$.

At iteration *n* of the MH we have $\pi(\theta^{(1)}), \pi(\theta^{(2)}), \ldots, \pi(\theta^{(n)})$, and we would like to create $\hat{\pi}_a(\theta') \approx \pi(\theta')$.

Gaussian process to $\log \pi$?: [problems with cost of fitting and evaluating as $n \uparrow$]

Weighted average of k-nearest neighbour π values: (i) Fitting cost: 0 (actually $\mathcal{O}(n_0)$). (ii) Per-iteration cost: $\mathcal{O}(n)$. (iii) Accuracy \uparrow with n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Christen and Fox, 2005). Suppose we have a computationally-cheap approximation to the posterior: $\hat{\pi}_a(\theta)$.

(Christen and Fox, 2005). Suppose we have a computationally-cheap approximation to the posterior: $\hat{\pi}_a(\theta)$.

Define $\alpha_{da}(\theta; \theta') := \alpha_1(\theta; \theta') \ \alpha_2(\theta; \theta')$, where

$$\alpha_1 := 1 \wedge \frac{\hat{\pi}_{\mathsf{a}}(\theta')q(\theta|\theta')}{\hat{\pi}_{\mathsf{a}}(\theta)q(\theta'|\theta)} \quad \text{and} \quad \alpha_2 := 1 \wedge \frac{\pi(\theta')/\hat{\pi}_{\mathsf{a}}(\theta')}{\pi(\theta)/\hat{\pi}_{\mathsf{a}}(\theta)}.$$

Detailed balance (with respect $\pi(\theta)$) is still preserved with α_{da} because

(Christen and Fox, 2005). Suppose we have a computationally-cheap approximation to the posterior: $\hat{\pi}_a(\theta)$.

Define $\alpha_{da}(\theta; \theta') := \alpha_1(\theta; \theta') \ \alpha_2(\theta; \theta')$, where

$$\alpha_1 := 1 \wedge \frac{\hat{\pi}_{\mathsf{a}}(\theta')q(\theta|\theta')}{\hat{\pi}_{\mathsf{a}}(\theta)q(\theta'|\theta)} \quad \text{and} \quad \alpha_2 := 1 \wedge \frac{\pi(\theta')/\hat{\pi}_{\mathsf{a}}(\theta')}{\pi(\theta)/\hat{\pi}_{\mathsf{a}}(\theta)}.$$

Detailed balance (with respect $\pi(\theta)$) is still preserved with α_{da} because $\pi(\theta) \ q(\theta'|\theta) \ \alpha_{da}(\theta;\theta')$

(Christen and Fox, 2005). Suppose we have a computationally-cheap approximation to the posterior: $\hat{\pi}_a(\theta)$.

Define $\alpha_{da}(\theta; \theta') := \alpha_1(\theta; \theta') \ \alpha_2(\theta; \theta')$, where

$$\alpha_1 := 1 \wedge \frac{\hat{\pi}_{\mathsf{a}}(\theta')q(\theta|\theta')}{\hat{\pi}_{\mathsf{a}}(\theta)q(\theta'|\theta)} \quad \text{and} \quad \alpha_2 := 1 \wedge \frac{\pi(\theta')/\hat{\pi}_{\mathsf{a}}(\theta')}{\pi(\theta)/\hat{\pi}_{\mathsf{a}}(\theta)}.$$

Detailed balance (with respect $\pi(\theta)$) is still preserved with α_{da} because $\pi(\theta) \ \alpha(\theta'|\theta) \ \alpha_{da}(\theta;\theta')$

$$\pi(\theta) \ q(\theta'|\theta) \ \alpha_{da}(\theta;\theta') \\= \hat{\pi}_{a}(\theta) \ q(\theta'|\theta) \ \alpha_{1} \ \times \ \frac{\pi(\theta)}{\hat{\pi}_{a}(\theta)} \ \alpha_{2}$$

(Christen and Fox, 2005). Suppose we have a computationally-cheap approximation to the posterior: $\hat{\pi}_a(\theta)$.

Define $\alpha_{da}(\theta; \theta') := \alpha_1(\theta; \theta') \ \alpha_2(\theta; \theta')$, where

$$\alpha_1 := 1 \wedge \frac{\hat{\pi}_{\mathsf{a}}(\theta')q(\theta|\theta')}{\hat{\pi}_{\mathsf{a}}(\theta)q(\theta'|\theta)} \quad \text{and} \quad \alpha_2 := 1 \wedge \frac{\pi(\theta')/\hat{\pi}_{\mathsf{a}}(\theta')}{\pi(\theta)/\hat{\pi}_{\mathsf{a}}(\theta)}.$$

Detailed balance (with respect $\pi(\theta)$) is still preserved with α_{da} because $\pi(\theta) \ \alpha(\theta'|\theta) \ \alpha \in (\theta, \theta')$

$$\begin{aligned} \pi(\theta) \ q(\theta'|\theta) \ \alpha_{da}(\theta;\theta') \\ = \hat{\pi}_{a}(\theta) \ q(\theta'|\theta) \ \alpha_{1} \ \times \ \frac{\pi(\theta)}{\hat{\pi}_{a}(\theta)} \ \alpha_{2}. \end{aligned}$$

But this algorithm mixes worse than the equivalent MH algorithm (Peskun, 1973; Tierney, 1998).

Using $\alpha_{da} = \alpha_1(\theta; \theta') \alpha_2(\theta; \theta')$ mixes worse but CPU time/iteration can be much reduced.

Using $\alpha_{da} = \alpha_1(\theta; \theta') \alpha_2(\theta; \theta')$ mixes worse but CPU time/iteration can be much reduced.

Accept \Leftrightarrow accept at Stage 1 (w.p. α_1) and accept at Stage 2 (w.p. α_2).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using $\alpha_{da} = \alpha_1(\theta; \theta') \alpha_2(\theta; \theta')$ mixes worse but CPU time/iteration can be much reduced.

Accept \Leftrightarrow accept at Stage 1 (w.p. α_1) and accept at Stage 2 (w.p. α_2).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 α_1 is quick to calculate.

Using $\alpha_{da} = \alpha_1(\theta; \theta') \alpha_2(\theta; \theta')$ mixes worse but CPU time/iteration can be much reduced.

Accept \Leftrightarrow accept at Stage 1 (w.p. α_1) and accept at Stage 2 (w.p. α_2).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 α_1 is quick to calculate.

There is no need to calculate α_2 if we reject at Stage One.

Using $\alpha_{da} = \alpha_1(\theta; \theta') \alpha_2(\theta; \theta')$ mixes worse but CPU time/iteration can be much reduced.

Accept \Leftrightarrow accept at Stage 1 (w.p. α_1) and accept at Stage 2 (w.p. α_2).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 α_1 is quick to calculate.

There is no need to calculate α_2 if we reject at Stage One.

If $\hat{\pi}_a$ is accurate then $\alpha_2 \approx 1$.

Using $\alpha_{da} = \alpha_1(\theta; \theta') \alpha_2(\theta; \theta')$ mixes worse but CPU time/iteration can be much reduced.

Accept \Leftrightarrow accept at Stage 1 (w.p. α_1) and accept at Stage 2 (w.p. α_2).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 α_1 is quick to calculate.

There is no need to calculate α_2 if we reject at Stage One.

If $\hat{\pi}_a$ is accurate then $\alpha_2 \approx 1$.

If $\hat{\pi}_a$ is also cheap then (RWM) can use large jump proposals [EXPLAIN].

Using $\alpha_{da} = \alpha_1(\theta; \theta') \alpha_2(\theta; \theta')$ mixes worse but CPU time/iteration can be much reduced.

Accept \Leftrightarrow accept at Stage 1 (w.p. α_1) and accept at Stage 2 (w.p. α_2).

 α_1 is quick to calculate.

There is no need to calculate α_2 if we reject at Stage One.

If $\hat{\pi}_a$ is accurate then $\alpha_2 \approx 1$.

If $\hat{\pi}_a$ is also cheap then (RWM) can use large jump proposals [EXPLAIN].

Delayed-acceptance PMMH:

$$\alpha_2 := 1 \wedge \frac{\hat{\pi}(\theta', u') / \hat{\pi}_{\mathsf{a}}(\theta')}{\hat{\pi}(\theta, u) / \hat{\pi}_{\mathsf{a}}(\theta)}.$$

Cheap and accurate approximation?

We: use an inverse-distance-weighted average of the π values from the k nearest neighbours.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cheap and accurate approximation?

We: use an inverse-distance-weighted average of the π values from the k nearest neighbours.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

But the cost is still O(n)/iter.

k-nn and the binary tree

Imagine a table with n values.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Look-up of k nearest neighbours to some θ' is O(n).

k-nn and the binary tree

Imagine a table with n values.

$$\begin{array}{ccccccccccccc} \theta_{1}^{(1)} & \theta_{2}^{(1)} & \cdots & \theta_{d}^{(1)} & \pi(\theta^{(1)}) \\ \theta_{1}^{(2)} & \theta_{2}^{(2)} & \cdots & \theta_{d}^{(2)} & \pi(\theta^{(2)}) \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \theta_{1}^{(n)} & \theta_{2}^{(n)} & \cdots & \theta_{d}^{(n)} & \pi(\theta^{(n)}) \end{array}$$

Look-up of k nearest neighbours to some θ' is O(n).

If d = 1 then could sort list or create a standard binary tree

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for $\mathcal{O}(\log n)$ look up.

k-nn and the binary tree

Imagine a table with n values.

$$\begin{array}{ccccccccccccc} \theta_{1}^{(1)} & \theta_{2}^{(1)} & \cdots & \theta_{d}^{(1)} & \pi(\theta^{(1)}) \\ \theta_{1}^{(2)} & \theta_{2}^{(2)} & \cdots & \theta_{d}^{(2)} & \pi(\theta^{(2)}) \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \theta_{1}^{(n)} & \theta_{2}^{(n)} & \cdots & \theta_{d}^{(n)} & \pi(\theta^{(n)}) \end{array}$$

Look-up of k nearest neighbours to some θ' is O(n).

If d = 1 then could sort list or create a standard binary tree

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for $\mathcal{O}(\log n)$ look up. For d > 1 a solution is the KD-tree.

 $m\{S\}$ = branch splitting according to $\theta_{d-split}$ on median of S. [L] = leaf node with a maximum of 2b - 1 leaves.

 $m\{S\}$ = branch splitting according to $\theta_{d-split}$ on median of S. [L] = leaf node with a maximum of 2b - 1 leaves.

 $m\{S\}$ = branch splitting according to $\theta_{d-split}$ on median of S. [L] = leaf node with a maximum of 2b - 1 leaves.

Initial, training run of n_0 iterations. Build initial KD-tree.

Initial, training run of n_0 iterations. Build initial KD-tree. Main run: 'every time' $\pi(\theta')$ is evaluated, add $(\theta', \pi(\theta'))$ to the KD-tree.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Initial, training run of n_0 iterations. Build initial KD-tree.

Main run: 'every time' $\pi(\theta')$ is evaluated, add $(\theta', \pi(\theta'))$ to the KD-tree.

Set-up is $O(\log n_0)^2$; updating is $O(\log n)$ evaluation is $O(\log n)$ and accuracy \uparrow as the MCMC progresses.

Initial, training run of n_0 iterations. Build initial KD-tree.

Main run: 'every time' $\pi(\theta')$ is evaluated, add $(\theta', \pi(\theta'))$ to the KD-tree.

Set-up is $O(\log n_0)^2$; updating is $O(\log n)$ evaluation is $O(\log n)$ and accuracy \uparrow as the MCMC progresses.

Provided the tree is balanced. [Skip, for lack of time]
Refinements

Training dataset \Rightarrow better distance metric. Transform θ' to approximately isotropic before creating tree, or adding new node.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Refinements

Training dataset \Rightarrow better distance metric. Transform θ' to approximately isotropic before creating tree, or adding new node.

Minimum distance ϵ . If $\exists \theta$ s.t. $||\theta' - \theta|| < \epsilon$ then

(i) MH: ignore new value.

(ii) PMMH: combine $\hat{\pi}(y|\theta', u')$ with $\hat{\pi}(y|\theta, u)$ (running average).

Components

- A fixed [pseudo-marginal] kernel $P([\theta, u]; [d\theta', du'])$.
- An adaptive [pseudo-marginal] DA kernel $P_{\gamma}([\theta, u]; [d\theta', du'])$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Components

- A fixed [pseudo-marginal] kernel $P([\theta, u]; [d\theta', du'])$.
- An adaptive [pseudo-marginal] DA kernel $P_{\gamma}([\theta, u]; [d\theta', du'])$.
- Both P and P_{γ} generate $\hat{\pi}(\theta', u)$ in the same way.
- A fixed probability $\beta \in (0, 1]$.
- A set of probabilities: $p_n \rightarrow 0$.

Algorithm At the start of iteration *n*, the chain is at $[\theta, u]$ and the DA kernel would be P_{γ} .

Components

- A fixed [pseudo-marginal] kernel $P([\theta, u]; [d\theta', du'])$.
- An adaptive [pseudo-marginal] DA kernel $P_{\gamma}([\theta, u]; [d\theta', du'])$.
- Both P and P_{γ} generate $\hat{\pi}(\theta', u)$ in the same way.
- A fixed probability $\beta \in (0, 1]$.
- A set of probabilities: $p_n \rightarrow 0$.

Algorithm At the start of iteration *n*, the chain is at $[\theta, u]$ and the DA kernel would be P_{γ} .

1. Sample $[\theta', u']$ from

$$\left\{ \begin{array}{ll} P & {\rm w.p.} & \beta \\ P_{\gamma} & {\rm w.p.} & 1-\beta. \end{array} \right.$$

Components

- A fixed [pseudo-marginal] kernel $P([\theta, u]; [d\theta', du'])$.
- An adaptive [pseudo-marginal] DA kernel $P_{\gamma}([\theta, u]; [d\theta', du'])$.
- Both P and P_{γ} generate $\hat{\pi}(\theta', u)$ in the same way.
- A fixed probability $\beta \in (0, 1]$.
- A set of probabilities: $p_n \rightarrow 0$.

Algorithm At the start of iteration *n*, the chain is at $[\theta, u]$ and the DA kernel would be P_{γ} .

- A kernel would be , γ . 1. Sample $[\theta', u']$ from $\begin{cases}
 P & w.p. \quad \beta \\
 P_{\gamma} & w.p. \quad 1 - \beta.
 \end{cases}$
- 2. W.p. p_n 'choose a new γ ': update the kernel by including all relevant information since the kernel was last updated.

Components

- A fixed [pseudo-marginal] kernel $P([\theta, u]; [d\theta', du'])$.
- An adaptive [pseudo-marginal] DA kernel $P_{\gamma}([\theta, u]; [d\theta', du'])$.
- Both P and P_{γ} generate $\hat{\pi}(\theta', u)$ in the same way.
- A fixed probability $\beta \in (0, 1]$.
- A set of probabilities: $p_n \rightarrow 0$.

Algorithm At the start of iteration *n*, the chain is at $[\theta, u]$ and the DA kernel would be P_{γ} .

1. Sample
$$[heta', u']$$
 from

$$\begin{cases}
P & \text{w.p.} \quad \beta \\
P_{\gamma} & \text{w.p.} \quad 1 - \beta
\end{cases}$$

2. W.p. p_n 'choose a new γ ': update the kernel by including all relevant information since the kernel was last updated.

Set: $p_n = 1/(1 + ci_n)$, where $i_n = \#$ expensive evaluations so far.

Assumptions on the fixed kernel.

1. Minorisation: there is a density $\nu(\theta)$ and $\delta > 0$ such that $q(\theta'|\theta)\alpha(\theta;\theta') > \delta\nu(\theta')$, where α is the acceptance rate from the idealised version of the fixed MH algorithm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assumptions on the fixed kernel.

1. Minorisation: there is a density $\nu(\theta)$ and $\delta > 0$ such that $q(\theta'|\theta)\alpha(\theta;\theta') > \delta\nu(\theta')$, where α is the acceptance rate from the idealised version of the fixed MH algorithm.

2. Bounded weights: the support of $W := \hat{\pi}(\theta, U)/\pi(\theta)$ is uniformly (in θ) bounded above by some $\overline{w} < \infty$.

Assumptions on the fixed kernel.

1. Minorisation: there is a density $\nu(\theta)$ and $\delta > 0$ such that $q(\theta'|\theta)\alpha(\theta;\theta') > \delta\nu(\theta')$, where α is the acceptance rate from the idealised version of the fixed MH algorithm.

2. Bounded weights: the support of $W := \hat{\pi}(\theta, U)/\pi(\theta)$ is uniformly (in θ) bounded above by some $\overline{w} < \infty$.

Theorem Subject to Assumptions 1 and 2, the adaptive pseudo-marginal algorithm is ergodic.

Assumptions on the fixed kernel.

- 1. Minorisation: there is a density $\nu(\theta)$ and $\delta > 0$ such that $q(\theta'|\theta)\alpha(\theta;\theta') > \delta\nu(\theta')$, where α is the acceptance rate from the idealised version of the fixed MH algorithm.
- 2. Bounded weights: the support of $W := \hat{\pi}(\theta, U)/\pi(\theta)$ is uniformly (in θ) bounded above by some $\overline{w} < \infty$.

Theorem Subject to Assumptions 1 and 2, the adaptive pseudo-marginal algorithm is ergodic.

NB. For DAMH, as opposed to DAPMMH, only the minorisation assumption is required.

<□ > < @ > < E > < E > E のQ @

DARWM is more efficient when $\lambda > \hat{\lambda}_{RWM}$.

DARWM is more efficient when $\lambda > \hat{\lambda}_{RWM}$. The lower α_1 does not matter.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

DARWM is more efficient when $\lambda > \hat{\lambda}_{RWM}$. The lower α_1 does not matter.

But low $\alpha_1 \Rightarrow$ fewer expensive evaluations of π [or of $\hat{\pi}$].

DARWM is more efficient when $\lambda > \hat{\lambda}_{RWM}$. The lower α_1 does not matter.

But low $\alpha_1 \Rightarrow$ fewer expensive evaluations of π [or of $\hat{\pi}$].

$$P(\text{expensive}) = \beta + (1 - \beta)\alpha_1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

DARWM is more efficient when $\lambda > \hat{\lambda}_{RWM}$. The lower α_1 does not matter.

But low $\alpha_1 \Rightarrow$ fewer expensive evaluations of π [or of $\hat{\pi}$].

$$P(\text{expensive}) = \beta + (1 - \beta)\alpha_1.$$

If $\alpha_1 << 1$ most of the expensive evaluations come from the fixed kernel and much of the benefit from the adaptive kernel will be lost.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

DARWM is more efficient when $\lambda > \hat{\lambda}_{RWM}$. The lower α_1 does not matter.

But low $\alpha_1 \Rightarrow$ fewer expensive evaluations of π [or of $\hat{\pi}$].

$$P(\text{expensive}) = \beta + (1 - \beta)\alpha_1.$$

If $\alpha_1 << 1$ most of the expensive evaluations come from the fixed kernel and much of the benefit from the adaptive kernel will be lost.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fixing $\beta \propto \alpha_1$ (obtained from the training run) avoids this,

DARWM is more efficient when $\lambda > \hat{\lambda}_{RWM}$. The lower α_1 does not matter.

But low $\alpha_1 \Rightarrow$ fewer expensive evaluations of π [or of $\hat{\pi}$].

$$P(\text{expensive}) = \beta + (1 - \beta)\alpha_1$$

If $\alpha_1 << 1$ most of the expensive evaluations come from the fixed kernel and much of the benefit from the adaptive kernel will be lost.

Fixing $\beta \propto \alpha_1$ (obtained from the training run) avoids this, but the guaranteed worst-case TVD from π after *n* iterations gets larger.

DARWM is more efficient when $\lambda > \hat{\lambda}_{RWM}$. The lower α_1 does not matter.

But low $\alpha_1 \Rightarrow$ fewer expensive evaluations of π [or of $\hat{\pi}$].

$$P(\text{expensive}) = \beta + (1 - \beta)\alpha_1$$

If $\alpha_1 << 1$ most of the expensive evaluations come from the fixed kernel and much of the benefit from the adaptive kernel will be lost.

Fixing $\beta \propto \alpha_1$ (obtained from the training run) avoids this, but the guaranteed worst-case TVD from π after *n* iterations gets larger.

Consider a fixed computational budget \approx fixed number of expensive evaluations. This preserves the provable worst-case TVD from π .

Lotka-Volterra MJP daPMRWM with d = 5

LNA approximation to autoregulatary system daRWM with d = 10

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lotka-Volterra MJP daPMRWM with d = 5

LNA approximation to autoregulatary system daRWM with d=10

RWM: $\theta' \sim N(\theta, \lambda^2 \hat{\Sigma})$ where $\hat{\Sigma}$, obtained from training run (also gives pre-map).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lotka-Volterra MJP daPMRWM with d = 5

LNA approximation to autoregulatary system daRWM with d = 10

RWM: $\theta' \sim N(\theta, \lambda^2 \hat{\Sigma})$ where $\hat{\Sigma}$, obtained from training run (also gives pre-map).

Scaling, λ [and number of particles m] chosen to be optimal for RWM.

Lotka-Volterra MJP daPMRWM with d = 5

LNA approximation to autoregulatary system daRWM with d = 10

RWM: $\theta' \sim N(\theta, \lambda^2 \hat{\Sigma})$ where $\hat{\Sigma}$, obtained from training run (also gives pre-map).

Scaling, λ [and number of particles m] chosen to be optimal for RWM.

 $n_0 = 10000$ (from training run), b = 10, c = 0.001.

$$\mathsf{Efficency} = \frac{\min_{j=1...d} \mathsf{ESS}_j}{\mathsf{CPU time}}$$

Results: LV

RelESS= efficiency of DA[PM]RWM / efficiency of optimal RWM.

xi=1 corresponds to the DA using the scaling that is optimal for the standard RWM algorithm. i.e. DA scaling = xi× $\hat{\lambda}_{RWM}$.

Results: Autoreg.

Solid=shorter dataset; dashed=longer dataset.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

LV: further experiments

С	Tree Size	$\hat{\alpha}_1$	$\hat{\alpha}_2$	Rel. mESS
0.0001	41078	0.00772	0.339	7.28
0.001	40256	0.00915	0.276	6.80
0.01	43248	0.0121	0.204	4.67
∞	10000	0.0175	0.136	3.46

<□ > < @ > < E > < E > E のQ @

LV: further experiments

с	Tree Size	$\hat{\alpha}_1$	$\hat{\alpha}_2$	Rel. mESS
0.0001	41078	0.00772	0.339	7.28
0.001	40256	0.00915	0.276	6.80
0.01	43248	0.0121	0.204	4.67
∞	10000	0.0175	0.136	3.46

Using a list rather than the KD-tree reduced the efficiency by a factor of $\approx 2.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

<□ > < @ > < E > < E > E のQ @

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

・ロト・日本・モート モー うへぐ

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

・ロト・日本・モート モー うへぐ

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

・ロト・日本・モート モー うへぐ

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need $\beta \propto \alpha_1$ for adaptive portion to play a part.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need $\beta \propto \alpha_1$ for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need $\beta \propto \alpha_1$ for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need $\beta \propto \alpha_1$ for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need $n \gg 2^d$ for KD-tree to give worthwhile speedup and for adequate coverage.

・ロト・日本・モート モー うへぐ

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need $\beta \propto \alpha_1$ for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need $n \gg 2^d$ for KD-tree to give worthwhile speedup and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and curvature;

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need $\beta \propto \alpha_1$ for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need $n \gg 2^d$ for KD-tree to give worthwhile speedup and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and curvature; even to fit a local GP?
Summary

Store the expensive evaluations of π or $\hat{\pi}$ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need $\beta \propto \alpha_1$ for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need $n \gg 2^d$ for KD-tree to give worthwhile speedup and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and curvature; even to fit a local GP?

Thank you!