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Introduction

We consider a financial system as a network of banks.
Intertwined globally → systemic risks materialize: Shocks in some part of
the system are amplified by the system.

Dual aspect of connectivity :{
− Banks receive benefits from their connections (e.g. allows more credit)

− Connectivity creates systemic risk
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Contents

1 Control of systemic risk
Optimization problem for a lender of last resort in a stylized
hierarchical model.(H. Amini, A. Minca & A.S., Siam J. Fin. Math.
’15)

We consider a core-periphery financial network in which links lead to the

creation of projects in the outside economy but make banks prone to

contagion risk. The controller seeks to maximize, under budget constraints,

the value of the financial system defined as the total amount of projects.

Our results show that the value of the system and the optimal policy depend

on the connectivity.
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2. Optimal choice of connectivity
We study the magnitude of default contagion in a large financial
system with intrinsic recovery feature and investigate how the
institutions choose their connectivities optimally by solving an
optimization problem weighing the default risk and the benefits
induced by connectivity. We also study equilibrium issues of the whole
system.
ongoing joint work with R. Chen and & A. Minca
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I. Control of interbank contagion under partial information
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The financial system provides fundamental services to the outside
economy. In the most simplified form, it channels capital from outside
investors until it reaches real projects.
Connectivity allows more credit to reach the periphery and real projects,
while at the same time it creates systemic risk.

How do these opposite effects compare at the level of the financial
network, and how to define the value of the financial network to
account for this dual aspect of connectivity?

Can intervention by a lender of last resort achieve that the benefits of
connectivity (projects) surpass the costs associated with contagion?
Should intervention be targeted towards core banks or towards
peripheral banks?
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I.1 General model description

Stylized hierarchical financial network:
Two classes of banks:

c core banks ; each holding yc in external projects

a set of peripheral banks ; each holding yp in external projects

and

1 external creditor (e.g. money market funds)

Financial network: intermediates credit lines from the external creditor
to peripheral, through core, thus leading to new investment in additional
projects by peripheral banks.

The difference core/peripheral banks lies in access to the external creditor.
♯ credit lines from external creditor to core = ♯ extended by core to
peripheral.
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Credit intermediation by core banks

Peripheral bank

yp
Deposits

Core

yc Deposits External creditor

1 avail-
able
project

1 avail-
able unit
of credit

•

Figure: one unit of credit from external creditor is intermediated by a core bank
to a peripheral bank, that invests it into one unit of additional project.
(Particular case of one core and one peripheral)
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Network model

Core banks have connectivity λ, i.e. they have

λ borrowers (core or peripheral banks),
λ lenders (core banks or external creditor).

Peripheral banks have at most connectivity 1 and can only borrow
from core banks.

The efficiency of the network is captured by π ∈ [0, 1]: among the
m := λc borrowers of the core banks, πm are peripheral (and
(1− π)m are inter-core links).
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We represent the financial system as a directed unweighted multi-network
([c] ∪ {0, p}, E), where

[c] := {1, . . . , c} represents the set of core banks

{0} represents the external creditor

{p} represents the set of peripheral banks

E the set of links (i , j), where i is the lender and j is the borrower.

Links are unweighted, that is, there is a standardized value of a loan
normalized to 1 (numéraire).
We allow for multiple links between two core banks.
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Value of the (connected component of the) financial system

Total amount of external projects (before the shock)

J̄ := cyc +mπ(yp + 1)

mπ is the number of peripheral banks connected to core banks
(= #{(i , p) ∈ E , i ∈ [c]}). Each one holds yp projects funded
independently of the network and one additional project funded
through the credit from core banks.

As connectivity increases in the network, mπ increases but contagion risk
also increases. When a core fails, it withdraws its credit lines and
liquidates its projects (yc units). When a peripheral fails, it liquidates its
projects (yp units).
Here the contagion goes in the same directions as the credit.
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Direction of credit lines and contagion

Set of
Peripheral
Banks

Set of
Core Banks

External Creditor

mπ out-going links

mπ in-coming linksm(1− π) inter-core links

Figure: More connectivity of core banks amounts to more credit lines towards
peripheral banks but also more cycles among core banks. Contagion happens in
the direction of credit lines: when a core bank fails it withdraws all credit lines
from its borrowers.
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Probability setup

We fix a probability space (Gc+2,m,P), where Gc+2,m denotes the set of
networks with c + 2 nodes (c core banks, the external creditor and the set
of peripheral banks) and at most m links.

While the connectivity is fixed, the counterparties (lenders and borrowers)
of the core banks are randomly chosen.

Note that it is sufficient to establish the borrowers of the core banks.

Under the probability measure P, the law of E is given as follows.
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Each core bank is assigned λ(1− π) in-coming half links (which
corresponds to credit received from other core banks) and
λ out-going half links (credit offered to core or peripheral banks),

The set of peripheral banks is assigned mπ in-coming half links.

In total we thus have
- m := cλ out-going half links (offers of a credit line)
- cλ(1− π) +mπ = m in-coming half links (candidates for one credit line).

We draw a uniform matching of the m out-going half-links with the m
in-coming links.
When an out-going half-link is matched with an in-coming half-link, a link
is established.
Only when the chosen candidate is a peripheral bank, a new unit of project
is created. When it is a core bank, then this does not correspond to a new
unit of project, but to an additional intermediary.
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Contagion and Information

Each bank is endowed with a random variable θ0(i), i ∈ [n], called “initial
distance to failure”, which represents the number of credit lines which can
be withdrawn from bank i , before bank i fails.
For core banks, It takes values in {0, ϑmax}, where distance 0 marks a
failed bank.
For peripheral banks, it is equal to 1.
We assume that when a bank fails, it withdraws all credit lines from its
debtors and also liquidates entirely its projects.
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Motivation behind the model

Our model of failure cascade is interpreted as a model for liquidity
hoarding, see Gai-Kapadia (2010). Formally it is a linear threshold model
of contagion, see see Granovetter (1978), Watts (2001).

1 Why focus on liquidity hoarding and not the usual insolvency
propagation?
Muller (2006) : ”both channels are relevant and that the credit line
contagion channel is even more critical than the exposure channel”.
Failure is extreme liquidity hoarding.

2 What drives liquidity hoarding ?
Acharya and Skeie (2011) find that banks’ willingness to provide
credit to other banks is determined by their own rollover risk (and
may disconnect from the credit quality)

3 How to interpret the distance to failure?
The remaining debt capacity, and this is related to the banks’ own
rollover risk.
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Link-revealing filtration

We endow the probability space (Gc+2.m,P) with a filtration (Gk)k≤m,
called ”link-revealing” filtration, that models the financial contagion and
the flow of information.

At each step an out-going link of a failed bank is revealed.
This corresponds to a credit line that is withdrawn and consequently to a
decrease in the distance to failure of the borrower at the end of the link.

The failure cluster, started by the failure of a core bank, is the set of
failed banks and revealed links. It is defined as a random graph that
evolves in Gc+2,m.

Agnès Sulem (INRIA Paris) Control of interbank contagion July 6, 2016 17 / 52



Default cascades: a simple example

a() b(1) c(1)

d(2) e(3)

f (1) g(1)

a
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Default cascades: a simple example

a() b(1) c(1)

d(2) e(3)

f (1) g(1)

d(1) e(2)

a b c

d

Agnès Sulem (INRIA Paris) Control of interbank contagion July 6, 2016 18 / 52



Default cascades: a simple example
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Default cascades: a simple example

The set of fundamental failures : a
The failure cluster in red
The revealed links are in red: For tractability, they will be revealed one by
one

a() b(1) c(1)
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f (1) g(1)
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I.2 Optimal intervention problem

We consider a controller that intervenes a maximum number of times M
(budget constraint) at steps 1 ≤ k ≤ m.
When he intervenes on a bank, the distance to failure of this bank
increases by 1.
The controller may intervene at each step only on one bank, which we
understand is the end of the revealed link. For this type of control, we
introduce the control set

UM := {(uk ∈ {0, 1}, 1 ≤ k ≤ m),
∑

1≤k≤m

uk ≤ M}.

For the optimization criterion we consider, this space is sufficient, i.e., it
would not be optimal to intervene on multiple banks at the same time or
on banks which are not the end of the revealed link.
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We now define the controlled cascade of information and contagion,
where the control process takes values in UM and is adapted to the
link-revealing filtration.

Initial condition.
Let θ0(i) ∈ {0, ϑmax}, i ∈ [c] given.
All links exiting initially failed nodes are hidden.

Dynamics.
At each step k = 1, . . . ,m, as long as there are hidden links exiting
failed banks, we choose uniformly one of them and reveal it.

The end of the revealed link jk is the “new observation” at step k.
The distance to failure of jk decreases unless there is intervention.
If jk fails (reaches distance 0), then we augment the set of hidden links.

We let T the stopping time of the cascade.
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Optimization criterion

Value of the financial system at the end of the cascade process:

JT =JuT u = #{i ∈ [c], θuT u(i) > 0}yc
+

(
#{(i , p), i ∈ [c], θuT u(i) > 0}+ I p,uT u (p)

)
(yp + 1),

where the quantity(
#{(i , p), i ∈ [c], θuT u(i) > 0}+ I p,uT u (p)

)
represents the number of credit lines maintained to the peripheral banks
(either because the line was not withdrawn or because of intervention)
I p,uk : number of interventions up to step k on the set of peripheral banks.
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Optimal control under partial information

Φ0 := max
u∈Ua

E
(
JT |G0

)
where Ua denotes the set of (Gk)1≤k≤m-adapted processes with values in
UM .

Since the control space Ua is finite, there exists an optimal control.
However, a priori this control depends on the whole history of the system,
which would make the problem intractable.
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State space collapse theorem

Contagion and the optimal control can be determined using some
aggregates of the state variables.

Intuition:
The position of the core banks in the network is only partially observed.

Non-failed core banks at the same distance to failure have the same
systemic risk and are similar from the point of view of the controller, who
cannot observe their borrowers.

Therefore, we only need to keep track of their number during the cascade,
rather than their individual state.
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Aggregate state variables:

Au
k := (Cu

k ,P
u
k , I

c,u
k , I p,uk ) with

Cu
k (ϑ) := #{i ∈ [c], θu(i) = ϑ} : number of core banks with distance

to failure ϑ at step k , ; ϑ = 1 . . . ϑmax

Pu
k : the number of credit lines from core to peripheral which are not

withdrawn at step k ,

I c,uk (ϑ) :=
∑

i∈[c],θk(i)=ϑ v
u
k (i): number of interventions up to step k

on core banks having distance to failure ϑ; ϑ = 1 . . . ϑmax .

I p,uk : number of interventions up to step k on the set of peripheral
banks.
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Moreover, instead of keeping track of the end of the revealed link jk , as
the “new observation” at step k, we define the aggregate as

Yk := (11jk∈[c], θk(jk)
+11jk∈[c])
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State space collapse theorem:

Let UFeedback be the set of feedback controls u = (uk)k∈[1,m] ∈ Ua of the
form

uk = Uk(A
u
k−1,Yk), for 1 ≤ k ≤ m.

For u ∈ UFeedback , Au is a Markov chain.
Moreover, there exists an optimal control u∗ ∈ Ua and we have that
u∗ ∈ UFeedback .
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Sketch of proof :

1 The stopping time T u representing the end of the cascade, can be
written, using the aggregate state Au

T u only, as

T u = inf{k ,
(
c −

ϑmax∑
ϑ=1

Cu
k (ϑ)

)
λ− k = 0}.

2 The criterion JuT u can be written using Au
T u only.

3 The transition probabilities of Au
k depend only on previous state Au

k−1,
the new (aggregate) observation Yk and the control uk at step k.

4 The Gu
k−1- conditional law of Yk depends only on Au

k−1.

We can thus write
Au
k = f (Au

k−1,Yk , uk),

and for u feedback, i.e. uk = Uk(A
u
k−1,Yk), A

u
k is a Markov chain.
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I.3 Numerical analysis
Dynamic programming

The value function is given by Φ0 = ϕ0(A0) with ϕk defined backward
recursively by the Bellman equation, for all x = (xc , xp, ic , ip) ∈ A and
k = m, . . . , 0

ϕk(x) =

{
maxuk+1∈UFback

k+1,x
E
(
ϕk+1(A

u
k+1) | Au

k = x
)
,
(
c −

∑ϑmax
ϑ=1 xc(ϑ)

)
λ > k

J(x) otherwise
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I.3 Numerical analysis
Numerical experiments

We solve our problem by implementing the dynamic programming
equation with the numerical values of the parameters given below unless
otherwise stated.

Number of core banks c = 9
Network efficiency π = .5

Number of projects of core banks yc = 1
Number of projects of peripheral banks yp = 1

Connectivity λ ∈ [1, 20]
Maximum distance to failure ϑmax = 3

Intervention budget M = 4

Table: Parameters of the stylized model.
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Connectivity and Value of the financial system
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The relation between value and connectivity is non-monotonous.

When there is no initial failed core banks (C0(ϑmax) = c), then the
value of the system always increases with connectivity.

When there is at least one initially failed core bank (C0(ϑmax) < c),
then the value first increases, then decreases with connectivity.

A priori, connectivity increases the value of the financial system. However,
when there are initially core failed banks, contagion also increases and the
value of the system is given by these two opposite effects. Note that, if
connectivity becomes too large, the value of the financial system drops
below the value of the disconnected system (λ = 0)
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Value of the financial system with different intervention
budgets
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Figure: Value of the financial system (Φ0) under varying connectivity and different
intervention budgets: M = 0 (no intervention), M = 4, M = 6.
There is an optimal level of connectivity for each initial state for a given budget,
and this optimum is increasing in the budget of the controller.
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intervention and without intervention surpasses the intervention budget.
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Policy of the controller

We compare now the number of interventions on core and peripheral
banks for varying connectivity.
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Figure: Difference between the expected number of interventions on core and
peripheral banks yc = 10; yp = 1.
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When there are no failed core banks initially: no interventions (no
contagion).
When there is at least one initially failed core bank :

For low connectivity regime, the number of interventions on
peripheral banks increases with connectivity.

Above a certain level of connectivity, it is optimal to increase the
number of interventions on core (to prevent contagion among core)

Then, in the high connectivity regime, it is again optimal to intervene
towards the peripheral banks (to stop as least contagion from cores to
peripheral.)
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Efficiency and the value of the financial system

We now study the impact of the efficiency level on the intervention policy.
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Figure: Difference between the expected number of interventions on core and
peripheral banks as a function of network efficiency. yp = 1, yc = 10.
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Decreasing efficiency in a network with a fixed number of connections
from core to peripheral banks has similar effect on the intervention policy
as increasing the overall connectivity for fixed efficiency level.

Agnès Sulem (INRIA Paris) Control of interbank contagion July 6, 2016 39 / 52



Main insights

Relation of the value of the financial system and optimal
intervention with connectivity

Up to a certain connectivity, the value of the system increases with
connectivity. No longer the case if connectivity becomes too large,
and even in the case there is intervention, the value of the system
may fall below the value of the disconnected system.

We identify the optimal policy of a controller that injects liquidity
into the system so as to maximize its expected value:

For low connectivity: preferable to inject directly into the periphery.
For medium connectivity: preferable to inject liquidity into the core
banks.
For highest connectivity: again optimal to intervene into the periphery.

→ it is not obvious that connectivity of a core bank should always be an

argument for priority intervention; it may be sometimes preferable to invest in

non-core banks that lend directly to the economy.
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We have introduced a stylized model, which despite its simplicity suggests
that there is an optimal level of connectivity for the financial system.

Similar results could be obtained for a tiered structured with more that
two levels of banks.
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How to add more realism to the model ?

Relaxing the assumption of full liquidation and full withdrawal of
credit lines in case of failures

Design of optimal sharing rules of the benefit from connectivity and
control among the controller and the financial system, for example in
the form of interest rate.

Allow for an exogenous rise in the distance to failure (this model is
more adapted to a short term crisis). See second part of the talk.
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II. Optimal Connectivity for financial system with default
contagion
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Objective

We study the magnitude of default contagion in a large financial system
with intrinsic recovery feature, and investigate how the institutions choose
their connectivities optimally by solving an optimization problem weighting
the default risk and the benefits induced by connectivity.

We also study equilibrium issues of the whole system.

In the short time model (static case), the threshold θ remains unchanged,
while in the long time model (dynamic case), we allow some growth (rate
α) of θ during the contagion, but only the survived banks can gain the
rewards, the defaulted one are dead and can never recover.
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The problems

Trade off : The more out credit lines you have, the more more profit but
more default probability

1 Given the network and initial defaults, what is the final proportion of
default in the system? What is the default probability of banks with
different initial conditions?

2 How do the banks optimally choose their connectivity facing the trade
off of benefits and risk? How is the equilibrium of the whole system
formed?
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Default contagion

Starting from the initial default banks, the default bank withdraws all
its outgoing credit lines.

When an incoming credit line is cut for a bank, it replaces this in-link
from the outsides creditors.

Each banks i has θ chance to replace the cut in coming credit
(capacity).

If the bank already reaches the threshold θ, then it defaults,
withdraws all its out-going links. The contagion of risk propagates.
In the long time model (dynamic case), growth (rate α) of θ during
the contagion.
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We introduce the following notation:

Sθ,j ,l
n (t) : number of survival banks with initial threshold θ,

connectivity j , and l defaulted links at calendar time t.

D j ,θ
n (t): number of defaulted banks with connectivity j and default

threshold θ at time t,

Dn(t): number of defaulted banks at time t,

D−
n (t): number of unrevealed links from defaulted banks at time t.

Define Tk calendar time when the kth interaction takes place.
We assume the duration between two interactions Tk − Tk−1 =

1
n .

In the dynamic case ,the threshold θ grows with rate α between two
successive interactions. The threshold at time Tk grows up to
θ + α · j · Tk . (Static case corresponds to α = 0).
The length of the default cascade is given by

Tstop := inf{0 ≤ k ≤ mn, D−
n (Tk) = 0}

where mn denotes the total number of links.
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Asymptotic magnitudes of contagion

The dynamics Sn(k) =
(
S j ,θ,l
n (k)

)
j ,θ,l

represents a Markov chain.The

corresponding transition probability results from the uniform random
matching mechanism.

Methodology: Approximate the Markov Chain by the solution of a
system of differential equations in the large network limit (fluid limit) when
n → ∞. We have, with high probability 1− o(n) (scaling both in state
and time)

Sθ,j ,l
n (Tk) = nsθ,j ,l(k/n) + o(n)

where sθ,j ,lk (u) satisfy a system of ODEs.
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The survival probability

Static model: we have a concise explicit solution for sθ,j ,l(u) and we
can characterize the survival probability

β̂(θ, j , p̂) = β(θ, j , ustop, λ) =

∑
l≤θ s

θ,j ,l(ustop)

sθ,j0

=
∑
l≤θ

(
j

l

)
(1−p̂)j−l p̂l

where p̂ :=
ustop
λ is determined by the whole system (it can be

interpreted as a default probability for each link). Here
λ := limn→∞

mn
n is the average connectivity in limit.

Dynamic model: The system of ODEs is solved by induction and β
can be given in analytical form.

β̂(θ, j , p̂) =

∑
l≤θ+αjustop

sθ,j ,l(ustop)

sθ,j0
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Optimization problem

Balance the trade-off of profit and risk. Players optimally choose their
connectivity to maximize their expected profits:

j∗(θ, p) = max
j

{j · β̂(θ, j , p)}.

When j increases, the survival probability β̂(θ, j , p) decreases which clearly
illustrates the trade-off between profits and risk.

Proposition: In the static case, the optimization problem admits a finite
optimizer j∗(θ, p) and lies in the interval

(
( 1p − 1) ∨ θ, θp − 1

)
.

Besides, j∗(θ, p) is increasing in θ, decreasing in p, and can be
approximated by j∗(θ, p) = [a(p) + b(p)log(θ)]

(
− θ

log(1−p)

)
.

Similar results for the dynamic case with growth α < 1 but more
complicated expressions.
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The equilibrium

Definition: We call (p∗, (j∗(θ, p∗)θ) an equilibrium iff

For each θ, j∗(θ, p∗) = max
j

{j · β̂(j , θ, p∗)}.

p∗ satisfies :

p∗ ·
[∑

θ

µ(θ)j∗(θ, p∗)
]
=

∑
θ

µ(θ)j∗(θ, p∗)
[
1− β̂(j∗(θ, p∗), θ, p∗)

]

Interpretation of the equilibrium: The institutions choose their optimal
linkages in order to maximize their final profits given their initial states and
anticipated default probability, while the final survival probability is
determined by the aggregated behavior of the institutions in the systems.

Theorem: If the optimizer j∗(θ, p) is unique for each θ and p ∈ (0, 1),
then there exists an equilibrium (p∗, (j∗(θ, p∗)θ).
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Conclusions

Conclusions

We derive asymptotic results for the magnitude of default contagion
in a large financial system with intrinsic recovery features (dynamic
model). Our results extend previous studies on static networks model
by allowing certain extent of growth of the banks capacity between
each round of contagion.

We add a game component to the model, analyze how the
institutions behave facing the trade off of profits and contagion
default risk. The institutions choose their optimal linkages in order to
maximize their final profits given their initial states and estimated
survival probability. The final survival probability is determined by the
behavior of the banks in the whole system. We prove that under mild
assumption, the equilibrium exists.
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