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HMM’s

Ingredients

1. (Xn,Yn)n≥0, (Xn)n≥0 unobserved, (Yn)n≥0 observed

2. (Xn)n≥0 is Markov, X0 ∼ M0, Xn|Xn−1 ∼ Mn(Xn−1, ·)
3. (Yn)n≥0 conditionally indep. given (Xn)n≥0, Yn|(Xn)n≥0 ∼ Gn(Xn, ·)

Target measures

γn(A) := E

[
IA(Xn)

n−1∏
p=0

Gp(Xp, yp)

]

ηn(A) :=
γn(A)

γn(X)
= cond. probability of Xn ∈ A given y0, . . . , yn−1,

γn(X) = marg. likelihood of y0, . . . , yn−1.
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Tempered targets

Ingredients

1. Unnormalized prob. densities π̄0(x), π̄1(x)

Zi :=

ˆ
π̄i (x)dx , πi (dx) :=

π̄i (x)dx

Zi
, i ∈ {0, 1}

and a sequence of constants 0 = β0 < · · · < βn = 1.

2. X0 ∼ π0 and for p = 1, . . . , n, Xp|Xp−1 ∼ Mp(Xp−1, ·), where Mp is

invariant w.r.t. dist. ∝ π̄1−βp

0 (x)π̄
βp

1 (x),

3. for p = 0, . . . , n − 1, Gp(x) := π̄1(x)βp+1−βp/π̄0(x)βp+1−βp

Target measures

γn(A) := E

[
IA(Xn)

n−1∏
p=0

Gp(Xp)

]
, ηn(A) :=

γn(A)

γn(X)
.

ηn(A) = πn(A), γn(X) =
Z1

Z0
.
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Generic formulation

• On a measurable space (X,X ), define:

• M0 a prob. measure, (Mn)n≥1 a seq. of Markov kernels.
• (Gn)n≥0 a seq. of strictly positive, upper bounded functions.

• Define measures γ0 := M0 and, recursively,

γn(A) :=

ˆ
γn−1(dx)Gn−1(x)Mn(x ,A), n ≥ 1, A ∈ X .

• Probability measure counterparts

ηn(A) :=
γn(A)

γn(1)
=
ηn−1(Gn−1Mn(A))

ηn−1(Gn−1)
, A ∈ X .

• Notation: L(X ) the set of real-valued, bounded, X -measurable
functions, and for a measure µ on X ,

µ(ϕ) :=

ˆ
X

ϕ(x)µ(dx), ϕ ∈ L(X ).
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A particle filter

At time 0, for each i ∈ {1, . . . ,N}, sample ζ i0 ∼ M0(·).

At each time n ≥ 1, for each i ∈ {1, . . . ,N}, sample

1. Ai
n−1 ∼ Categorical

(
Gn−1(ζ

1
n−1)∑N

j=1 Gn−1(ζ
j
n−1)

, . . . ,
Gn−1(ζ

N
n−1)∑N

j=1 Gn−1(ζ
j
n−1)

)
,

2. ζ in ∼ Mn(ζ
Ai
n−1

n−1 , ·).

ηNn (A) :=
1

N

∑
i∈[N]

δζin (A), γN
n (A) := ηNn (A)

n−1∏
p=0

ηNp (Gp).

integrating out the Ai
n−1’s gives

ζ in ∼
∑N

j=1 Gn−1(ζ jn−1)Mn(ζ jn−1, ·)∑N
j=1 Gn−1(ζ jn−1)

=
ηNn−1(Gn−1Mn(A))

ηNn−1(Gn−1)

N→∞−−−−→ ηn−1(Gn−1Mn(A))

ηn−1(Gn−1)
= ηn(A).
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Quality of the approximations

Extensive literature on these approximations includes:

1. Central limit theorems: Del Moral and Guionnet [1999], Chopin
[2004], Künsch [2005], Douc and Moulines [2008].

2. Nonasymptotic results: Del Moral and Miclo [2001], Cérou et al.
[2011].

3. Many others!

• These theoretical results validate the methodology.

• They do not allow us to extract information from a realization of a
single particle filter in order to report numerical measures of Monte
Carlo error.

• Chan and Lai [2013] provide an estimate of the asymptotic variance
of an “updated” variant of ηNn (ϕ).
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A particle filter + “Eve” variables

At time 0, for each i ∈ {1, . . . ,N}, sample ζ i0 ∼ M0(·) and set E i
0 = i .

At each time n ≥ 1, for each i ∈ {1, . . . ,N}, sample

1. Ai
n−1 ∼ Categorical

(
Gn−1(ζ

1
n−1)∑N

j=1 Gn−1(ζ
j
n−1)

, . . . ,
Gn−1(ζ

N
n−1)∑N

j=1 Gn−1(ζ
j
n−1)

)
,

2. ζ in ∼ Mn(ζ
Ai
n−1

n−1 , ·) and set E i
n = E

Ai
n−1

n−1 .
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Variance estimation

Define

V N
n (ϕ) := ηNn (ϕ)2 −

(
N

N − 1

)n−1
1

N(N − 1)

∑
i,j :E i

n 6=E
j
n

ϕ(ζ in)ϕ(ζ jn)

Thm. (Lee & W.) If for all 0 ≤ p < n, Gp(x) > 0, ∀x , and supx Gp(x) <∞,
then for any ϕ ∈ L(X ),

E
[
γN
n (1)2V N

n (ϕ)
]

= var
[
γN
n (ϕ)

]
NγN

n (1)2V N
n (ϕ)

p→ σ2
γNn

:= lim
N→∞

N var
[
γN
n (ϕ)

]
,

NV N
n (ϕ− ηNn (ϕ))

p→ σ2
ηNn

:= lim
N→∞

NE
[∣∣∣ηNn (ϕ)− ηn(ϕ)

∣∣∣2] .
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Variance estimation - interpretation

V N
n (ϕ) := ηNn (ϕ)2 −

(
N

N − 1

)n−1
1

N(N − 1)

∑
i,j :E i

n 6=E
j
n

ϕ(ζ in)ϕ(ζ jn)

think: X 1, . . . ,XN with sample mean X̄ and sample variance:

X̄ 2 − 1

N(N − 1)

∑
i 6=j

X iX j =
1

N(N − 1)

∑
i

(X i − X̄ )2

#i
n := card{j : E j

n = i}, ∆i
n :=

1

#i
n

∑
j :E j

n=1

ϕ(ζ in)− ηNn (ϕ)

Cor. (Lee & W.)

NV N
n (1) =

1

N

∑
i

(#i
n − 1)2 − n + Op(1/N)

NV N
n (ϕ− ηNn (ϕ)) =

1

N

∑
i

(#i
n∆i

n)2 + Op(1/N)
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Proof ideas

• objective is to obtain a numerical estimator of var
[
γNn (ϕ)

]
, from

which estimators of σ2
γN
n

and σ2
ηNn

may then be derived

• var
[
γNn (ϕ)

]
can be decomposed into terms by order in N−1

• “information” relevant to estimation of these terms is carried by the
genealogical structure of the particle system

• main insight is to find a suitable parameterization of this structure –
the Eve variables enter here

• as N →∞, one has “enough” pairs of particles to consistently
estimate the zero’th-order terms in Nvar

[
γNn (ϕ)

]
, hence σ2

γN
n

and

σ2
ηNn
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Second moment of γNn (ϕ)

Cérou et al. [2011]: for certain measures {µb : b ∈ {0, 1}n+1} on X⊗2,

E
[
γNn (ϕ)2

]
=

∑
b∈{0,1}n+1

[
n∏

p=0

(
1

N

)bp (
1− 1

N

)1−bp
]
µb(ϕ⊗2).

Note:

γNn (ϕ)2 = ηNn (ϕ)2
n−1∏
p=0

ηNp (Gp)2

= N−2

∑
i

ϕ(ζ in)2 +
∑
i 6=j

ϕ(ζ in)ϕ(ζ jn)


×

n−1∏
p=0

N−2

∑
i

Gp(ζ ip)2 +
∑
i 6=j

Gp(ζ ip)Gp(ζ jp)
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Measures µb in the second moment formula

• For b ∈ {0, 1}n+1, µb(ϕ) = Eb

[
ϕ(Xn,X

′
n)
∏n

p=0 Gp(Xp)Gp(X ′p)
]
,

with (Xp,X
′
p) ∼ M̃

bp
p (Xp−1,X

′
p−1, ·),

• where:

• when bp = 0,

M̃0
p (x , x ′; dz , dz ′) := Mp(x ,dz)Mp(x ′, dz ′),

• when bp = 1,

M̃1
p (x , x ′; dz , dz ′) := Mp(x , dz)δz(dz ′).

• case b = 0, we obtain µ0(ϕ⊗2) = γn(ϕ)2.
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Genealogical tracing variables

• Consider the particle system simulated up to time n.

• Define auxiliary random variables K1 = (K 1
0 , . . . ,K

1
n ) and

K2 = (K 2
0 , . . . ,K

2
n ), with the following sampling interpretation:

1. K1 is an ancestral lineage: sample K 1
n uniformly from {1, . . . ,N},

then for p = n, . . . , 1 set K 1
p−1 = A

K 1
p

p−1.

2. K2 consists of possibly “broken” ancestral lineages: sample K 2
n

uniformly from {1, . . . ,N}, and trace back an ancestral lineage as
above, but when a “collision” K 2

p = K 1
p occurs, sample K 2

p−1 with

probability proportional to Gp−1(ζ
k2
p−1

p−1 ).

• Let C(A, ζ; k1:2) be the conditional p.m.f. of K1,K2 given all
ancestor indices A and particles ζ up to time n
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A realization of (K1,K2) (red, blue)

k1 = (4, 4, 3, 1, 2, 3), k2 = (2, 1, 2, 1, 3, 4).
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Particle approximations of µb

Define, for b ∈ {0, 1}n+1, and with N ≥ 2,

µN
b :=

[
n∏

p=0

Nbp

(
N

N − 1

)1−bp
]
γNn (1)2

∑
k1:2∈I(b)

C(A, ζ; k1:2)δ
(ζ

k1n
n ,ζ

k2n
n )
,

where I(b) := {k1:2 ∈ {1, . . . ,N}2 : k1
p = k2

p ⇐⇒ bp = 1}.

Thm. (Lee & W.) For any b ∈ {0, 1}n+1 and ϕ ∈ L(X⊗2),

E
[
µN
b (ϕ)

]
= µb(ϕ),

and

sup
N≥1

√
NE

[(
µN
b (ϕ)− µb(ϕ)

)2] 1
2

< +∞.
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Variance estimators: consistency

Define
V N
n (ϕ) :=

[
γNn (ϕ)2 − µN

0 (ϕ⊗2)
]
/γNn (1)2

and
vN
p,n(ϕ) :=

[
µN
bp (ϕ⊗2)− µN

0 (ϕ⊗2)
]
/γNn (1)2.

Thm. (Lee and W.) For any ϕ ∈ L(X ), and as N →∞.

1. NV N
n (ϕ)

p→ σ̄2
γN
n

(ϕ) and NV N
n (ϕ− ηNn (ϕ))

p→ σ2
ηNn

(ϕ),

2. vN
p,n(ϕ)

p→ vp,n(ϕ) and vN
p,n(ϕ− ηNn (ϕ))

p→ vp,n(ϕ− ηn(ϕ)),

where

σ̄2
γN
n

(ϕ) =
σ2
γN
n

(ϕ)

γn(1)2
=

n∑
p=0

vp,n(ϕ), σ2
ηNn

(ϕ) = σ̄2
γN
n

(ϕ− ηn(ϕ)).
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Computational complexity

• The definition of µN
b does not itself suggest an efficient algorithm to

compute µN
b (ϕ⊗2).

• Efficient algorithms for computing V N
n (ϕ) and vN

p,n(ϕ) satisfy

Estimate Time complexity Space complexity

γNn (ϕ) or ηNn (ϕ) O(Nn) O(N)
V N
n (ϕ) O(Nn) O(N)

vN
p,n(ϕ) O(Nn) O(Nn)

• Calculating V N
n (ϕ) is O(N) after computing γNn (ϕ).

• Calculating vN
p,n(ϕ) requires some recursive computations and

storage of the genealogies A0, . . . ,An−1.

• Evaluation only of ϕ and the potentials (Gp)p≥0 is required, using
the output of a single particle filter.
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Updated models

• In many applications, particularly HMMs, there is interest in the
“updated” sequence of measures

γ̂n(A) :=

ˆ
A

Gn(x)γn(dx), η̂n(A) :=
γ̂n(A)

γ̂n(1)
, A ∈ X .

• Corresponding estimators of the variance for their particle
approximations: V̂ N

n (ϕ) and v̂N
p,n(ϕ).

• The estimator of σ2
η̂Nn

, NV̂ N
n (ϕ− η̂Nn (ϕ)), is exactly ( N

N−1 )n+1 times

the estimator of Chan and Lai [2013].
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Linear Gaussian example: NV̂ N
n (ϕ), estimating σ̄2

γ̂Nn
(ϕ)

●

●
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300

10 12 14 16

(a) ϕ ≡ 1

●

●
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0.2

0.4

0.6

0.8

10 12 14 16

(b) ϕ = Id − η̂Nn (Id)

Figure: Estimated asymptotic variances NV̂ N
n (ϕ) (blue dots and error bars for

the mean ± one standard deviation) against log2 N. The red lines correspond
to the true asymptotic variances.
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Linear Gaussian example: v̂Np,n(1), N = 105
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Figure: Plot of v̂N
p,n(ϕ) (blue dots and error bars for the mean ± one standard

deviation) and v̂p,n(ϕ) (red crosses) at each p ∈ {0, . . . , n} with ϕ ≡ 1.
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Linear Gaussian example: v̂Np,n(Id − η̂Nn (Id)), N = 105
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Figure: Plot of v̂N
p,n(ϕ) (blue dots and error bars for the mean ± one standard

deviation) and v̂p,n(ϕ) (red crosses) at each p ∈ {0, . . . , n} with
ϕ = Id − η̂Nn (Id).
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SMC sampler example: NV N
n (ϕ), estimating σ̄2

γNn
(ϕ)
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(b) ϕ = Id − ηNn (Id)

Figure: Estimated asymptotic variances NV N
n (ϕ) (blue dots and error bars for

the mean ± one standard deviation) against log2 N for the SMC sampler
example.
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SMC sampler example: vNp,n(ϕ), 1 iteration per kernel
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Figure: Plot of vN
p,n(ϕ) (blue dots and error bars for the mean ± one standard

deviation) at each p ∈ {0, . . . , n}.
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SMC sampler example: vNp,n(ϕ), 10 iterations per kernel
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Figure: Plot of vN
p,n(ϕ) (blue dots and error bars for the mean ± one standard

deviation) at each p ∈ {0, . . . , n}.
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Asymptotically optimal allocation

• Consider a particle filter with N = (Np)p≥0 particles.

• At time p, for i ∈ {1, . . . ,Np},

Ai
p−1 ∼ Cat

(
Gp−1(ζ1p−1)∑Np−1

j=1 Gp−1(ζ jp−1)
, . . . ,

Gp−1(ζ
Np−1

p−1 )∑Np−1

j=1 Gp−1(ζ jp−1)

)
,

and ζ ip ∼ Mp(ζ
Ai
p−1

p−1 , · ).

• In the regime Np = dcpNe, (cp)p≥0 fixed, and N →∞,

σ2
γN
n

(ϕ) = γn(1)2
n∑

p=0

vp,n(ϕ)

cp
, σ2

ηNn
(ϕ) = σ̄2

γN
n

(ϕ− ηn(ϕ)).

• Asymptotically optimal allocation: cp ∝
√
vp,n(ϕ) or

cp ∝
√

vp,n(ϕ− ηn(ϕ)) [see also Bhadra and Ionides, 2014].
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Approximation of the asymptotically optimal allocation
• For some N run a particle filter with N particles.

• Set cp = max
{
vN
p,n(ϕ), g(N)

}
, where g ↘ 0 as N →∞.

• Run a particle filter with N = (dcpNpe)p≥0 particles.
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Figure: Linear Gaussian example. log2 var(γ
N
n (1)/γn(1)) against log2 N, using

(blue) a constant N particle filter, (purple) the approximation of the a.o.
particle filter, and (red) the a.o. particle filter. On the right a very simple
observation seq. with an outlier is used.
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An adaptive N particle filter
• Run particle filters, doubling N each time, until V N

n (ϕ) ∈ [0, δ]

• Run a particle filter with the successful N and report γNn (ϕ).

• May be useful in some applications, but it’s possible for
P(V N

0 (ϕ) ∈ [0, δ]) ≈ 1 but var(γN0 (ϕ))� δ.
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Figure: Linear Gaussian example. Left: log2 var(γ̂
N
n (1)/γ̂n(1)) against log2 δ,

with the straight line y = x . Right: log2 N against log2 δ, where N is the
average number of particles used by the final particle filter.
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What about i.i.d. replicates?
• For fixed N, consistent estimation of var(γNn (ϕ)/γn(1)) using sample

variance and mean of i.i.d. replicates is straightforward.

• Lack-of-bias of γNn (1)2V N
n (ϕ) allows an alternative estimate using

replicates of γNn (1) and V N
n (ϕ).
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Figure: Plot of the standard estimate of var
[
γ̂N
n (ϕ)/γ̂n(1)

]
(blue) and the

alternative estimate based on V̂ N
n (1) (red) against no. of replicates in the two

examples, with N = 103.
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