Variance estimation in the particle filter

Nick Whiteley
University of Bristol

Joint work with Anthony Lee, University of Warwick
arXiv:1509.00394

Outline

Particle filters

Variance estimators

Applications of the estimators

Outline

Particle filters

Variance estimators

Applications of the estimators

HMM's

Ingredients

1. $\left(X_{n}, Y_{n}\right)_{n \geq 0},\left(X_{n}\right)_{n \geq 0}$ unobserved, $\left(Y_{n}\right)_{n \geq 0}$ observed
2. $\left(X_{n}\right)_{n \geq 0}$ is Markov, $X_{0} \sim M_{0}, X_{n} \mid X_{n-1} \sim M_{n}\left(X_{n-1}, \cdot\right)$
3. $\left(Y_{n}\right)_{n \geq 0}$ conditionally indep. given $\left(X_{n}\right)_{n \geq 0}, Y_{n} \mid\left(X_{n}\right)_{n \geq 0} \sim G_{n}\left(X_{n}, \cdot\right)$

Target measures

$$
\gamma_{n}(A):=\mathbb{E}\left[\mathbb{I}_{A}\left(X_{n}\right) \prod_{p=0}^{n-1} G_{p}\left(X_{p}, y_{p}\right)\right]
$$

$$
\begin{aligned}
& \eta_{n}(A):= \frac{\gamma_{n}(A)}{\gamma_{n}(\mathbb{X})}=\text { cond. probability of } X_{n} \in A \text { given } y_{0}, \ldots, y_{n-1}, \\
& \gamma_{n}(\mathbb{X})=\text { marg. likelihood of } y_{0}, \ldots, y_{n-1} .
\end{aligned}
$$

Tempered targets

Ingredients

1. Unnormalized prob. densities $\bar{\pi}_{0}(x), \bar{\pi}_{1}(x)$

$$
Z_{i}:=\int \bar{\pi}_{i}(x) d x, \quad \pi_{i}(d x):=\frac{\bar{\pi}_{i}(x) d x}{Z_{i}}, \quad i \in\{0,1\}
$$

and a sequence of constants $0=\beta_{0}<\cdots<\beta_{n}=1$.
2. $X_{0} \sim \pi_{0}$ and for $p=1, \ldots, n, X_{p} \mid X_{p-1} \sim M_{p}\left(X_{p-1}, \cdot\right)$, where M_{p} is invariant w.r.t. dist. $\propto \bar{\pi}_{0}^{1-\beta_{p}}(x) \bar{\pi}_{1}^{\beta_{p}}(x)$,
3. for $p=0, \ldots, n-1, G_{p}(x):=\bar{\pi}_{1}(x)^{\beta_{p+1}-\beta_{p}} / \bar{\pi}_{0}(x)^{\beta_{p+1}-\beta_{p}}$

Target measures

$$
\begin{gathered}
\gamma_{n}(A):=\mathbb{E}\left[\mathbb{I}_{A}\left(X_{n}\right) \prod_{p=0}^{n-1} G_{p}\left(X_{p}\right)\right], \quad \eta_{n}(A):=\frac{\gamma_{n}(A)}{\gamma_{n}(\mathbb{X})} . \\
\eta_{n}(A)=\pi_{n}(A), \quad \gamma_{n}(\mathbb{X})=\frac{Z_{1}}{Z_{0}} .
\end{gathered}
$$

Generic formulation

- On a measurable space $(\mathbb{X}, \mathcal{X})$, define:
- M_{0} a prob. measure, $\left(M_{n}\right)_{n \geq 1}$ a seq. of Markov kernels.
- $\left(G_{n}\right)_{n \geq 0}$ a seq. of strictly positive, upper bounded functions.
- Define measures $\gamma_{0}:=M_{0}$ and, recursively,

$$
\gamma_{n}(A):=\int \gamma_{n-1}(\mathrm{~d} x) G_{n-1}(x) M_{n}(x, A), \quad n \geq 1, \quad A \in \mathcal{X}
$$

- Probability measure counterparts

$$
\eta_{n}(A):=\frac{\gamma_{n}(A)}{\gamma_{n}(1)}=\frac{\eta_{n-1}\left(G_{n-1} M_{n}(A)\right)}{\eta_{n-1}\left(G_{n-1}\right)}, \quad A \in \mathcal{X}
$$

- Notation: $\mathcal{L}(\mathcal{X})$ the set of real-valued, bounded, \mathcal{X}-measurable functions, and for a measure μ on \mathcal{X},

$$
\mu(\varphi):=\int_{\mathrm{X}} \varphi(x) \mu(\mathrm{d} x), \quad \varphi \in \mathcal{L}(\mathcal{X})
$$

A particle filter

At time 0 , for each $i \in\{1, \ldots, N\}$, sample $\zeta_{0}^{i} \sim M_{0}(\cdot)$.

At each time $n \geq 1$, for each $i \in\{1, \ldots, N\}$, sample

1. $A_{n-1}^{i} \sim$ Categorical $\left(\frac{G_{n-1}\left(\zeta_{n-1}^{1}\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}, \ldots, \frac{G_{n-1}\left(\zeta_{n-1}^{N}\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}\right)$,
2. $\zeta_{n}^{i} \sim M_{n}\left(\zeta_{n-1}^{A_{n-1}^{i}}, \cdot\right)$.

$$
\eta_{n}^{N}(A):=\frac{1}{N} \sum_{i \in[N]} \delta_{\zeta_{n}^{i}}(A), \quad \gamma_{n}^{N}(A):=\eta_{n}^{N}(A) \prod_{p=0}^{n-1} \eta_{p}^{N}\left(G_{p}\right)
$$

A particle filter

At time 0 , for each $i \in\{1, \ldots, N\}$, sample $\zeta_{0}^{i} \sim M_{0}(\cdot)$.

At each time $n \geq 1$, for each $i \in\{1, \ldots, N\}$, sample

1. $A_{n-1}^{i} \sim$ Categorical $\left(\frac{G_{n-1}\left(\zeta_{n-1}^{1}\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}, \ldots, \frac{G_{n-1}\left(\zeta_{n-1}^{N}\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}\right)$,
2. $\zeta_{n}^{i} \sim M_{n}\left(\zeta_{n-1}^{A_{n-1}^{i}}, \cdot\right)$.

$$
\eta_{n}^{N}(A):=\frac{1}{N} \sum_{i \in[N]} \delta_{\zeta_{n}^{i}}(A), \quad \gamma_{n}^{N}(A):=\eta_{n}^{N}(A) \prod_{p=0}^{n-1} \eta_{p}^{N}\left(G_{p}\right)
$$

integrating out the A_{n-1}^{i} 's gives

$$
\begin{aligned}
\zeta_{n}^{i} \sim & \frac{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right) M_{n}\left(\zeta_{n-1}^{j}, \cdot\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}=\frac{\eta_{n-1}^{N}\left(G_{n-1} M_{n}(A)\right)}{\eta_{n-1}^{N}\left(G_{n-1}\right)} \\
& \xrightarrow{N \rightarrow \infty} \frac{\eta_{n-1}\left(G_{n-1} M_{n}(A)\right)}{\eta_{n-1}\left(G_{n-1}\right)}=\eta_{n}(A) .
\end{aligned}
$$

Quality of the approximations

Extensive literature on these approximations includes:

1. Central limit theorems: Del Moral and Guionnet [1999], Chopin [2004], Künsch [2005], Douc and Moulines [2008].
2. Nonasymptotic results: Del Moral and Miclo [2001], Cérou et al. [2011].
3. Many others!

- These theoretical results validate the methodology.
- They do not allow us to extract information from a realization of a single particle filter in order to report numerical measures of Monte Carlo error.
- Chan and Lai [2013] provide an estimate of the asymptotic variance of an "updated" variant of $\eta_{n}^{N}(\varphi)$.

A particle filter

At time 0 , for each $i \in\{1, \ldots, N\}$, sample $\zeta_{0}^{i} \sim M_{0}(\cdot)$.
At each time $n \geq 1$, for each $i \in\{1, \ldots, N\}$, sample

1. $A_{n-1}^{i} \sim$ Categorical $\left(\frac{G_{n-1}\left(\zeta_{n-1}^{1}\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}, \ldots, \frac{G_{n-1}\left(\zeta_{n-1}^{N}\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}\right)$,
2. $\zeta_{n}^{i} \sim M_{n}\left(\zeta_{n-1}^{A_{n-1}^{i}}, \cdot\right)$.

$$
\eta_{n}^{N}(A):=\frac{1}{N} \sum_{i \in[N]} \delta_{\zeta_{n}^{i}}(A), \quad \gamma_{n}^{N}(A):=\eta_{n}^{N}(A) \prod_{p=0}^{n-1} \eta_{p}^{N}\left(G_{p}\right)
$$

Outline

Particle filters

Variance estimators

Applications of the estimators

A particle filter + "Eve" variables

At time 0 , for each $i \in\{1, \ldots, N\}$, sample $\zeta_{0}^{i} \sim M_{0}(\cdot)$ and set $E_{0}^{i}=i$.
At each time $n \geq 1$, for each $i \in\{1, \ldots, N\}$, sample

1. $A_{n-1}^{i} \sim$ Categorical $\left(\frac{G_{n-1}\left(\zeta_{n-1}^{1}\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}, \ldots, \frac{G_{n-1}\left(\zeta_{n-1}^{N}\right)}{\sum_{j=1}^{N} G_{n-1}\left(\zeta_{n-1}^{j}\right)}\right)$,
2. $\zeta_{n}^{i} \sim M_{n}\left(\zeta_{n-1}^{A_{n-1}^{i}}, \cdot\right)$ and set $E_{n}^{i}=E_{n-1}^{A_{n-1}^{i}}$.

Variance estimation

Define

$$
V_{n}^{N}(\varphi):=\eta_{n}^{N}(\varphi)^{2}-\left(\frac{N}{N-1}\right)^{n-1} \frac{1}{N(N-1)} \sum_{i, j: E_{n}^{i} \neq E_{n}^{j}} \varphi\left(\zeta_{n}^{i}\right) \varphi\left(\zeta_{n}^{j}\right)
$$

Thm. (Lee \& W.) If for all $0 \leq p<n, G_{p}(x)>0, \forall x$, and $\sup _{x} G_{p}(x)<\infty$, then for any $\varphi \in \mathcal{L}(\mathcal{X})$,

$$
\begin{aligned}
& \mathbb{E}\left[\gamma_{n}^{N}(1)^{2} V_{n}^{N}(\varphi)\right]=\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right] \\
& N \gamma_{n}^{N}(1)^{2} V_{n}^{N}(\varphi) \xrightarrow{p} \sigma_{\gamma_{n}^{N}}^{2}:=\lim _{N \rightarrow \infty} N \operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right], \\
& N V_{n}^{N}\left(\varphi-\eta_{n}^{N}(\varphi)\right) \xrightarrow[\rightarrow]{p} \sigma_{\eta_{n}^{N}}^{2}:=\lim _{N \rightarrow \infty} N \mathbb{E}\left[\left|\eta_{n}^{N}(\varphi)-\eta_{n}(\varphi)\right|^{2}\right] .
\end{aligned}
$$

Variance estimation - interpretation

$$
V_{n}^{N}(\varphi):=\eta_{n}^{N}(\varphi)^{2}-\left(\frac{N}{N-1}\right)^{n-1} \frac{1}{N(N-1)} \sum_{i, j: E_{n}^{i} \neq E_{n}^{j}} \varphi\left(\zeta_{n}^{i}\right) \varphi\left(\zeta_{n}^{j}\right)
$$

think: X^{1}, \ldots, X^{N} with sample mean \bar{X} and sample variance:

$$
\bar{X}^{2}-\frac{1}{N(N-1)} \sum_{i \neq j} X^{i} X^{j}=\frac{1}{N(N-1)} \sum_{i}\left(X^{i}-\bar{X}\right)^{2}
$$

Variance estimation - interpretation

$$
V_{n}^{N}(\varphi):=\eta_{n}^{N}(\varphi)^{2}-\left(\frac{N}{N-1}\right)^{n-1} \frac{1}{N(N-1)} \sum_{i, j: E_{n}^{i} \neq E_{n}^{j}} \varphi\left(\zeta_{n}^{i}\right) \varphi\left(\zeta_{n}^{j}\right)
$$

think: X^{1}, \ldots, X^{N} with sample mean \bar{X} and sample variance:

$$
\begin{gathered}
\bar{X}^{2}-\frac{1}{N(N-1)} \sum_{i \neq j} X^{i} X^{j}=\frac{1}{N(N-1)} \sum_{i}\left(X^{i}-\bar{X}\right)^{2} \\
\#_{n}^{i}:=\operatorname{card}\left\{j: E_{n}^{j}=i\right\}, \quad \Delta_{n}^{i}:=\frac{1}{\#_{n}^{i}} \sum_{j: E_{n}^{j}=1} \varphi\left(\zeta_{n}^{i}\right)-\eta_{n}^{N}(\varphi)
\end{gathered}
$$

Cor. (Lee \& W.)

$$
\begin{aligned}
& N V_{n}^{N}(1)=\frac{1}{N} \sum_{i}\left(\#_{n}^{i}-1\right)^{2}-n+O_{p}(1 / N) \\
& N V_{n}^{N}\left(\varphi-\eta_{n}^{N}(\varphi)\right)=\frac{1}{N} \sum_{i}\left(\#_{n}^{i} \Delta_{n}^{i}\right)^{2}+O_{p}(1 / N)
\end{aligned}
$$

Proof ideas

- objective is to obtain a numerical estimator of $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$, from which estimators of $\sigma_{\gamma_{n}^{N}}^{2}$ and $\sigma_{\eta_{n}^{N}}^{2}$ may then be derived

Proof ideas

- objective is to obtain a numerical estimator of $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$, from which estimators of $\sigma_{\gamma_{n}^{N}}^{2}$ and $\sigma_{\eta_{n}^{N}}^{2}$ may then be derived
- $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$ can be decomposed into terms by order in N^{-1}

Proof ideas

- objective is to obtain a numerical estimator of $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$, from which estimators of $\sigma_{\gamma_{n}^{N}}^{2}$ and $\sigma_{\eta_{n}^{N}}^{2}$ may then be derived
- $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$ can be decomposed into terms by order in N^{-1}
- "information" relevant to estimation of these terms is carried by the genealogical structure of the particle system

Proof ideas

- objective is to obtain a numerical estimator of $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$, from which estimators of $\sigma_{\gamma_{n}^{N}}^{2}$ and $\sigma_{\eta_{n}^{N}}^{2}$ may then be derived
- $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$ can be decomposed into terms by order in N^{-1}
- "information" relevant to estimation of these terms is carried by the genealogical structure of the particle system
- main insight is to find a suitable parameterization of this structure the Eve variables enter here

Proof ideas

- objective is to obtain a numerical estimator of $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$, from which estimators of $\sigma_{\gamma_{n}^{N}}^{2}$ and $\sigma_{\eta_{n}^{N}}^{2}$ may then be derived
- $\operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$ can be decomposed into terms by order in N^{-1}
- "information" relevant to estimation of these terms is carried by the genealogical structure of the particle system
- main insight is to find a suitable parameterization of this structure the Eve variables enter here
- as $N \rightarrow \infty$, one has "enough" pairs of particles to consistently estimate the zero'th-order terms in $N \operatorname{var}\left[\gamma_{n}^{N}(\varphi)\right]$, hence $\sigma_{\gamma_{n}^{N}}^{2}$ and $\sigma_{\eta_{n}^{N}}^{2}$

Second moment of $\gamma_{n}^{N}(\varphi)$

Cérou et al. [2011]: for certain measures $\left\{\mu_{\mathbf{b}}: \mathbf{b} \in\{0,1\}^{n+1}\right\}$ on $\mathcal{X}^{\otimes 2}$,

$$
\mathbb{E}\left[\gamma_{n}^{N}(\varphi)^{2}\right]=\sum_{\mathbf{b} \in\{0,1\}^{n+1}}\left[\prod_{p=0}^{n}\left(\frac{1}{N}\right)^{b_{p}}\left(1-\frac{1}{N}\right)^{1-b_{p}}\right] \mu_{\mathbf{b}}\left(\varphi^{\otimes 2}\right)
$$

Second moment of $\gamma_{n}^{N}(\varphi)$

Cérou et al. [2011]: for certain measures $\left\{\mu_{\mathbf{b}}: \mathbf{b} \in\{0,1\}^{n+1}\right\}$ on $\mathcal{X}^{\otimes 2}$,

$$
\mathbb{E}\left[\gamma_{n}^{N}(\varphi)^{2}\right]=\sum_{\mathbf{b} \in\{0,1\}^{n+1}}\left[\prod_{p=0}^{n}\left(\frac{1}{N}\right)^{b_{p}}\left(1-\frac{1}{N}\right)^{1-b_{p}}\right] \mu_{\mathbf{b}}\left(\varphi^{\otimes 2}\right)
$$

Note:

$$
\begin{aligned}
\gamma_{n}^{N}(\varphi)^{2}= & \eta_{n}^{N}(\varphi)^{2} \prod_{p=0}^{n-1} \eta_{p}^{N}\left(G_{p}\right)^{2} \\
= & N^{-2}\left[\sum_{i} \varphi\left(\zeta_{n}^{i}\right)^{2}+\sum_{i \neq j} \varphi\left(\zeta_{n}^{i}\right) \varphi\left(\zeta_{n}^{j}\right)\right] \\
& \times \prod_{p=0}^{n-1} N^{-2}\left[\sum_{i} G_{p}\left(\zeta_{p}^{i}\right)^{2}+\sum_{i \neq j} G_{p}\left(\zeta_{p}^{i}\right) G_{p}\left(\zeta_{p}^{j}\right)\right]
\end{aligned}
$$

Measures $\mu_{\mathbf{b}}$ in the second moment formula

- For $\mathbf{b} \in\{0,1\}^{n+1}, \mu_{\mathbf{b}}(\varphi)=\mathrm{E}_{\mathbf{b}}\left[\varphi\left(X_{n}, X_{n}^{\prime}\right) \prod_{p=0}^{n} G_{p}\left(X_{p}\right) G_{p}\left(X_{p}^{\prime}\right)\right]$, with $\left(X_{p}, X_{p}^{\prime}\right) \sim \tilde{M}_{p}^{b_{p}}\left(X_{p-1}, X_{p-1}^{\prime}, \cdot\right)$,
- where:
- when $b_{p}=0$,

$$
\tilde{M}_{p}^{0}\left(x, x^{\prime} ; \mathrm{d} z, \mathrm{~d} z^{\prime}\right):=M_{p}(x, \mathrm{~d} z) M_{p}\left(x^{\prime}, \mathrm{d} z^{\prime}\right),
$$

- when $b_{p}=1$,

$$
\tilde{M}_{p}^{1}\left(x, x^{\prime} ; \mathrm{d} z, \mathrm{~d} z^{\prime}\right):=M_{p}(x, \mathrm{~d} z) \delta_{z}\left(\mathrm{~d} z^{\prime}\right) .
$$

- case $\mathbf{b}=\mathbf{0}$, we obtain $\mu_{0}\left(\varphi^{\otimes 2}\right)=\gamma_{n}(\varphi)^{2}$.

Genealogical tracing variables

- Consider the particle system simulated up to time n.
- Define auxiliary random variables $\mathbf{K}^{1}=\left(K_{0}^{1}, \ldots, K_{n}^{1}\right)$ and $\mathbf{K}^{2}=\left(K_{0}^{2}, \ldots, K_{n}^{2}\right)$, with the following sampling interpretation:

1. \mathbf{K}^{1} is an ancestral lineage: sample K_{n}^{1} uniformly from $\{1, \ldots, N\}$, then for $p=n, \ldots, 1$ set $K_{p-1}^{1}=A_{p-1}^{K_{p}^{1}}$.
2. \mathbf{K}^{2} consists of possibly "broken" ancestral lineages: sample K_{n}^{2} uniformly from $\{1, \ldots, N\}$, and trace back an ancestral lineage as above, but when a "collision" $K_{p}^{2}=K_{p}^{1}$ occurs, sample K_{p-1}^{2} with probability proportional to $G_{p-1}\left(\zeta_{p-1}^{k_{p-1}^{2}}\right)$.

- Let $\mathbf{C}\left(\mathbf{A}, \boldsymbol{\zeta} ; \mathbf{k}^{1: 2}\right)$ be the conditional p.m.f. of $\mathbf{K}^{1}, \mathbf{K}^{2}$ given all ancestor indices \mathbf{A} and particles ζ up to time n

A realization of $\left(\mathbf{K}^{1}, \mathbf{K}^{2}\right)$ (red, blue)

Particle approximations of $\mu_{\mathbf{b}}$

Define, for $\mathbf{b} \in\{0,1\}^{n+1}$, and with $N \geq 2$,

$$
\mu_{\mathbf{b}}^{N}:=\left[\prod_{p=0}^{n} N^{b_{p}}\left(\frac{N}{N-1}\right)^{1-b_{p}}\right] \gamma_{n}^{N}(1)^{2} \sum_{\mathbf{k}^{1: 2} \in \mathcal{I}(\mathbf{b})} \mathbf{C}\left(\mathbf{A}, \boldsymbol{\zeta} ; \mathbf{k}^{1: 2}\right) \delta_{\left(\zeta_{n}^{k_{n}^{1}}, \zeta_{n}^{k_{n}^{2}}\right)},
$$

where $\mathcal{I}(\mathbf{b}):=\left\{\mathbf{k}^{1: 2} \in\{1, \ldots, N\}^{2}: k_{p}^{1}=k_{p}^{2} \Longleftrightarrow b_{p}=1\right\}$.

Thm. (Lee \& W.) For any $\mathbf{b} \in\{0,1\}^{n+1}$ and $\varphi \in \mathcal{L}\left(\mathcal{X}^{\otimes 2}\right)$,

$$
\mathbb{E}\left[\mu_{\mathbf{b}}^{N}(\varphi)\right]=\mu_{\mathbf{b}}(\varphi),
$$

and

$$
\sup _{N \geq 1} \sqrt{N} \mathbb{E}\left[\left(\mu_{\mathbf{b}}^{N}(\varphi)-\mu_{\mathbf{b}}(\varphi)\right)^{2}\right]^{\frac{1}{2}}<+\infty
$$

Variance estimators: consistency

Define

$$
V_{n}^{N}(\varphi):=\left[\gamma_{n}^{N}(\varphi)^{2}-\mu_{0}^{N}\left(\varphi^{\otimes 2}\right)\right] / \gamma_{n}^{N}(1)^{2}
$$

and

$$
v_{p, n}^{N}(\varphi):=\left[\mu_{\mathbf{b}_{p}}^{N}\left(\varphi^{\otimes 2}\right)-\mu_{0}^{N}\left(\varphi^{\otimes 2}\right)\right] / \gamma_{n}^{N}(1)^{2} .
$$

Thm. (Lee and W.) For any $\varphi \in \mathcal{L}(\mathcal{X})$, and as $N \rightarrow \infty$.

1. $N V_{n}^{N}(\varphi) \xrightarrow{p} \bar{\sigma}_{\gamma_{n}^{N}}^{2}(\varphi)$ and $N V_{n}^{N}\left(\varphi-\eta_{n}^{N}(\varphi)\right) \xrightarrow{p} \sigma_{\eta_{n}^{N}}^{2}(\varphi)$,
2. $v_{p, n}^{N}(\varphi) \xrightarrow{p} v_{p, n}(\varphi)$ and $v_{p, n}^{N}\left(\varphi-\eta_{n}^{N}(\varphi)\right) \xrightarrow{p} v_{p, n}\left(\varphi-\eta_{n}(\varphi)\right)$,
where

$$
\bar{\sigma}_{\gamma_{n}^{N}}^{2}(\varphi)=\frac{\sigma_{\gamma_{n}^{N}}^{2}(\varphi)}{\gamma_{n}(1)^{2}}=\sum_{p=0}^{n} v_{p, n}(\varphi), \quad \sigma_{\eta_{n}^{N}}^{2}(\varphi)=\bar{\sigma}_{\gamma_{n}^{N}}^{2}\left(\varphi-\eta_{n}(\varphi)\right) .
$$

Computational complexity

- The definition of $\mu_{\mathbf{b}}^{N}$ does not itself suggest an efficient algorithm to compute $\mu_{\mathrm{b}}^{N}\left(\varphi^{\otimes 2}\right)$.
- Efficient algorithms for computing $V_{n}^{N}(\varphi)$ and $v_{p, n}^{N}(\varphi)$ satisfy

Estimate	Time complexity	Space complexity
$\gamma_{n}^{N}(\varphi)$ or $\eta_{n}^{N}(\varphi)$	$\mathcal{O}(N n)$	$\mathcal{O}(N)$
$V_{n}^{N}(\varphi)$	$\mathcal{O}(N n)$	$\mathcal{O}(N)$
$v_{p, n}^{N}(\varphi)$	$\mathcal{O}(N n)$	$\mathcal{O}(N n)$

- Calculating $V_{n}^{N}(\varphi)$ is $\mathcal{O}(N)$ after computing $\gamma_{n}^{N}(\varphi)$.
- Calculating $v_{p, n}^{N}(\varphi)$ requires some recursive computations and storage of the genealogies A_{0}, \ldots, A_{n-1}.
- Evaluation only of φ and the potentials $\left(G_{p}\right)_{p \geq 0}$ is required, using the output of a single particle filter.

Updated models

- In many applications, particularly HMMs, there is interest in the "updated" sequence of measures

$$
\hat{\gamma}_{n}(A):=\int_{A} G_{n}(x) \gamma_{n}(\mathrm{~d} x), \quad \hat{\eta}_{n}(A):=\frac{\hat{\gamma}_{n}(A)}{\hat{\gamma}_{n}(1)}, \quad A \in \mathcal{X}
$$

- Corresponding estimators of the variance for their particle approximations: $\hat{V}_{n}^{N}(\varphi)$ and $\hat{v}_{p, n}^{N}(\varphi)$.
- The estimator of $\sigma_{\hat{\eta}_{n}^{N}}^{2}, N \hat{V}_{n}^{N}\left(\varphi-\hat{\eta}_{n}^{N}(\varphi)\right)$, is exactly $\left(\frac{N}{N-1}\right)^{n+1}$ times the estimator of Chan and Lai [2013].

Linear Gaussian example: $N \hat{V}_{n}^{N}(\varphi)$, estimating $\bar{\sigma}_{\hat{\gamma}_{n}^{N}}^{2}(\varphi)$

(a) $\varphi \equiv 1$

(b) $\varphi=I d-\hat{\eta}_{n}^{N}(I d)$

Figure: Estimated asymptotic variances $N \hat{V}_{n}^{N}(\varphi)$ (blue dots and error bars for the mean \pm one standard deviation) against $\log _{2} N$. The red lines correspond to the true asymptotic variances.

Linear Gaussian example: $\hat{v}_{p, n}^{N}(1), N=10^{5}$

Figure: Plot of $\hat{v}_{p, n}^{N}(\varphi)$ (blue dots and error bars for the mean \pm one standard deviation) and $\hat{v}_{p, n}(\varphi)$ (red crosses) at each $p \in\{0, \ldots, n\}$ with $\varphi \equiv 1$.

Linear Gaussian example: $\hat{v}_{p, n}^{N}\left(I d-\hat{\eta}_{n}^{N}(I d)\right), N=10^{5}$

Figure: Plot of $\hat{v}_{p, n}^{N}(\varphi)$ (blue dots and error bars for the mean \pm one standard deviation) and $\hat{v}_{p, n}(\varphi)$ (red crosses) at each $p \in\{0, \ldots, n\}$ with $\varphi=I d-\hat{\eta}_{n}^{N}(I d)$.

SMC sampler example: $N V_{n}^{N}(\varphi)$, estimating $\bar{\sigma}_{\gamma_{n}^{N}}^{2}(\varphi)$

(a) $\varphi \equiv 1$

(b) $\varphi=I d-\eta_{n}^{N}(I d)$

Figure: Estimated asymptotic variances $N V_{n}^{N}(\varphi)$ (blue dots and error bars for the mean \pm one standard deviation) against $\log _{2} N$ for the SMC sampler example.

SMC sampler example: $v_{p, n}^{N}(\varphi), 1$ iteration per kernel

(a) $\varphi \equiv 1$

(b) $\varphi=I d-\eta_{n}(I d)$

Figure: Plot of $v_{\rho, n}^{N}(\varphi)$ (blue dots and error bars for the mean \pm one standard deviation) at each $p \in\{0, \ldots, n\}$.

SMC sampler example: $v_{p, n}^{N}(\varphi), 10$ iterations per kernel

Figure: Plot of $v_{\rho, n}^{N}(\varphi)$ (blue dots and error bars for the mean \pm one standard deviation) at each $p \in\{0, \ldots, n\}$.

Outline

Particle filters

Variance estimators

Applications of the estimators

Asymptotically optimal allocation

- Consider a particle filter with $\mathbf{N}=\left(N_{p}\right)_{p \geq 0}$ particles.
- At time p, for $i \in\left\{1, \ldots, N_{p}\right\}$,

$$
A_{p-1}^{i} \sim \operatorname{Cat}\left(\frac{G_{p-1}\left(\zeta_{p-1}^{1}\right)}{\sum_{j=1}^{N_{p-1}} G_{p-1}\left(\zeta_{p-1}^{j}\right)}, \ldots, \frac{G_{p-1}\left(\zeta_{p-1}^{N_{p-1}}\right)}{\sum_{j=1}^{N_{p-1}} G_{p-1}\left(\zeta_{p-1}^{j}\right)}\right)
$$

and $\zeta_{p}^{i} \sim M_{p}\left(\zeta_{p-1}^{A_{p-1}^{i}}, \cdot\right)$.

- In the regime $N_{p}=\left\lceil c_{p} N\right\rceil,\left(c_{p}\right)_{p \geq 0}$ fixed, and $N \rightarrow \infty$,

$$
\sigma_{\gamma_{n}^{\mathrm{N}}}^{2}(\varphi)=\gamma_{n}(1)^{2} \sum_{p=0}^{n} \frac{v_{p, n}(\varphi)}{c_{p}}, \quad \sigma_{\eta_{n}^{\mathrm{N}}}^{2}(\varphi)=\bar{\sigma}_{\gamma_{n}^{\mathrm{N}}}^{2}\left(\varphi-\eta_{n}(\varphi)\right) .
$$

- Asymptotically optimal allocation: $c_{p} \propto \sqrt{v_{p, n}(\varphi)}$ or $c_{p} \propto \sqrt{v_{p, n}\left(\varphi-\eta_{n}(\varphi)\right)}$ [see also Bhadra and Ionides, 2014].

Approximation of the asymptotically optimal allocation

- For some N run a particle filter with N particles.
- Set $c_{p}=\max \left\{v_{p, n}^{N}(\varphi), g(N)\right\}$, where $g \searrow 0$ as $N \rightarrow \infty$.
- Run a particle filter with $\mathbf{N}=\left(\left\lceil c_{p} N_{p}\right\rceil\right)_{p \geq 0}$ particles.

Figure: Linear Gaussian example. $\log _{2} \operatorname{var}\left(\gamma_{n}^{N}(1) / \gamma_{n}(1)\right)$ against $\log _{2} N$, using (blue) a constant N particle filter, (purple) the approximation of the a.o. particle filter, and (red) the a.o. particle filter. On the right a very simple observation seq. with an outlier is used.

An adaptive N particle filter

- Run particle filters, doubling N each time, until $V_{n}^{N}(\varphi) \in[0, \delta]$
- Run a particle filter with the successful N and report $\gamma_{n}^{N}(\varphi)$.
- May be useful in some applications, but it's possible for $\mathbb{P}\left(V_{0}^{N}(\varphi) \in[0, \delta]\right) \approx 1$ but $\operatorname{var}\left(\gamma_{0}^{N}(\varphi)\right) \gg \delta$.

Figure: Linear Gaussian example. Left: $\log _{2} \operatorname{var}\left(\hat{\gamma}_{n}^{N}(1) / \hat{\gamma}_{n}(1)\right)$ against $\log _{2} \delta$, with the straight line $y=x$. Right: $\log _{2} N$ against $\log _{2} \delta$, where N is the average number of particles used by the final particle filter.

What about i.i.d. replicates?

- For fixed N, consistent estimation of $\operatorname{var}\left(\gamma_{n}^{N}(\varphi) / \gamma_{n}(1)\right)$ using sample variance and mean of i.i.d. replicates is straightforward.
- Lack-of-bias of $\gamma_{n}^{N}(1)^{2} V_{n}^{N}(\varphi)$ allows an alternative estimate using replicates of $\gamma_{n}^{N}(1)$ and $V_{n}^{N}(\varphi)$.

Figure: Plot of the standard estimate of $\operatorname{var}\left[\hat{\gamma}_{n}^{N}(\varphi) / \hat{\gamma}_{n}(1)\right]$ (blue) and the alternative estimate based on $\hat{V}_{n}^{N}(1)$ (red) against no. of replicates in the two examples, with $N=10^{3}$.

References I

A. Bhadra and E. L. Ionides. Adaptive particle allocation in iterated sequential Monte Carlo via approximating meta-models. Statistics and Computing, pages 1-15, 2014.
F. Cérou, P. Del Moral, and A. Guyader. A nonasymptotic theorem for unnormalized Feynman-Kac particle models. Annales de I'Institut Henri Poincaré, Probabilités et Statistiques, 47(3):629-649, 2011.
H. P. Chan and T. L. Lai. A general theory of particle filters in hidden Markov models and some applications. Annals of Statistics, 41(6):2877-2904, 2013.
N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Annals of Statistics, 32(6):2385-2411, 2004.
P. Del Moral and A. Guionnet. Central limit theorem for nonlinear filtering and interacting particle systems. Ann. Appl. Probab., 9(2):275-297, 1999.
P. Del Moral and L. Miclo. Genealogies and increasing propagation of chaos for Feynman-Kac and genetic models. Ann. Appl. Probab., pages 1166-1198, 2001.

References II

R. Douc and E. Moulines. Limit theorems for weighted samples with applications to sequential Monte Carlo methods. Ann. Statist., 36(5): 2344-2376, 2008.
H. Künsch. Recursive Monte Carlo filters: algorithms and theoretical analysis. Annals of Statistics, 33(5):1983-2021, 2005.

