
Fast generic MCMC for targets with expensive
likelihoods

C.Sherlock (Lancaster), A.Golightly (Ncl) & D.Henderson
(Ncl); this talk by: Jere Koskela (Warwick)

Monte Carlo Techniques, Paris, July 2016

Motivation

Metropolis-Hastings (MH) algorithms create a realisation:
θ(1), θ(2), . . . from a Markov chain with stationary density π(θ).
For each θ(i) we evaluate π(θ(i)) - and then discard it.

Pseudo-marginal MH algorithms create a realisation of π̂(θ(i), u(i))
- and then discard it.

In many applications evaluating π(θ) or π̂(θ, u) is computationally
expensive.

We would like to reuse these values to create a more efficient MH
algorithm that still targets the correct stationary distribution.

We will focus on the [pseudo-marginal] random walk Metropolis
(RWM) with a Gaussian proposal:

θ′|θ ∼ N(θ, λ2V).

Motivation

Metropolis-Hastings (MH) algorithms create a realisation:
θ(1), θ(2), . . . from a Markov chain with stationary density π(θ).
For each θ(i) we evaluate π(θ(i)) - and then discard it.

Pseudo-marginal MH algorithms create a realisation of π̂(θ(i), u(i))
- and then discard it.

In many applications evaluating π(θ) or π̂(θ, u) is computationally
expensive.

We would like to reuse these values to create a more efficient MH
algorithm that still targets the correct stationary distribution.

We will focus on the [pseudo-marginal] random walk Metropolis
(RWM) with a Gaussian proposal:

θ′|θ ∼ N(θ, λ2V).

This talk

Creating an approximation to π(θ′): k-NN.

Using an approximation: Delayed acceptance [PsM]MH.

Storing the values: KD-trees.

Algorithm: adaptive da-[PsM]MH; ergodicity.

Choice of P(fixed kernel).

Simulation study.

Creating an approximation

At iteration n of the MH we have π(θ(1)), π(θ(2)), . . . , π(θ(n)), and
we would like to create π̂a(θ′) ≈ π(θ′).

Gaussian process to log π?:
[problems with cost of fitting and evaluating as n ↑]

Weighted average of k-nearest neighbour π values:
(i) Fitting cost: 0 (actually O(n0)).
(ii) Per-iteration cost: O(n).
(iii) Accuracy ↑ with n.

Creating an approximation

At iteration n of the MH we have π(θ(1)), π(θ(2)), . . . , π(θ(n)), and
we would like to create π̂a(θ′) ≈ π(θ′).

Gaussian process to log π?:

[problems with cost of fitting and evaluating as n ↑]

Weighted average of k-nearest neighbour π values:
(i) Fitting cost: 0 (actually O(n0)).
(ii) Per-iteration cost: O(n).
(iii) Accuracy ↑ with n.

Creating an approximation

At iteration n of the MH we have π(θ(1)), π(θ(2)), . . . , π(θ(n)), and
we would like to create π̂a(θ′) ≈ π(θ′).

Gaussian process to log π?:
[problems with cost of fitting and evaluating as n ↑]

Weighted average of k-nearest neighbour π values:
(i) Fitting cost: 0 (actually O(n0)).
(ii) Per-iteration cost: O(n).
(iii) Accuracy ↑ with n.

Creating an approximation

At iteration n of the MH we have π(θ(1)), π(θ(2)), . . . , π(θ(n)), and
we would like to create π̂a(θ′) ≈ π(θ′).

Gaussian process to log π?:
[problems with cost of fitting and evaluating as n ↑]

Weighted average of k-nearest neighbour π values:
(i) Fitting cost: 0 (actually O(n0)).

(ii) Per-iteration cost: O(n).
(iii) Accuracy ↑ with n.

Creating an approximation

At iteration n of the MH we have π(θ(1)), π(θ(2)), . . . , π(θ(n)), and
we would like to create π̂a(θ′) ≈ π(θ′).

Gaussian process to log π?:
[problems with cost of fitting and evaluating as n ↑]

Weighted average of k-nearest neighbour π values:
(i) Fitting cost: 0 (actually O(n0)).
(ii) Per-iteration cost: O(n).

(iii) Accuracy ↑ with n.

Creating an approximation

At iteration n of the MH we have π(θ(1)), π(θ(2)), . . . , π(θ(n)), and
we would like to create π̂a(θ′) ≈ π(θ′).

Gaussian process to log π?:
[problems with cost of fitting and evaluating as n ↑]

Weighted average of k-nearest neighbour π values:
(i) Fitting cost: 0 (actually O(n0)).
(ii) Per-iteration cost: O(n).
(iii) Accuracy ↑ with n.

Delayed acceptance MH (1)

(Christen and Fox, 2005). Suppose we have a
computationally-cheap approximation to the posterior: π̂a(θ).

Define αda(θ; θ′) := α1(θ; θ′) α2(θ; θ′), where

α1 := 1 ∧ π̂a(θ′)q(θ|θ′)
π̂a(θ)q(θ′|θ)

and α2 := 1 ∧ π(θ′)/π̂a(θ′)

π(θ)/π̂a(θ)
.

Detailed balance (with respect π(θ)) is still preserved with αda

because
π(θ) q(θ′|θ) αda(θ; θ′)

= π̂a(θ) q(θ′|θ) α1 × π(θ)
π̂a(θ)

α2.

But this algorithm mixes worse than the equivalent MH algorithm
(Peskun, 1973; Tierney, 1998).

Delayed acceptance MH (1)

(Christen and Fox, 2005). Suppose we have a
computationally-cheap approximation to the posterior: π̂a(θ).

Define αda(θ; θ′) := α1(θ; θ′) α2(θ; θ′), where

α1 := 1 ∧ π̂a(θ′)q(θ|θ′)
π̂a(θ)q(θ′|θ)

and α2 := 1 ∧ π(θ′)/π̂a(θ′)

π(θ)/π̂a(θ)
.

Detailed balance (with respect π(θ)) is still preserved with αda

because

π(θ) q(θ′|θ) αda(θ; θ′)

= π̂a(θ) q(θ′|θ) α1 × π(θ)
π̂a(θ)

α2.

But this algorithm mixes worse than the equivalent MH algorithm
(Peskun, 1973; Tierney, 1998).

Delayed acceptance MH (1)

(Christen and Fox, 2005). Suppose we have a
computationally-cheap approximation to the posterior: π̂a(θ).

Define αda(θ; θ′) := α1(θ; θ′) α2(θ; θ′), where

α1 := 1 ∧ π̂a(θ′)q(θ|θ′)
π̂a(θ)q(θ′|θ)

and α2 := 1 ∧ π(θ′)/π̂a(θ′)

π(θ)/π̂a(θ)
.

Detailed balance (with respect π(θ)) is still preserved with αda

because
π(θ) q(θ′|θ) αda(θ; θ′)

= π̂a(θ) q(θ′|θ) α1 × π(θ)
π̂a(θ)

α2.

But this algorithm mixes worse than the equivalent MH algorithm
(Peskun, 1973; Tierney, 1998).

Delayed acceptance MH (1)

(Christen and Fox, 2005). Suppose we have a
computationally-cheap approximation to the posterior: π̂a(θ).

Define αda(θ; θ′) := α1(θ; θ′) α2(θ; θ′), where

α1 := 1 ∧ π̂a(θ′)q(θ|θ′)
π̂a(θ)q(θ′|θ)

and α2 := 1 ∧ π(θ′)/π̂a(θ′)

π(θ)/π̂a(θ)
.

Detailed balance (with respect π(θ)) is still preserved with αda

because
π(θ) q(θ′|θ) αda(θ; θ′)

= π̂a(θ) q(θ′|θ) α1 × π(θ)
π̂a(θ)

α2.

But this algorithm mixes worse than the equivalent MH algorithm
(Peskun, 1973; Tierney, 1998).

Delayed acceptance MH (1)

(Christen and Fox, 2005). Suppose we have a
computationally-cheap approximation to the posterior: π̂a(θ).

Define αda(θ; θ′) := α1(θ; θ′) α2(θ; θ′), where

α1 := 1 ∧ π̂a(θ′)q(θ|θ′)
π̂a(θ)q(θ′|θ)

and α2 := 1 ∧ π(θ′)/π̂a(θ′)

π(θ)/π̂a(θ)
.

Detailed balance (with respect π(θ)) is still preserved with αda

because
π(θ) q(θ′|θ) αda(θ; θ′)

= π̂a(θ) q(θ′|θ) α1 × π(θ)
π̂a(θ)

α2.

But this algorithm mixes worse than the equivalent MH algorithm
(Peskun, 1973; Tierney, 1998).

Delayed-acceptance [PsM]MH (2)

Using αda = α1(θ; θ′)α2(θ; θ′) mixes worse but CPU time/iteration
can be much reduced.

Accept⇔ accept at Stage 1 (w.p. α1) and accept at Stage 2 (w.p. α2).

α1 is quick to calculate.

There is no need to calculate α2 if we reject at Stage One.

If π̂a is accurate then α2 ≈ 1.

If π̂a is also cheap then (RWM) can use large jump proposals
[EXPLAIN].

Delayed-acceptance PMMH:

α2 := 1 ∧ π̂(θ′, u′)/π̂a(θ′)

π̂(θ, u)/π̂a(θ)
.

Delayed-acceptance [PsM]MH (2)

Using αda = α1(θ; θ′)α2(θ; θ′) mixes worse but CPU time/iteration
can be much reduced.

Accept⇔ accept at Stage 1 (w.p. α1) and accept at Stage 2 (w.p. α2).

α1 is quick to calculate.

There is no need to calculate α2 if we reject at Stage One.

If π̂a is accurate then α2 ≈ 1.

If π̂a is also cheap then (RWM) can use large jump proposals
[EXPLAIN].

Delayed-acceptance PMMH:

α2 := 1 ∧ π̂(θ′, u′)/π̂a(θ′)

π̂(θ, u)/π̂a(θ)
.

Delayed-acceptance [PsM]MH (2)

Using αda = α1(θ; θ′)α2(θ; θ′) mixes worse but CPU time/iteration
can be much reduced.

Accept⇔ accept at Stage 1 (w.p. α1) and accept at Stage 2 (w.p. α2).

α1 is quick to calculate.

There is no need to calculate α2 if we reject at Stage One.

If π̂a is accurate then α2 ≈ 1.

If π̂a is also cheap then (RWM) can use large jump proposals
[EXPLAIN].

Delayed-acceptance PMMH:

α2 := 1 ∧ π̂(θ′, u′)/π̂a(θ′)

π̂(θ, u)/π̂a(θ)
.

Delayed-acceptance [PsM]MH (2)

Using αda = α1(θ; θ′)α2(θ; θ′) mixes worse but CPU time/iteration
can be much reduced.

Accept⇔ accept at Stage 1 (w.p. α1) and accept at Stage 2 (w.p. α2).

α1 is quick to calculate.

There is no need to calculate α2 if we reject at Stage One.

If π̂a is accurate then α2 ≈ 1.

If π̂a is also cheap then (RWM) can use large jump proposals
[EXPLAIN].

Delayed-acceptance PMMH:

α2 := 1 ∧ π̂(θ′, u′)/π̂a(θ′)

π̂(θ, u)/π̂a(θ)
.

Delayed-acceptance [PsM]MH (2)

Using αda = α1(θ; θ′)α2(θ; θ′) mixes worse but CPU time/iteration
can be much reduced.

Accept⇔ accept at Stage 1 (w.p. α1) and accept at Stage 2 (w.p. α2).

α1 is quick to calculate.

There is no need to calculate α2 if we reject at Stage One.

If π̂a is accurate then α2 ≈ 1.

If π̂a is also cheap then (RWM) can use large jump proposals
[EXPLAIN].

Delayed-acceptance PMMH:

α2 := 1 ∧ π̂(θ′, u′)/π̂a(θ′)

π̂(θ, u)/π̂a(θ)
.

Delayed-acceptance [PsM]MH (2)

Using αda = α1(θ; θ′)α2(θ; θ′) mixes worse but CPU time/iteration
can be much reduced.

Accept⇔ accept at Stage 1 (w.p. α1) and accept at Stage 2 (w.p. α2).

α1 is quick to calculate.

There is no need to calculate α2 if we reject at Stage One.

If π̂a is accurate then α2 ≈ 1.

If π̂a is also cheap then (RWM) can use large jump proposals
[EXPLAIN].

Delayed-acceptance PMMH:

α2 := 1 ∧ π̂(θ′, u′)/π̂a(θ′)

π̂(θ, u)/π̂a(θ)
.

Delayed-acceptance [PsM]MH (2)

Using αda = α1(θ; θ′)α2(θ; θ′) mixes worse but CPU time/iteration
can be much reduced.

Accept⇔ accept at Stage 1 (w.p. α1) and accept at Stage 2 (w.p. α2).

α1 is quick to calculate.

There is no need to calculate α2 if we reject at Stage One.

If π̂a is accurate then α2 ≈ 1.

If π̂a is also cheap then (RWM) can use large jump proposals
[EXPLAIN].

Delayed-acceptance PMMH:

α2 := 1 ∧ π̂(θ′, u′)/π̂a(θ′)

π̂(θ, u)/π̂a(θ)
.

Cheap and accurate approximation?

We: use an inverse-distance-weighted average of the π values from
the k nearest neighbours.

But the cost is still O(n)/iter.

Cheap and accurate approximation?

We: use an inverse-distance-weighted average of the π values from
the k nearest neighbours.

But the cost is still O(n)/iter.

k-nn and the binary tree

Imagine a table with n values.

θ
(1)
1 θ

(1)
2 · · · θ

(1)
d π(θ(1))

θ
(2)
1 θ

(2)
2 · · · θ

(2)
d π(θ(2))

· · · · · · · · · · · · · · ·
θ
(n)
1 θ

(n)
2 · · · θ

(n)
d π(θ(n))

Look-up of k nearest neighbours to some θ′ is O(n).

If d = 1 then could sort list or create a standard binary tree
(median)

(q1) (q3)

(oct1) (oct3) (oct5) (oct7)

for O(log n) look up. For d > 1 a solution is the KD-tree.

k-nn and the binary tree

Imagine a table with n values.

θ
(1)
1 θ

(1)
2 · · · θ

(1)
d π(θ(1))

θ
(2)
1 θ

(2)
2 · · · θ

(2)
d π(θ(2))

· · · · · · · · · · · · · · ·
θ
(n)
1 θ

(n)
2 · · · θ

(n)
d π(θ(n))

Look-up of k nearest neighbours to some θ′ is O(n).

If d = 1 then could sort list or create a standard binary tree
(median)

(q1) (q3)

(oct1) (oct3) (oct5) (oct7)

for O(log n) look up.

For d > 1 a solution is the KD-tree.

k-nn and the binary tree

Imagine a table with n values.

θ
(1)
1 θ

(1)
2 · · · θ

(1)
d π(θ(1))

θ
(2)
1 θ

(2)
2 · · · θ

(2)
d π(θ(2))

· · · · · · · · · · · · · · ·
θ
(n)
1 θ

(n)
2 · · · θ

(n)
d π(θ(n))

Look-up of k nearest neighbours to some θ′ is O(n).

If d = 1 then could sort list or create a standard binary tree
(median)

(q1) (q3)

(oct1) (oct3) (oct5) (oct7)

for O(log n) look up. For d > 1 a solution is the KD-tree.

KD-tree (d=2)

d−split

1 m1:=m{θ1}

m{S} = branch splitting according to θd-split on median of S.

[L] = leaf node with a maximum of 2b − 1 leaves.
KD-tree useful if n/(3b/2) > 2d .

KD-tree (d=2)

d−split

1

2

m1:=m{θ1}

m2−:=m{θ2:θ1<m1} m2+:=m{θ2:θ1>m1}

m{S} = branch splitting according to θd-split on median of S.

[L] = leaf node with a maximum of 2b − 1 leaves.
KD-tree useful if n/(3b/2) > 2d .

KD-tree (d=2)

d−split

1

2

1

m1:=m{θ1}

m2−:=m{θ2:θ1<m1} m2+:=m{θ2:θ1>m1}

m1−−:=m{θ1:θ1<m1θ2<m2−} [L] m1+−:=m{θ1:θ1>m1θ2<m2−} [L]

m{S} = branch splitting according to θd-split on median of S.

[L] = leaf node with a maximum of 2b − 1 leaves.
KD-tree useful if n/(3b/2) > 2d .

KD-tree (d=2)

d−split

1

2

1

2

m1:=m{θ1}

m2−:=m{θ2:θ1<m1} m2+:=m{θ2:θ1>m1}

m1−−:=m{θ1:θ1<m1θ2<m2−} [L] m1+−:=m{θ1:θ1>m1θ2<m2−} [L]

[L] [L] [L] [L]

m{S} = branch splitting according to θd-split on median of S.

[L] = leaf node with a maximum of 2b − 1 leaves.

Our KD-tree is useful if (roughly) n/(3b/2) > 2d .

KD-tree (d=2)

d−split

1

2

1

2

m1:=m{θ1}

m2−:=m{θ2:θ1<m1} m2+:=m{θ2:θ1>m1}

m1−−:=m{θ1:θ1<m1θ2<m2−} [L] m1+−:=m{θ1:θ1>m1θ2<m2−} [L]

[L] [L] [L] [L]

m{S} = branch splitting according to θd-split on median of S.

[L] = leaf node with a maximum of 2b − 1 leaves.
Our KD-tree is useful if (roughly) n/(3b/2) > 2d .

Adaptive k-nn using a KD-tree

Initial, training run of n0 iterations. Build initial KD-tree.

Main run: ‘every time’ π(θ′) is evaluated, add (θ′, π(θ′)) to the
KD-tree.

Set-up is O
(
n0(log n0)2

)
; updating is O(log n) evaluation is

O(log n) and accuracy ↑ as the MCMC progresses.

Provided the tree is balanced. [Skip, for lack of time]

Adaptive k-nn using a KD-tree

Initial, training run of n0 iterations. Build initial KD-tree.

Main run: ‘every time’ π(θ′) is evaluated, add (θ′, π(θ′)) to the
KD-tree.

Set-up is O
(
n0(log n0)2

)
; updating is O(log n) evaluation is

O(log n) and accuracy ↑ as the MCMC progresses.

Provided the tree is balanced. [Skip, for lack of time]

Adaptive k-nn using a KD-tree

Initial, training run of n0 iterations. Build initial KD-tree.

Main run: ‘every time’ π(θ′) is evaluated, add (θ′, π(θ′)) to the
KD-tree.

Set-up is O
(
n0(log n0)2

)
; updating is O(log n) evaluation is

O(log n) and accuracy ↑ as the MCMC progresses.

Provided the tree is balanced. [Skip, for lack of time]

Adaptive k-nn using a KD-tree

Initial, training run of n0 iterations. Build initial KD-tree.

Main run: ‘every time’ π(θ′) is evaluated, add (θ′, π(θ′)) to the
KD-tree.

Set-up is O
(
n0(log n0)2

)
; updating is O(log n) evaluation is

O(log n) and accuracy ↑ as the MCMC progresses.

Provided the tree is balanced. [Skip, for lack of time]

Refinements

Training dataset ⇒ better distance metric. Transform θ′ to
approximately isotropic before creating tree, or adding new node.

Minimum distance ε. If ∃ θ s.t. ||θ′ − θ|| < ε then
(i) MH: ignore new value.
(ii) PMMH: combine π̂(y |θ′, u′) with π̂(y |θ, u) (running average).

Refinements

Training dataset ⇒ better distance metric. Transform θ′ to
approximately isotropic before creating tree, or adding new node.

Minimum distance ε. If ∃ θ s.t. ||θ′ − θ|| < ε then
(i) MH: ignore new value.
(ii) PMMH: combine π̂(y |θ′, u′) with π̂(y |θ, u) (running average).

Adaptive Algorithm

Components

A fixed [pseudo-marginal] kernel P([θ, u]; [dθ′, du′]).

An adaptive [pseudo-marginal] DA kernel Pγ([θ, u]; [dθ′, du′]).

Both P and Pγ generate π̂(θ′, u) in the same way.

A fixed probability β ∈ (0, 1].

A set of probabilities: pn → 0.

Algorithm At the start of iteration n, the chain is at [θ, u] and the
DA kernel would be Pγ .

1. Sample [θ′, u′] from{
P w.p. β
Pγ w.p. 1− β.

2. W.p. pn ‘choose a new γ’: update the kernel by including all
relevant information since the kernel was last updated.

Set: pn = 1/(1 + cin), where in = # expensive evaluations so far.

Adaptive Algorithm

Components

A fixed [pseudo-marginal] kernel P([θ, u]; [dθ′, du′]).

An adaptive [pseudo-marginal] DA kernel Pγ([θ, u]; [dθ′, du′]).

Both P and Pγ generate π̂(θ′, u) in the same way.

A fixed probability β ∈ (0, 1].

A set of probabilities: pn → 0.

Algorithm At the start of iteration n, the chain is at [θ, u] and the
DA kernel would be Pγ .

1. Sample [θ′, u′] from{
P w.p. β
Pγ w.p. 1− β.

2. W.p. pn ‘choose a new γ’: update the kernel by including all
relevant information since the kernel was last updated.

Set: pn = 1/(1 + cin), where in = # expensive evaluations so far.

Adaptive Algorithm

Components

A fixed [pseudo-marginal] kernel P([θ, u]; [dθ′, du′]).

An adaptive [pseudo-marginal] DA kernel Pγ([θ, u]; [dθ′, du′]).

Both P and Pγ generate π̂(θ′, u) in the same way.

A fixed probability β ∈ (0, 1].

A set of probabilities: pn → 0.

Algorithm At the start of iteration n, the chain is at [θ, u] and the
DA kernel would be Pγ .

1. Sample [θ′, u′] from{
P w.p. β
Pγ w.p. 1− β.

2. W.p. pn ‘choose a new γ’: update the kernel by including all
relevant information since the kernel was last updated.

Set: pn = 1/(1 + cin), where in = # expensive evaluations so far.

Adaptive Algorithm

Components

A fixed [pseudo-marginal] kernel P([θ, u]; [dθ′, du′]).

An adaptive [pseudo-marginal] DA kernel Pγ([θ, u]; [dθ′, du′]).

Both P and Pγ generate π̂(θ′, u) in the same way.

A fixed probability β ∈ (0, 1].

A set of probabilities: pn → 0.

Algorithm At the start of iteration n, the chain is at [θ, u] and the
DA kernel would be Pγ .

1. Sample [θ′, u′] from{
P w.p. β
Pγ w.p. 1− β.

2. W.p. pn ‘choose a new γ’: update the kernel by including all
relevant information since the kernel was last updated.

Set: pn = 1/(1 + cin), where in = # expensive evaluations so far.

Adaptive Algorithm

Components

A fixed [pseudo-marginal] kernel P([θ, u]; [dθ′, du′]).

An adaptive [pseudo-marginal] DA kernel Pγ([θ, u]; [dθ′, du′]).

Both P and Pγ generate π̂(θ′, u) in the same way.

A fixed probability β ∈ (0, 1].

A set of probabilities: pn → 0.

Algorithm At the start of iteration n, the chain is at [θ, u] and the
DA kernel would be Pγ .

1. Sample [θ′, u′] from{
P w.p. β
Pγ w.p. 1− β.

2. W.p. pn ‘choose a new γ’: update the kernel by including all
relevant information since the kernel was last updated.

Set: pn = 1/(1 + cin), where in = # expensive evaluations so far.

Ergodicity

Assumptions on the fixed kernel.

1. Minorisation: there is a density ν(θ) and δ > 0 such that
q(θ′|θ)α(θ; θ′) > δν(θ′), where α is the acceptance rate from
the idealised version of the fixed MH algorithm.

2. Bounded weights: the support of W := π̂(θ,U)/π(θ) is
uniformly (in θ) bounded above by some w <∞.

Theorem Subject to Assumptions 1 and 2, the adaptive
pseudo-marginal algorithm is ergodic.

NB. For DAMH, as opposed to DAPMMH, only the minorisation
assumption is required.

Ergodicity

Assumptions on the fixed kernel.

1. Minorisation: there is a density ν(θ) and δ > 0 such that
q(θ′|θ)α(θ; θ′) > δν(θ′), where α is the acceptance rate from
the idealised version of the fixed MH algorithm.

2. Bounded weights: the support of W := π̂(θ,U)/π(θ) is
uniformly (in θ) bounded above by some w <∞.

Theorem Subject to Assumptions 1 and 2, the adaptive
pseudo-marginal algorithm is ergodic.

NB. For DAMH, as opposed to DAPMMH, only the minorisation
assumption is required.

Ergodicity

Assumptions on the fixed kernel.

1. Minorisation: there is a density ν(θ) and δ > 0 such that
q(θ′|θ)α(θ; θ′) > δν(θ′), where α is the acceptance rate from
the idealised version of the fixed MH algorithm.

2. Bounded weights: the support of W := π̂(θ,U)/π(θ) is
uniformly (in θ) bounded above by some w <∞.

Theorem Subject to Assumptions 1 and 2, the adaptive
pseudo-marginal algorithm is ergodic.

NB. For DAMH, as opposed to DAPMMH, only the minorisation
assumption is required.

Ergodicity

Assumptions on the fixed kernel.

1. Minorisation: there is a density ν(θ) and δ > 0 such that
q(θ′|θ)α(θ; θ′) > δν(θ′), where α is the acceptance rate from
the idealised version of the fixed MH algorithm.

2. Bounded weights: the support of W := π̂(θ,U)/π(θ) is
uniformly (in θ) bounded above by some w <∞.

Theorem Subject to Assumptions 1 and 2, the adaptive
pseudo-marginal algorithm is ergodic.

NB. For DAMH, as opposed to DAPMMH, only the minorisation
assumption is required.

Choice of β

DARWM is more efficient when λ > λ̂RWM .

The lower α1 does not matter.

But low α1 ⇒ fewer expensive evaluations of π [or of π̂].

P(expensive) = β + (1− β)α1.

If α1 << 1 most of the expensive evaluations come from the fixed
kernel and much of the benefit from the adaptive kernel will be
lost.

Fixing β ∝ α1 (obtained from the training run) avoids this, but the
guaranteed worst-case TVD from π after n iterations gets larger.

Consider a fixed computational budget ≈ fixed number of
expensive evaluations. This preserves the provable worst-case TVD
from π.

Choice of β

DARWM is more efficient when λ > λ̂RWM .
The lower α1 does not matter.

But low α1 ⇒ fewer expensive evaluations of π [or of π̂].

P(expensive) = β + (1− β)α1.

If α1 << 1 most of the expensive evaluations come from the fixed
kernel and much of the benefit from the adaptive kernel will be
lost.

Fixing β ∝ α1 (obtained from the training run) avoids this, but the
guaranteed worst-case TVD from π after n iterations gets larger.

Consider a fixed computational budget ≈ fixed number of
expensive evaluations. This preserves the provable worst-case TVD
from π.

Choice of β

DARWM is more efficient when λ > λ̂RWM .
The lower α1 does not matter.

But low α1 ⇒ fewer expensive evaluations of π [or of π̂].

P(expensive) = β + (1− β)α1.

If α1 << 1 most of the expensive evaluations come from the fixed
kernel and much of the benefit from the adaptive kernel will be
lost.

Fixing β ∝ α1 (obtained from the training run) avoids this, but the
guaranteed worst-case TVD from π after n iterations gets larger.

Consider a fixed computational budget ≈ fixed number of
expensive evaluations. This preserves the provable worst-case TVD
from π.

Choice of β

DARWM is more efficient when λ > λ̂RWM .
The lower α1 does not matter.

But low α1 ⇒ fewer expensive evaluations of π [or of π̂].

P(expensive) = β + (1− β)α1.

If α1 << 1 most of the expensive evaluations come from the fixed
kernel and much of the benefit from the adaptive kernel will be
lost.

Fixing β ∝ α1 (obtained from the training run) avoids this, but the
guaranteed worst-case TVD from π after n iterations gets larger.

Consider a fixed computational budget ≈ fixed number of
expensive evaluations. This preserves the provable worst-case TVD
from π.

Choice of β

DARWM is more efficient when λ > λ̂RWM .
The lower α1 does not matter.

But low α1 ⇒ fewer expensive evaluations of π [or of π̂].

P(expensive) = β + (1− β)α1.

If α1 << 1 most of the expensive evaluations come from the fixed
kernel and much of the benefit from the adaptive kernel will be
lost.

Fixing β ∝ α1 (obtained from the training run) avoids this, but the
guaranteed worst-case TVD from π after n iterations gets larger.

Consider a fixed computational budget ≈ fixed number of
expensive evaluations. This preserves the provable worst-case TVD
from π.

Choice of β

DARWM is more efficient when λ > λ̂RWM .
The lower α1 does not matter.

But low α1 ⇒ fewer expensive evaluations of π [or of π̂].

P(expensive) = β + (1− β)α1.

If α1 << 1 most of the expensive evaluations come from the fixed
kernel and much of the benefit from the adaptive kernel will be
lost.

Fixing β ∝ α1 (obtained from the training run) avoids this,

but the
guaranteed worst-case TVD from π after n iterations gets larger.

Consider a fixed computational budget ≈ fixed number of
expensive evaluations. This preserves the provable worst-case TVD
from π.

Choice of β

DARWM is more efficient when λ > λ̂RWM .
The lower α1 does not matter.

But low α1 ⇒ fewer expensive evaluations of π [or of π̂].

P(expensive) = β + (1− β)α1.

If α1 << 1 most of the expensive evaluations come from the fixed
kernel and much of the benefit from the adaptive kernel will be
lost.

Fixing β ∝ α1 (obtained from the training run) avoids this, but the
guaranteed worst-case TVD from π after n iterations gets larger.

Consider a fixed computational budget ≈ fixed number of
expensive evaluations. This preserves the provable worst-case TVD
from π.

Choice of β

DARWM is more efficient when λ > λ̂RWM .
The lower α1 does not matter.

But low α1 ⇒ fewer expensive evaluations of π [or of π̂].

P(expensive) = β + (1− β)α1.

If α1 << 1 most of the expensive evaluations come from the fixed
kernel and much of the benefit from the adaptive kernel will be
lost.

Fixing β ∝ α1 (obtained from the training run) avoids this, but the
guaranteed worst-case TVD from π after n iterations gets larger.

Consider a fixed computational budget ≈ fixed number of
expensive evaluations. This preserves the provable worst-case TVD
from π.

Examples

Lotka-Volterra MJP daPMRWM with d = 5

LNA approximation to autoregulatary system daRWM with
d = 10

RWM: θ′ ∼ N(θ, λ2Σ̂) where Σ̂, obtained from training run (also
gives pre-map).

Scaling, λ [and number of particles m] chosen to be optimal for
RWM.

n0 = 10000 (from training run), b = 10, c = 0.001.

Efficency =
minj=1...d ESSj

CPU time

Examples

Lotka-Volterra MJP daPMRWM with d = 5

LNA approximation to autoregulatary system daRWM with
d = 10

RWM: θ′ ∼ N(θ, λ2Σ̂) where Σ̂, obtained from training run (also
gives pre-map).

Scaling, λ [and number of particles m] chosen to be optimal for
RWM.

n0 = 10000 (from training run), b = 10, c = 0.001.

Efficency =
minj=1...d ESSj

CPU time

Examples

Lotka-Volterra MJP daPMRWM with d = 5

LNA approximation to autoregulatary system daRWM with
d = 10

RWM: θ′ ∼ N(θ, λ2Σ̂) where Σ̂, obtained from training run (also
gives pre-map).

Scaling, λ [and number of particles m] chosen to be optimal for
RWM.

n0 = 10000 (from training run), b = 10, c = 0.001.

Efficency =
minj=1...d ESSj

CPU time

Examples

Lotka-Volterra MJP daPMRWM with d = 5

LNA approximation to autoregulatary system daRWM with
d = 10

RWM: θ′ ∼ N(θ, λ2Σ̂) where Σ̂, obtained from training run (also
gives pre-map).

Scaling, λ [and number of particles m] chosen to be optimal for
RWM.

n0 = 10000 (from training run), b = 10, c = 0.001.

Efficency =
minj=1...d ESSj

CPU time

Results: LV

RelESS= efficiency of DA[PM]RWM / efficiency of optimal RWM.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

3
4

5
6

7

xi

R
e
lE

S
S

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
xi

a
lp

1

xi=1 corresponds to the DA using the scaling that is optimal for
the standard RWM algorithm. i.e. DA scaling = xi×λ̂RWM .

Results: Autoreg.

Solid=shorter dataset; dashed=longer dataset.

0.5 1.0 1.5 2.0 2.5 3.0

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

xi

E
S

S

0.5 1.0 1.5 2.0 2.5 3.0
0

1
2

3
4

5

xi

R
e
lE

S
S

LV: further experiments

c Tree Size α̂1 α̂2 Rel. mESS

0.0001 41078 0.00772 0.339 7.28
0.001 40256 0.00915 0.276 6.80
0.01 43248 0.0121 0.204 4.67
∞ 10000 0.0175 0.136 3.46

Using a list rather than the KD-tree reduced the efficiency by a
factor of ≈ 2.

LV: further experiments

c Tree Size α̂1 α̂2 Rel. mESS

0.0001 41078 0.00772 0.339 7.28
0.001 40256 0.00915 0.276 6.80
0.01 43248 0.0121 0.204 4.67
∞ 10000 0.0175 0.136 3.46

Using a list rather than the KD-tree reduced the efficiency by a
factor of ≈ 2.

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature;

even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

Summary

Store the expensive evaluations of π or π̂ in a KD-tree.

Use a delayed-acceptance [PsM]RWM algorithm.

Adaptive algorithm converges subject to conditions.

Need β ∝ α1 for adaptive portion to play a part.

Improvement in efficiency by factor of between 4-7

Code easy-to-use, generic C code for the KD-tree is available.

Limitations: Need n� 2d for KD-tree to give worthwhile speedup
and for adequate coverage.

Other: could use k nearest neighbours to estimate gradient and
curvature; even to fit a local GP?

Thank you!

