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Abstract

Sampling from constrained target spaces for Bayesian inference is a
non-trivial problem. A recent development has been the use of Hamilto-
nian Monte Carlo in combination with particle reflection, see [4]. How-
ever, Hamiltonian Monte Carlo is sensitive to several hyper parameters,
that need to be tuned, to ensure an efficient sampler. For this purpose,
[5] suggested a black box algorithm that handles this problem. Our ap-
proach is to combine the two former ideas to solve the problem of sampling
Wishart distributed matrices with eigenvalue constraints. Therefore, we
exploit the eigenvalue decomposition of positive definite matrices. The
suggested method performs better than the initial sampler of [3] when
the dimension of the target space grows. Important applications of our
sampler are the normal hierarchical model of [2] and the rank test in a
principal component analysis as in [1].
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