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Abstract

In this paper, we prove new convergence results improving the ones by Chas-
sagneux, Élie and Kharroubi [Ann. Appl. Probab. 22 (2012) 971–1007] for the
discrete-time approximation of multidimensional obliquely reflected BSDEs. These
BSDEs, arising in the study of switching problems, were considered by Hu and Tang
[Probab. Theory Related Fields 147 (2010) 89–121] and generalized by Hamadène
and Zhang [Stochastic Process. Appl. 120 (2010) 403–426] and Chassagneux, Élie
and Kharroubi [Electron. Commun. Probab. 16 (2011) 120–128]. Our main re-
sult is a rate of convergence obtained in the Lipschitz setting and under the same
structural conditions on the generator as the one required for the existence and
uniqueness of a solution to the obliquely reflected BSDE.

Key words: BSDE with oblique reflections, discrete time approximation, switching
problems.
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1 Introduction

In this paper, we study the discrete-time approximation of the following system of
reflected backward stochastic differential equations

$
’’’’’’&
’’’’’’%

Yt “ gpXT q `
ż T

t

fpXs, Ys, Zsqds ´
ż T

t

Zs dWs ` KT ´ Kt, 0 ď t ď T,

Y ℓ
t ě max

jPI
tY j

t ´ cℓjpXtqu, 0 ď t ď T, ℓ P I,

ż T

0

”
Y ℓ
t ´ max

jPIztℓu
tY j

t ´ cℓjpXtqu
ı
dKℓ

t “ 0, ℓ P I,

(1.1)
where I :“ t1, . . . , du, f , g and pcijqi,jPI are Lipschitz functions and X is solution to
the following forward stochastic differential equation (SDE) with Lipschitz coefficients

Xt “ x `
ż t

0

bpXsqds `
ż t

0

σpXsqdWs. (1.2)

An important motivation for this study comes from economics applications, espe-
cially to energy markets. Indeed, it has been shown that the solution to the above equa-
tions allows to compute the solution of optimal switching problems which are linked
to real option pricing (see e.g. [3]). This motivated a huge literature on switching
problems both on the financial economics and applied mathematics sides, as pointed
out in the introduction of [16]. The theoretical study of equation (1.1) has started in
dimension 2 in the paper [14] and was latter extended in higher dimension in [9, 3, 22].
These studies are related to optimal switching problem and, in terms of existence and
uniqueness result to (1.1), impose really strong conditions on the driver f of the BSDEs.
These conditions were then weakened successively in [17, 16, 7]. It is quite important to
notice that contrary to normally reflected BSDEs [13], the best existence and unique-
ness result available in the literature requires structural conditions, see below, both on
the driver f and the function c. To the best of our knowledge, it can be found in the
paper [15].

The numerical study of (1.1) by probabilistic methods has attracted much less
attention [22, 11, 8]. The first rate of convergence for a numerical scheme associated to
(1.1) was proved in [7] but under quite restrictive condition on the driver f . The main
goal of our work is actually to prove a rate of convergence for a discrete-time scheme to
obliquely reflected BSDEs under the same conditions on f required to have existence
and uniqueness to (1.1) and minimal Lipschitz condition on the function c.

As in [1, 19, 8], we first introduce a discretely reflected version of (1.1), where the
reflection occurs only on a deterministic grid ℜ “ tr0 :“ 0, . . . , rκ :“ T u: Y ℜ

T “ rY ℜ
T :“

gpXT q P QpXT q, and, for j ď κ ´ 1 and t P rrj , rj`1q,
$
&
%
rY ℜ
t “ Y ℜ

rj`1
`
ż rj`1

t

fpXu, rY ℜ
u , Zℜ

u qdu ´
ż rj`1

t

Zℜ
u dWu,

Y ℜ
t “ rY ℜ

t 1ttRℜu ` PpXt, rY ℜ
t q1ttPℜu,

(1.3)
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where Ppx, .q is the oblique projection operator on the closed convex domain

Qpxq :“
"
y P R

d|yi ě max
jPI

pyj ´ cijpxqq,@i P I

*
,

defined by

P : px, yq P R
d ˆ R

d ÞÑ
ˆ
max
jPI

tyj ´ cijpxqu
˙

1ďiďd

.

We denote |ℜ| the modulus of ℜ given by |ℜ| :“ max0ďiďκ´1 |ri`1 ´ ri|.
An important step in our study is to prove that these discretely reflected BSDEs

are a good approximation of the continuously reflected ones (1.1). In section 4, we are
able to control the error in terms of |ℜ| under minimal Lipschitz condition for the cost
functions c, which is new in the literature, improving, in particular, the results of [8].

We then consider a Euler type approximation scheme associated to the BSDE (1.3)

defined on a grid π “ tt0, . . . , tnu by Y
ℜ,π
n :“ gpXπ

T q and, for i P tn ´ 1, . . . , 0u,
$
’’&
’’%

Z
ℜ,π
i :“ ErY ℜ,π

i`1
Hi | Fti s,

rY ℜ,π
i :“ ErY ℜ,π

i`1
| Ftis ` hifpXπ

ti
, rY ℜ,π

i , Z
ℜ,π
i q,

Y
ℜ,π
i :“ rY ℜ,π

i 1ttiRℜu ` PpXπ
ti
, rY ℜ,π

i q1ttiPℜu,

(1.4)

where Xπ is the Euler scheme associated to X, hi :“ ti`1 ´ ti and weights pHiq0ďiďn´1

are matrices in M1,d given by

pHiqℓ “ ´R

hi
_

W ℓ
ti`1

´ W ℓ
ti

hi
^ R

hi
, 1 ď ℓ ď d,

withR a positive parameter. We denote |π| the modulus of π given by |π| :“ max0ďiďn´1 hi
and we assume that we always have ℜ Ă π.

To obtain our convergence results, we work, throughout this paper, under the fol-
lowing assumption:
pHfq

(i) The functions σ : Rd Ñ Md,d and b : Rd Ñ R
d are Lipschitz-continuous functions.

(ii) The functions f : Rd ˆ R
d ˆ Md,d Ñ R

d, g : Rd Ñ R
d and pcij : Rd Ñ Rqi,jPI are

Lipschitz-continuous functions and f jpx, y, zq “ f jpx, y, zj.q. We denote by LY

and LZ the Lipschitz constants of f with respect to y and z.

(iii) gpxq P Qpxq, for all x P R
d.

(iv) The cost functions pcijqi,jPI satisfy the following structure condition

$
’&
’%

cii “ 0, for 1 ď i ď d;

infxPRd cijpxq ą 0, for 1 ď i, j ď d with i ‰ j;

infxPRdtcijpxq ` cjlpxq ´ cilpxqu ą 0, for 1 ď i, j ď d with i ‰ j, j ‰ l.

(1.5)
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Let us emphasize here the fact that our results are obtained without any assumption
on the non-degeneracy of the volatility matrix σ. We also point out that pHfqpiiq is
the best condition – up to now – for existence and uniqueness to (1.1) to hold.

A fundamental result to obtain convergence for continuously reflected BSDEs is
first to prove that the scheme given in (1.4) approximates efficiently discretely reflected
BSDEs. This result is interesting in itself if one is only interested in the approximation
of Bermudan switching problem (i.e. when the switching times are restricted to lie in
the grid ℜ). It is discussed in section 3 below and requires, in particular, the use of a
new representation result for the scheme (1.4).

Combining the fact that discretely reflected BSDEs are a good approximation of
continuously reflected BSDEs and that the scheme (1.4) is also a good approximation
of (1.3), we obtain our new convergence result, which is the main result of this paper
and is summarised in the following Theorem.

Theorem 1.1. Let us assume that pHfq is in force. Set R such that LZR ď 1, π such
that LY |π| ă 1 and define αp|π|q “ logp2T {|π|q. Then the following holds, for some
positive constant C:

(i) Taking |ℜ| „ |π|1{2, we have

sup
0ďiďn

E

”
|Yti ´ rY ℜ,π

i |2 ` |Yti ´ Y
ℜ,π
i |2

ı
ď C|π|1{2αp|π|q.

(ii) Taking |ℜ| „ |π|1{3, we have

sup
0ďiďn

E

”
|Yti ´ rY ℜ,π

i |2 ` |Yti ´ Y
ℜ,π
i |2

ı
ď C|π|1{3αp|π|q,

and

E

«
n´1ÿ

i“0

ż ti`1

ti

|Zs ´ Z
ℜ,π
i |2ds

ff
ď C|π|1{6

a
αp|π|q.

Moreover, if the cost functions c are constant, then the previous estimates remain true
with αp|π|q :“ 1.

It is important to compare the previous result with Theorem 5.4 in [8] which gives
also rates of convergence for the discrete-time approximation of obliquely reflected BS-
DEs. Up to a slight modification of the scheme (introducing the truncation of the
Brownian increments), we see that we are able to obtain the convergence rate 1{4,
when the previous result, under pHfq, were only predicting a logarithmic convergence.
Also, we are able to work under a minimal Lipschitz condition for the cost functions,
which was not the case before.

The rest of the paper is organised as follows. In Section 2, we present preliminary
results that will be useful in the rest of the paper. We discuss the representation prop-
erty of obliquely reflected BSDEs in terms of auxiliary one-dimensional BSDEs. We
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also give new regularity results for the discretely reflected BSDEs which are key tools
to obtain our convergence results. Section 3 is devoted to the study of the numerical
scheme, in particular its fundamental stability property. Using this stability property
and the regularity results given in Section 2, we prove a control of the error between the
scheme and the discretely reflected BSDEs. Section 4 is concerned with the approxi-
mation of continuously reflected BSDEs by the discretely reflected ones. A convergence
rate is obtained that allows to prove, using the result of Section 3, our main result,
Theorem 1.1 above. For the reader convenience, some technical proofs are postponed
in an Appendix Section.

Notations Throughout this paper we are given a finite time horizon T and a proba-
bility space pΩ,F ,Pq endowed with a d-dimensional standard Brownian motion pWtqtě0.
The filtration pFtqtďT is the Brownian filtration. P denotes the σ-algebra on r0, T sˆΩ
generated by progressively measurable processes. Any element x P R

n will be identified
to a column vector with ith component xi and Euclidean norm |x|. For x, y P R

n, x.y
denotes the scalar product of x and y. We denote by ď the component-wise partial
ordering relation on vectors. Mn,m denotes the set of real matrices with n lines and m

columns. For a matrix M P Mn,m, M ij is the component at row i and column j, M i.

is the ith row and M .j the jth column.
We denote by Ck,b the set of functions with continuous and bounded derivatives up

to order k. For a function f : Rn Ñ R, x ÞÑ fpxq, we denote by Bxf “ pBx1f, . . . , Bxnfq.
If f : Rn ˆ R

d Ñ R, px, yq ÞÑ fpx, yq we denote Bxf (resp. Byf) the derivatives with
respect to the variable x (resp. y). For g : Rn ÞÑ R

d, x Ñ gpxq, Bxg is a matrix and
pBxgqi. “ Bxgi.

For ease of notation, we will sometimes write Etr.s instead of Er.|Fts, t P r0, T s.
Finally, for any p ě 1, we introduce the following:

- L p the set of FT -measurable random variables G satisfying |G|L p :“ Er|G|ps
1

p ă
`8,

- S p the set of càdlàg adapted processes U satisfying

|U |S p :“ E

«
sup

tPr0,T s
|Ut|p

ff 1

p

ă 8,

and S
p
c the subset of continuous processes in S p,

- H p the set of progressively measurable processes V satisfying

|V |H p :“ E

«ˆż T

0

|Vt|2dt
˙ p

2

ff 1

p

ă 8,

- K p the set of continuous non-decreasing processes in S p,

- K ℜ,p the set of pure jump non-decreasing processes in S p with jump times in ℜ.
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In the sequel, we denote by C a constant whose value may change from line to line
but which never depends on |π| nor |ℜ|. The notation Cα is used to stress the fact that
the constant depends on some parameter α.

2 Preliminary results

In this section, we present key properties of continuously and discretely reflected BSDEs.
We start by recalling the representation property in terms of ”switched” BSDEs of the
multidimensional systems of reflected BSDEs (1.1) or (1.3).

In a second part, we study the regularity properties of the solution to discretely
reflected BSDEs in a Markovian setting. These results are key tools to obtain a con-
vergence rate for the numerical approximation. They are new in the framework of this
paper but their proofs rely on arguments that are now quite well understood.

2.1 Representation of obliquely reflected BSDEs

As mentioned in the introduction, the motivation to work on the above class of obliquely
reflected BSDEs comes from the study of ”switching problems” in the financial eco-
nomics literature. Indeed, RBSDEs provide a characterization of the solution to these
switching problems. Interestingly, the interpretation of the RBSDE in term of the solu-
tion of a ”switching problem” is a key tool in our work. We now recall the link between
the two objects, which takes the form of a representation theorem for the solution of
the RBSDEs in terms of ”switched BSDEs”. This link has been established before, see
e.g. [17]. We state it here in a generic framework as this will be useful latter on.

We consider a matrix valued process C “ pCijq1ďi,jďn such that Cij belongs to S 2

for i, j P I and satisfies the structure condition

$
’&
’%

Cii
t “ 0, for 1 ď i ď d and 0 ď t ď T ;

inftPr0,T s C
ij
t ě ε ą 0, for 1 ď i, j ď d with i ‰ j;

inftPr0,T stCij
t ` C

jl
t ´ Cil

t u ą 0, for 1 ď i, j ď d with i ‰ j, j ‰ l.

(2.1)

We introduce a random closed convex set family associated to C:

Qt :“
"
y P R

d|yi ě max
jPI

pyj ´ C
ij
t q, 1 ď i ď d

*
, 0 ď t ď T,

and the oblique projection operator onto Qt, denoted Pt and defined by

Pt : y P R
d ÞÑ

ˆ
max
jPI

tyj ´ C
ij
t u

˙

1ďiďd

. (2.2)

Remark 2.1. It follows from the structure condition (2.1) that Pt is increasing with
respect to the partial ordering relation ď.
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A switching strategy a is a nondecreasing sequence of stopping times pθjqjPN ,
combined with a sequence of random variables pαjqjPN valued in I, such that αj is
Fθj´measurable, for any j P N. We denote by A the set of such strategies. For
a “ pθj, αjqjPN P A , we introduce N a the (random) number of switches before T :

N a “ #tk P N
˚ : θk ď T u . (2.3)

To any switching strategy a “ pθj , αjqjPN P A , we associate the current state process
patqtPr0,T s and the cumulative cost process pAa

t qtPr0,T s defined respectively by

at :“ α01t0ďtăθ0u `
N aÿ

j“1

αj´11tθj´1ďtăθju and Aa
t :“

N aÿ

j“1

C
αj´1αj

θj
1tθjďtďT u ,

for 0 ď t ď T .

Remark 2.2. (i) The sequence of stopping times is only supposed to be non-decreasing,
but the assumptions on the cost processes (2.1) imply that any reasonable strategy
uses a sequence of increasing stopping times. This is specially the case for the
optimal strategies.

(ii) Note that the cumulative cost process will keep track of all the switching times,
even the instantaneous ones; whereas the state process will keep track of the last
state when instantaneous switches occur.

For pt, iq P r0, T s ˆ I, the set At,i of admissible strategies starting from state i at
time t is defined by

At,i “ ta “ pθj , αjqj P A |θ0 “ t, α0 “ i, E
“
|Aa

T |2
‰

ă 8u ,

similarly we introduce A ℜ
t,i the restriction to ℜ´admissible strategies

A
ℜ
t,i :“ t a “ pθj, αjqjPN P At,i | θj P ℜ , @j ď N a u ,

and denote A ℜ :“ Ť
iďd A ℜ

0,i.
For a strategy a P At,ℓ, we introduce the one-dimensional switched BSDE whose

solution pUa,Vaq satisfies

Ua
t “ ξaT `

ż T

t

F asps,Va
s qds ´

ż T

t

Va
s dWs ´ Aa

T ` Aa
t (2.4)

where the terminal condition ξ, the random costs process and the random driver F

satisfies following assumptions, for some p ě 2:
pHFpq

(i) F : Ω ˆ r0, T s ˆ Md,d Ñ R
d is P b BpRdq b BpMd,dq-measurable,

(ii) F jp¨, zq “ F jp¨, zj.q for all j P I,
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(iii) |F ps, zq ´ F ps, z1q| ď C|z ´ z1| for all s P r0, T s, z, z1 P Md,d,

(iv) ξ is FT -measurable and is valued in QT ,

(v) E

”
|ξ|p `

şT
0

|F ps, 0q|p ds
ı

ď Cp.

We now define multidimensional processes Ȳ and Ȳℜ as follows, for ℓ P t1, . . . , du

pȲtqℓ :“ ess sup
aPAt,ℓ

Ua
t and pȲℜ

t qℓ :“ ess sup
aPA ℜ

t,ℓ

Ua
t .

The process Y represents the optimal value that can be obtained from the switched
BSDEs following strategies in A . The process Ȳℜ can be seen as a ”Bermudan” version
of it i.e. when the switching times are restricted to lie in ℜ. Both processes enjoy a
representation in terms of reflected BSDEs, the main difference lying into the reflecting
process that for the latter will be a pure jump process with jump times in ℜ.

Let pY,Z,Kq be the solution to the following BSDE

$
’’’’’’&
’’’’’’%

Yℓ
t “ ξℓ `

ż T

t

F ℓps,Zsqds ´
ż T

t

Zℓ
s dWs ` Kℓ

T ´ Kℓ
t , 0 ď t ď T, ℓ P I,

Yℓ
t ě max

jPI
tYj

t ´ C
ℓj
t u, 0 ď t ď T, ℓ P I,

ż T

0

”
Yℓ
t ´ max

jPIztℓu
tYj

t ´ C
ℓj
t u

ı
dKℓ

t “ 0, ℓ P I,

(2.5)
and pỸℜ,Yℜ,Zℜ,Kℜq with Yℜ

t “ Ỹℜ
t´, t P p0, T s be the solution of following discretely

reflected BSDEs,

$
’’’’’&
’’’’’%

Ỹℜ
t “ ξ `

ż T

t

F ps,Zℜ
s qds ´

ż T

t

Zℜ
s dWs ` Kℜ

T ´ Kℜ
t , 0 ď t ď T,

Yℜ
r P Qr, r P ℜ,

ż T

0

”
pYℜ

t qℓ ´ max
jPIztℓu

tpYℜ
t qℓ ´ C

ℓj
t u

ı
dpKℜ

t qℓ “ 0, ℓ P I,

(2.6)

Existence and uniqueness of a solution for equation (2.5) has been addressed in [17, 16]
and in [8] (Proposition 2.1) for equation (2.6). For the reader convenience we recall
here these results.

Proposition 2.1. Assume that pHFpq holds for some p ě 2. There exists a unique
solution pY,Z,Kq P S 2

c ˆ H 2 ˆ K 2 to (2.5) and a unique solution pỸℜ,Yℜ,Zℜ,Kℜq
with pỸℜ,Zℜ,Kℜq P S 2 ˆ H 2 ˆ K ℜ,2 to (2.6). They also satisfy

|Y|S p ` |Z|H p ` |KT |L p ď Cp and |Ỹℜ|S p ` |Zℜ|H p ` |Kℜ
T |L p ď Cp.

Gathering Proposition 3.2 in [7] and Theorem 2.1 in [8], we have the following key
representation result.
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Proposition 2.2. Assume that pHF2q is in force. The following hold:

(i) for all ℓ P t1, . . . , du, t P r0, T s,

pYtqℓ “ pȲtqℓ “ U ā
t and pỸℜ

t qℓ “ pȲℜ
t qℓ “ U āℜ

t

for some ā P At,ℓ and āℜ P A ℜ
t,ℓ.

(ii) The strategy ā “ pθ̄j, ᾱjqjě0 can be defined recursively by pθ̄0, ᾱ0q :“ pt, ℓq and, for
j ě 1,

θ̄j :“ inf

"
s P rθ̄j´1, T s

ˇ̌
ˇ̌pỸsqᾱj´1 ď max

k‰ᾱj´1

tpỸsqk ´ C
ᾱj´1k
s u

*
,

ᾱj :“ min

"
ℓ ‰ ᾱj´1

ˇ̌
ˇ̌pỸᾱj

qℓ ´ C
ᾱj´1ℓ

θ̄j
“ max

k‰ᾱj´1

tpỸθ̄j
qk ´ C

ᾱj´1k

θ̄j
u
*
.

(iii) The strategy āℜ “ pθ̄ℜj , ᾱℜ
j qjě0 can be defined recursively by pθ̄ℜ0 , ᾱℜ

0 q :“ pt, ℓq and,
for j ě 1,

θ̄ℜj :“ inf

#
s P rθ̄ℜj´1, T s X ℜ

ˇ̌
ˇ̌pỸℜ

s qᾱℜ
j´1 ď max

k‰ᾱℜ
j´1

tpỸℜ
s qk ´ C

ᾱℜ
j´1

k
s u

+
,

ᾱℜ
j :“ min

#
ℓ ‰ ᾱℜ

j´1

ˇ̌
ˇ̌pỸℜ

θ̄ℜj
qℓ ´ C

ᾱℜ
j´1

ℓ

θ̄ℜj
“ max

k‰ᾱℜ
j´1

tpỸℜ

θ̄ℜj
qk ´ C

ᾱℜ
j´1

k

θ̄ℜj
u
+
.

Remark 2.3. If Ỹ ℓ
t R Qt then there is an instantaneous jump, i.e. θ̄1 “ t. In the same

way, if t P ℜ and pỸ ℜ
t qℓ R Qt then θ̄ℜ

1
“ t.

2.2 Discretely obliquely reflected BSDEs in a Markovian setting

We will now study the discretely obliquely reflected BSDEs (2.6) in a Markovian setting,
namely the solution to (1.3). We will in particular prove regularity results for this
process. The main difference with Section 3 in [8] comes from the assumption on f , in
particular the full dependence in the y-variable, recall pHfq(ii).

Let us recall that under assumption pHfq(i), there exists a unique strong solution to
the SDE (1.2) which satisfies

Et

«
sup

sPrt,T s
|Xs|p

ff
ď Cpp1 ` |Xt|pq , for all p ě 2 , t P r0, T s . (2.7)
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2.2.1 Basic properties

The following proposition gives some usefull estimates on the solution to (1.3). Its proof
is postponed to the Appendix.

Proposition 2.3. Assume that pHfq is in force. There exists a unique solution
pỸ ℜ, Y ℜ, Zℜq P S 2 ˆ S 2 ˆ H 2 to (1.3) and it satisfies, for all p ě 2,

|Ỹ ℜ|S p ` |Zℜ|H p ` |Kℜ
T |L p ď Cp.

We now precise the results of Proposition 2.2, in the setting of this section. In
particular, we describe the optimal strategy and some of its properties that will be
useful in the sequel.

Corollary 2.1. (i) The following equalities hold, for all ℓ P t1, . . . , du, t P r0, T s,

pỸ ℜ
t qℓ “ ess sup

aPA ℜ

t,ℓ

U
ℜ,a
t “ U

ℜ,āℜ

t for some āℜ P A
ℜ
t,ℓ ,

where pUℜ,a, V ℜ,a, Nℜ,aq is solution of the switched BSDE (2.4) with random driver
F ps, zq :“ fps,Xs, Ỹ

ℜ
s , zq for ps, zq P r0, T s ˆ Md,d, terminal condition ξ :“ gpXT q and

costs C
ij
s “ cijpXsq.

(ii) The optimal strategy āℜ “ pθj , αjqjě0 can be defined recursively by pθ0, α0q :“
pt, ℓq and, for j ě 1,

θj :“ inf

"
s P rθj´1, T s X ℜ

ˇ̌
ˇ prY ℜ

s qαj´1 ď max
k‰αj´1

!
prY ℜ

s qk ´ cαj´1kpXsq
)*

,

αj :“ min

"
q ‰ αj´1

ˇ̌
ˇ prY ℜ

θj
qq ´ cαj´1qpXθj q “ max

k‰αj´1

!
prY ℜ

θj
qk ´ cαj´1kpXθj q

)*
.

(iii) Moreover, for all ℓ P t1, . . . , du, t P r0, T s, the optimal strategy āℜ P A ℜ
t,ℓ

satisfies

Et

«
sup

sPrt,T s

ˇ̌
ˇUℜ,āℜ

s

ˇ̌
ˇ
p

`
ˆż T

t

ˇ̌
ˇV ℜ,āℜ

s

ˇ̌
ˇ
2

ds

˙p{2

`
ˇ̌
ˇAℜ,āℜ

T

ˇ̌
ˇ
p

`
ˇ̌
ˇNℜ,āℜ

ˇ̌
ˇ
p

ff
ď Cpp1 ` |Xt|pq.

(2.8)

Proof. Thanks to Proposition 2.3, we can apply Proposition 2.2 with the random driver
F , the terminal condition ξ and costs C

ij
s defined above, which gives us the represen-

tation result. The first estimate in (2.8) is a direct application of this representation
result and Proposition 2.3. Other estimates in (2.8) are obtained by using standard
arguments for BSDEs combined with the estimate (A.1), see proof of Proposition 2.2
in [8] for details. l
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2.2.2 Fine estimates on pY ℜ, Ỹ ℜ, Zℜq

In this section, we prove regularity results on the solution pY ℜ, Ỹ ℜ, Zℜq of the discretely
reflected BSDEs. To do that, we will use techniques already exposed in [1, 5, 8], based
essentially on a representation of Zℜ, obtained by using Malliavin Calculus. For a
general presentation of Malliavin Calculus, we refer to [20]. We now introduce some
notations and recall some known results on Malliavin differentiability of SDEs solution.

We will work under the following assumption.
pHrq The coefficients b, σ, g f , and pcijqi,j are C1,b in all their variables, with the
Lipschitz constants dominated by L.
This assumption is classically relieved using a kernel regularisation argument, see e.g.
the proofs of Proposition 4.2 in [5] or Proposition 3.3 in [1].

We denote by D
1,2 the set of random variables G which are differentiable in the

Malliavin sense and such that }G}2
D1,2 :“ }G}2

L 2 `
şT
0

}DtG}2
L 2dt ă 8, where DtG

denotes the Malliavin derivative of G at time t ď T . After possibly passing to a suitable
version, an adapted process belongs to the subspace L1,2

a of H 2 whenever Vs P D
1,2 for

all s ď T and }V }2
L
1,2
a

:“ }V }2
H 2 `

şT
0

}DtV }2
H 2dt ă 8.

Remark 2.4. Under pHrq, the solution of (1.2) is Malliavin differentiable and its
derivative satisfies

} sup
sďT

|DsX|}
S p ă 8 and Er

„
sup

rďsďT

|DuXs|p


ď Cp1 ` |Xr|pq , u ď r ď T . (2.9)

Moreover, we have

sup
sďu

}DsXt ´ DsXu}
Lp ` } sup

tďsďT

|DtXs ´ DuXs| }
Lp ď C

p
L|t ´ u|1{2 , (2.10)

for any 0 ď u ď t ď T .

Malliavin derivatives of pY ℜ, Ỹ ℜ, Zℜq. We now study the Malliavin differentia-
bility of pY ℜ, Ỹ ℜ, Zℜq. The techniques used are classical by now, see [1, 5]. In this
paragraph, we will follow the presentation of [8]. Once again, the main difference with
this paper is the assumption pHfq made on the driver f . In the setting of [8], f has to
satisfy f ipx, y, zq “ f ipx, yi, ziq whereas pHfq does not impose such restriction on the y
variable. This implies that the representation of Z, see Corollary 2.2 below, is slightly
more complicated. Namely, it contains the term DỸ , compare to Proposition 3.2 in [8].
To obtain the regularity results on pY ℜ, Ỹ ℜ, Zℜq, we need thus to prove estimates on
DỸ , which is the main result of the next Proposition.

Proposition 2.4. Under pHfq-pHrq, pỸ ℜ, Zℜq is Malliavin differentiable and its deriva-
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tive satisfies, for all r P r0, T s, u ď r, i P I,

DuprY ℜ
r qi “ Er

„
BxgaT pXT qDuXT `

ż T

r

BxfaspΘℜ
s qDuXsds

`
ż T

r

ByfaspΘℜ
s qDu

rY ℜ
s ds `

ż T

r

dÿ

ℓ“1

BzasℓfaspΘℜ
s qDupZℜ

s qasℓds

´
Naÿ

j“1

Bxcαj´1αj pXθj qDuXθj

ff
(2.11)

where a :“ āℜ is the optimal strategy associated with the representation in terms of
switched BSDEs, recall Corollary 2.1, and Θℜ :“ pX, Ỹ ℜ, Zℜq. Moreover, the following
estimates hold true: for all r P r0, T s, 0 ď u ď r, 0 ď v ď r,

|DuỸr|2 ď CLp1 ` |Xr|2q (2.12)

and

|DuỸr ´ DvỸr|2 ď CLp1 ` |Xr|qEr

„
sup

rďsďT

|DuXs ´ DvXs|4
 1

2

. (2.13)

Proof.
Let G P D

1,2pRdq. Since X belongs to L
1,2
a under pHrq, and P is a Lipschitz

continuous function, we deduce that PpXt, Gq P D
1,2pRdq. Using Lemma 5.1 in [1], we

compute

DspPpXt, Gqqi “ (2.14)

dÿ

j“1

pDsG
j´DscijpXtqq1Gj´cijpXtqąmaxℓăjpGℓ´ciℓpXtqq1Gj´cijpXtqěmaxℓąjpGℓ´ciℓpXtqq.

Combining (2.14), Proposition 5.3 in [10] and an induction argument, we obtain
that pY ℜ, rY ℜ, Zℜq is Malliavin differentiable and that a version of pDu

rY ℜ,DuZ
ℜq is

given by, for all i P I, t P r0, T s, 0 ď u ď t,

DuprY ℜ
t qi “DupY ℜ

rj`1
qi ´

dÿ

k“1

ż rj`1

t

DupZℜ
s qikdW k

s `
ż rj`1

t

Bxf ipΘℜ
s qDuXsds

`
ż rj`1

t

Byf ipΘℜ
s qDu

rY ℜ
s ds `

ż rj`1

t

dÿ

ℓ“1

Bziℓf ipΘℜ
s qDupZℜqiℓs ds (2.15)

recall pHfq.
Now, we consider the optimal strategy a :“ āℜ defined in Corollary 2.1 (ii) above

and fix j ă κ. Observing that the process a is constant on the interval rθj, θj`1q, we

12



deduce from (2.15)

DuprY ℜ
t qαj “ DupY ℜ

θj`1
qαj ´

dÿ

k“1

ż θj`1

t

DupZℜ
s qαjkdW k

s `
ż θj`1

t

BxfαjpΘℜ
s qDuXsds

(2.16)

`
ż θj`1

t

ByfαjpΘℜ
s qDu

rY ℜ
s ds `

ż θj`1

t

dÿ

ℓ“1

B
z
αjℓf

αj pΘℜ
s qDupZℜqαjℓ

s ds

for t P rθj , θj`1s and 0 ď u ď t. Combining (2.14) and the definition of a given in
Corollary 2.1 (ii), we compute, for u ď θj`1 and j ă κ,

DupY ℜ
θj`1

qαj “ DuprY ℜ
θj`1

qαj`1 ´ Bxcαjαj`1pXθj`1
qDuXθj`1

.

Inserting the previous equality into (2.16) and summing up over j we obtain, for all
t ď r ď T ,

DuprY ℜ
r qi “BxgaT pXT qDuXT ´

ż T

r

dÿ

k“1

DupZℜ
s qaskdWs `

ż T

r

BxfaspΘℜ
s qDuXsds

`
ż T

r

ByfaspΘℜ
s qDu

rY ℜ
s ds `

ż T

r

dÿ

ℓ“1

BzasℓfaspΘℜ
s qDupZℜ

s qasℓds

´
Naÿ

j“1

Bxcαj´1αj pXθj qpDuXqθj . (2.17)

Taking conditional expectation on both sides of the previous equality proves (2.11).
Moreover, we are in the framework of section A.2 in the Appendix by setting Y “ DuY

and X “ DuX. Condition (A.2) is satisfied here by N āℜ with β :“ CLp1 ` |X|q, recall
(2.8). Using Proposition A.1 and (2.9), we then obtain (2.12).

From equation (2.17), we easily deduce the dynamics of DuprY ℜq ´ DvprY ℜq, which
leads, using again Proposition A.1, to (2.13). l

The representation result for Zℜ is then an easy consequence of the previous propo-
sition.

Corollary 2.2. Under pHfq-pHrq the following representation holds true,

Zℜ
t “ Etr BxgaT pXT qΛa

t,TDtXT ´
Naÿ

j“1

Bxcαj´1αj pXθj qΛa
t,θj

DtXθj

`
ż T

t

´
BxfaspΘℜ

s qΛa
t,sDtXs ` ByfaspΘℜ

s qΛa
t,sDt

rY ℜ
s

¯
ds


, (2.18)

where a :“ āℜ is the optimal strategy associated with the representation in terms of
switched BSDEs, recall Corollary 2.1, and for ℓ P I,

Λa
t,s :“ exp

ˆż s

t

Bzar.farpΘℜ
u qdWr ´ 1

2

ż s

t

|Bzar.farpΘℜ
u q|2dr

˙
. (2.19)
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Moreover, under pHfq, we have
ˇ̌
ˇZℜ

t

ˇ̌
ˇ ď L̄p1 ` |Xt|q, for all t P r0, T s, (2.20)

for some positive constant L̄ that does not depend on the grid ℜ.

Proof. 1. A version of Zℜ is given by pDtỸ
ℜ
t q0ďtďT . The expression of DtY is obtained

directly by applying Itô’s formula, recall (2.11).
2. Under pHfq-pHrq the estimate (2.20) follows from (2.12) and (2.9). Under pHfq,

we can obtain the result by a standard kernel regularisation argument. l

Regularity of pY ℜ, Zℜq. With the above results at hand, the study of the regularity
of pY ℜ, Zℜq follows from ”classical” arguments, see e.g. [5, 8]. For sake of completeness,
we reproduce them below.

We consider a grid π :“ tt0 “ 0, . . . , tn “ T u on the time interval r0, T s, with
modulus |π| :“ max0ďiďn´1 |ti`1 ´ ti|, such that ℜ Ă π.

We need to control the following quantities, representing the H 2-regularity of prY ,Zq:

E

„ż T

0

|rY ℜ
t ´ rY ℜ

πptq|2dt


and E

„ż T

0

|Zℜ
t ´ Z̄ℜ

πptq|2dt

, (2.21)

where πptq :“ suptti P π ; ti ď tu is defined on r0, T s as the projection to the closest
previous grid point of π and

Z̄ℜ
ti
:“ 1

ti`1 ´ ti
E

„ż ti`1

ti

Zℜ
s ds |Fti


, i P t0, . . . , n ´ 1u. (2.22)

Remark 2.5. Observe that pZ̄ℜ
s qsďT :“ pZ̄ℜ

πpsqqsďT interprets as the best H 2-approximation

of the process Zℜ by adapted processes which are constant on each interval rti,ti`1q,
for all i ă n.

The first result is the regularity of the Y -component, which is a direct consequence
of the bound (2.20).

Proposition 2.5. Under pHfq, the following holds

sup
tPr0,T s

E

”
|Ỹ ℜ

t ´ Ỹ ℜ
πptq|2

ı
ď CL|π| .

Proof. We first observe that, for all 0 ď t ď T ,

E

”
|rY ℜ

t ´ rY ℜ
πptq|2

ı
ď E

»
–
ˇ̌
ˇ̌
ˇ

ż t

πptq
fpXs, rY ℜ

s , Zℜ
s qds `

ż t

πptq
Zℜ
s dWs

ˇ̌
ˇ̌
ˇ

2
fi
fl ,

ď CLE

«ż t

πptq

´
1 ` |Xs|2 ` |Ỹ ℜ

s |2 ` |Z̃ℜ
s |2

¯
ds

ff
.

ď CLE

«
|π| `

ż t

πptq
|Z̃ℜ

s |2ds
ff

(2.23)
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where we used (2.7) and Proposition 2.3. From (2.20), we easily get E
”şt

πptq

ˇ̌
Zℜ
t

ˇ̌2
dt
ı

ď
CL|π|. Inserting the previous inequality into (2.23) concludes the proof of this Propo-
sition. l

The following Proposition gives us the regularity of Zℜ. Its proof is postponed to
the Appendix.

Proposition 2.6. Under pHfq, the following holds

E

„ż T

0

|Zℜ
t ´ Z̄ℜ

t |2dt


ď CL

´
|π| 12 ` κ|π|

¯
.

3 Study of the discrete-time approximation

The aim of this section is to obtain a control on the error between the obliquely reflected
backward scheme (1.4) and the discretely obliquely reflected BSDE (1.3). This is the
purpose of Theorem 3.1 in subsection 3.4 below. In order to prove this key result, we
start by interpreting the scheme in terms of the solution of a switching problem in
subsection 3.2. We then use this representation to obtain a general stability property
for the scheme in subsection 3.3. Subsection 3.1 is devoted to preliminary definition
and propositions.

3.1 Definition and first estimates

Given a grid π of the interval r0, T s, we first consider an obliquely reflected backward
scheme with a random generator and a random cost process Cπ. For t P r0, T s, we
denote by Qπ

t the random closed convex set associated to Cπ
t and Pπ

t the projection
onto Qπ

t , recall (2.2) . The scheme is defined as follows.

Definition 3.1.

(i) The terminal condition Y
ℜ,π
n is given by a random variable ξπ P L2pFT q valued in

Qπ
T

(ii) for 0 ď i ă n, $
’’&
’’%

rYℜ,π
i :“ ErYℜ,π

i`1
| Fti s ` hiF

π
i pZℜ,π

i q,
Z

ℜ,π
i :“ ErYℜ,π

i`1
Hi | Ftis,

Y
ℜ,π
i :“ rYℜ,π

i 1ttiRℜu ` Pπ
ti

p rYℜ,π
i q1ttiPℜu,

(3.1)

with pHiq0ďiăn some R
1ˆd independent random vectors such that, for all 0 ď i ă n, Hi

is Fti`1
-measurable, EtirHis “ 0,

λiIdˆd “ hiErHJ
i His “ hiEtirHJ

i His, (3.2)

and
λ

d
ď λi ď Λ

d
, (3.3)

where λ and Λ are positive constants.
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Remark 3.1. Let us remark that (3.2) and (3.3) imply that

λ ď hiEr|Hi|2s “ hiEtir|Hi|2s ď Λ. (3.4)

In this section we use following assumptions. pHFdpq

(i) For all i P t0, ..., n ´ 1u, F π
i : Ω ˆ Md,d Ñ R

d is a Fti b BpMd,dq-measurable
function,

(ii) the random cost process Cπ satisfies the structure condition (2.1),

(iii) F
π,j
i pzq “ F

π,j
i pzj.q for all j P I and all 0 ď i ď n ´ 1,

(iv) |F π
i pzq ´ F π

i pz1q| ď LZ |z ´ z1| for all z, z1 P Md,d,

(v) E

”
|ξπ|2 `

řn´1

i“0
|F π

i p0q|2 hi ` suptiPℜ |Cπ
ti

|p
ı

ď Cp,

(vi) sup0ďiďn´1 hi |Hi|LZ ď 1.

Remark 3.2. i) Under pHFd2q, it is clear that the general scheme (3.1) has a unique
solution.

ii) The weights pHiq0ďiăn depend also on the grid π but we omit the script π for ease
of notation.

We observe that this obliquely reflected backward scheme can be rewritten equiva-
lently for i P J0, nK as

#
rYℜ,π
i “ ξπ ` řn´1

k“i F
π
k pZℜ,π

k qhk ´ řn´1

k“i hkλ
´1

k Z
ℜ,π
k HJ

k ´ řn´1

k“i ∆Mk ` pKℜ,π
n ´ K

ℜ,π
i q

K
ℜ,π
k :“ řk

r“1
∆K

ℜ,π
r with ∆K

ℜ,π
r :“ Y

ℜ,π
r ´ rYℜ,π

r ,

(3.5)
where pλkq are given by (3.2) and, for all k P J0, n ´ 1K, ∆Mk is an Ftk`1

-measurable
random vector satisfying

Etkr∆Mks “ 0, Etkr|∆Mk|2s ă 8 and Etkr∆MkHks “ 0. (3.6)

Following Corollary 2.5 in [4], we know that assumption pHFdpq(v) is an essential
ingredient to obtain a comparison result for classical time-discretized BSDE schemes.
We are able to adapt this comparison result in the context of obliquely reflected back-
ward scheme in the following proposition.

Proposition 3.1. Let us consider two obliquely reflected backward schemes solutions
p1 rYℜ,π, 1Yℜ,π, 1Zℜ,πq and p2 rYℜ,π, 2Yℜ,π, 2Zℜ,πq, associated to generators p1F π

. q, p2F π
. q,

terminal conditions 1ξπ, 2ξπ and random cost processes p1Cπq, p2Cπq such that pHFd2q
is in force. If

1ξ ď
2ξ, 1Fip2Zℜ,π

i q ď
2Fip2Zℜ,π

i q, for all 0 ď i ď n ´ 1,
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and p1Cπ
ti

qjk ě p2Cπ
ti

qjk, for all j, k P I, ti P ℜ,

then we have

1Y
ℜ,π
i ď

2Y
ℜ,π
i and 1 rYℜ,π

i ď
2 rYℜ,π

i , for all 0 ď i ď n.

Moreover, this comparison result stays true if these obliquely reflected backward schemes
have two different reflection grids ℜ1 and ℜ2 with ℜ1 Ă ℜ2. In particular, we are allowed
to have no projection for the first scheme, i.e. ℜ1 “ H.

Proof. We just have to use the comparison theorem for backward schemes (Corollary
2.5 in [4]) and the monotonicity properties of P (see Remark 2.1). l

Proposition 3.2. Assume that pHFd2q is in force. The unique solution p rYℜ,π,Yℜ,π,Zℜ,πq
to (3.1) satisfies

E

„
sup

0ďiďn

ˇ̌
ˇ rYℜ,π

i

ˇ̌
ˇ
2

` sup
0ďiďn

ˇ̌
ˇYℜ,π

i

ˇ̌
ˇ
2


` E

«
n´1ÿ

i“0

hi

ˇ̌
ˇZℜ,π

i

ˇ̌
ˇ
2

ff
` E

”
|Kℜ,π

n |2
ı

ď C.

Proof. The proof of uniform estimates (with respect to n and κ) divides, as usual, in
two steps controlling separately p rYℜ,π,Yℜ,πq and pZℜ,π,Kℜ,πq. It consists in transposing
continuous time arguments, see e.g. proof of Theorem 2.4 in [16], in the discrete-time
setting.

Step 1. Control of rYℜ,π and Yℜ,π. We consider two non-reflected backward schemes
bounding rYℜ,π.

Define the R
d-valued random variable ξ̆ and random maps pF̆iq0ďiďn´1 by pξ̆qj :“řd

k“1

ˇ̌
pξπqk

ˇ̌
and pF̆iqjpzq :“

řd
k“1

ˇ̌
pF π

i qkpzq
ˇ̌
for 1 ď j ď d and 0 ď i ď n´ 1. We then

denote by pY̆ , Z̆q the unique solution of the following non-reflected backward scheme:

$
’&
’%

Y̆n “ ξ̆

Z̆i “ ErY̆i`1Hi | Ftis,
Y̆i “ ErY̆i`1 | Ftis ` hiF̆ipZ̆iq.

Since all the components of Y̆ are similar, Y̆ P Qπ: Thus the above backward scheme is
an obliquely reflected backward scheme with same switching costs as in (3.1). We also
introduce pY̊ , Z̊q the solution of the following non-reflected backward scheme

$
’&
’%

Y̊n “ ξπ

Z̊i “ ErY̊i`1Hi | Fti s,
Y̊i “ ErY̊i`1 | Fti s ` hiF

π
i pZ̊iq.

Using the comparison result given by Proposition 3.1, we straightforwardly deduce that
pY̊ qj ď p rYℜ,πqj ď pYℜ,πqj ď pY̆ qj , for all j P I. Since pY̊ , Z̊q and pY̆ , Z̆q are solutions
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to standard backward schemes, classical estimates and pHFd2q lead to

Er sup
0ďiďn

| rYℜ,π
i |2 ` sup

0ďiďn
|Yℜ,π

i |2s ď Er sup
0ďiďn

|Y̊i|2 ` sup
0ďiďn

|Y̆i|2s

ď CE

«
|ξπ|2 `

˜
n´1ÿ

i“0

|F π
i p0q|2 hi

¸ff
(3.7)

ď C.

Step 2. Control of pZℜ,π,Kℜ,πq. Let us rewrite (3.5) for Yℜ,π between k and k ` 1
with k P J0, n ´ 1K:

Y
ℜ,π
k “ Y

ℜ,π
k`1

` F π
k pZℜ,π

k qhk ´ hkλ
´1

k Z
ℜ,π
k HJ

k ´ ∆Mk ` ∆K
ℜ,π
k .

Using the identity |y|2 “ |x|2 ` 2xpy ´ xq ` |x ´ y|2, we obtain, setting x “ Y
ℜ,π
k and

y “ Y
ℜ,π
k`1

,

|Yℜ,π
k`1

|2 “|Yℜ,π
k |2 ` 2Yℜ,π

k

´
´F π

k pZℜ,π
k qhk ` hkλ

´1

k Z
ℜ,π
k HJ

k ` ∆Mk ´ ∆K
ℜ,π
k

¯

`
ˇ̌
ˇF π

k pZℜ,π
k qhk ´ hkλ

´1

k Z
ℜ,π
k HJ

k ´ ∆Mk ` ∆K
ℜ,π
k

ˇ̌
ˇ
2

.

Taking the expectation in the previous inequality, we get, combining pHFd2q with
(3.2)-(3.3) and (3.6),

Er|Yℜ,π
k`1

|2s ě Er|Yℜ,π
k |2s ´ 2E

”
Y

ℜ,π
k

´
F π
k pZℜ,π

k qhk ` ∆K
ℜ,π
k

¯ı

` E

„ˇ̌
ˇhkλ´1

k Z
ℜ,π
k HJ

k

ˇ̌
ˇ
2


` Er|∆Mk|2s

ě Er|Yℜ,π
k |2s ´ CE

”
|Yℜ,π

k |
´

|F π
k p0q|hk ` |Zℜ,π

k |hk
¯ı

´ 2E
”
Y

ℜ,π
k ∆K

ℜ,π
k

ı

` E

»
–h2kλ´2

k Etk

„ ÿ

i,jPJ1,dK

ppZℜ,π
k qJZ

ℜ,π
k qijpHkq1ipHkq1j

fi
fl ` Er|∆Mk|2s

ě Er|Yℜ,π
k |2s ´ CE

”
|Yℜ,π

k |
´

|F π
k p0q|hk ` |Zℜ,π

k |hk
¯ı

´ 2E
”
Y

ℜ,π
k ∆K

ℜ,π
k

ı

` d

Λ
E

”
hk|Zℜ,π

k |2
ı

` Er|∆Mk|2s.
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Then we sum over k P J0, n ´ 1K and we compute, using Young inequality with ε ą 0,

n´1ÿ

k“0

E

”
hk|Zℜ,π

k |2
ı

`
n´1ÿ

k“0

Er|∆Mk|2s ď CεE

«
sup

0ďkďn

|Yℜ,π
k |2 `

n´1ÿ

k“0

|F π
k p0q|2hk

ff

` ε

n´1ÿ

k“0

E

”
hk|Zℜ,π

k |2
ı

` 2E

„
sup

0ďkďn

|Yℜ,π
k ||Kℜ,π

n |


ď CεE

«
sup

0ďkďn

|Yℜ,π
k |2 `

n´1ÿ

k“0

|F π
k p0q|2hk

ff

` ε

n´1ÿ

k“0

E

”
hk|Zℜ,π

k |2
ı

` εE
”
|Kℜ,π

n |2
ı
. (3.8)

Moreover, we get from (3.5)

E

”
|Kℜ,π

n |2
ı

ď CE

«
sup

0ďkďn

| rYℜ,π
k |2 `

n´1ÿ

k“0

|F π
k p0q|2hk

ff

` C

n´1ÿ

k“0

E

”
hk|Zℜ,π

k |2
ı

` C

n´1ÿ

k“0

Er|∆Mk|2s. (3.9)

Combining (3.8) with (3.9), and using pHFd2q and (3.7), classical calculations yield,
for ε small enough,

n´1ÿ

k“0

E

”
hk|Zℜ,π

k |2
ı

`
n´1ÿ

k“0

Er|∆Mk|2s ď C.

Finally we can insert this last inequality into (3.9) and use once again pHFd2q and (3.7)
to conclude the proof. l

3.2 Optimal switching problem representation

We now introduce a discrete-time version of the switching problem, which will allow us
to give a new representation of the scheme given in Definition 3.1. To simplify notations,
we start by adapting the definition of switching strategies to the discrete-time setting:
A switching strategy a is now a nondecreasing sequence of stopping times pθrqrPN valued
in N, combined with a sequence of random variables pαrqrPN valued in I, such that αr

is Ftθr
-measurable for any r P N.

Then by mimicking Section 2.1, we define classical objects related to switching
strategies. For a switching strategy a “ pθr, αrqrPN, we introduce N a the (random)
number of switches before n:

N a “ #tr P N
˚ : θr ď nu . (3.10)
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To any switching strategy a “ pθr, αrqrPN, we associate the current state process
paiqiPJ0,nK and the cumulative cost process pAa

i qiPJ0,nK defined respectively by

ai :“ α01t0ďiăθ0u `
N aÿ

r“1

αr´11tθr´1ďiăθru and Aa
i :“

N aÿ

r“1

pCπ
tθr

qαr´1αr1tθrďiďnu ,

for 0 ď i ď n. We denote by A ℜ,π the set of ℜ-admissible strategies:

A
ℜ,π “ ta “ pθr, αrqrPN switching strategy | tθr P ℜ @r P J1,N aK, E

“
|Aa

n|2
‰

ă 8u .

For pi, jq P J0, nK ˆ I, the set A
ℜ,π
i,j of admissible strategies starting from j at time ti is

defined by

A
ℜ,π
i,j “ ta “ pθr, αrqrPN P A

ℜ,π |θ0 “ i, α0 “ ju .

For a strategy a P A
ℜ,π
i,j we define the one dimensional ℜ-switched backward scheme

whose solution pUℜ,π,a,Vℜ,π,aq satisfies

$
’’&
’’%

U
ℜ,π,a
n “ ξπ,an

V
ℜ,π,a
k “ ErUℜ,π,a

k`1
HJ

k | Ftk s,
U
ℜ,π,a
k “ ErUℜ,π,a

k`1
| Ftk s ` hkF

π,ak
k pVℜ,π,a

k q ´ řN a

j“1
pCπ

tθj
qαj´1αj1θj ďk, i ď k ă n.

(3.11)

Similarly to equation (3.1), we observe that this obliquely reflected backward scheme
can be rewritten equivalently for k P Ji, nK as

U
ℜ,π,a
k “ξπ,an `

n´1ÿ

m“k

F π,am
m pVℜ,π,a

m qhm ´
n´1ÿ

m“k

hmλ´1
m Vℜ,π,a

m HJ
m ´

n´1ÿ

m“k

∆Ma
m

´ Aa
n ` Aa

k (3.12)

where pλkq are given by (3.2) and, for all k P J0, n ´ 1K, ∆Ma
k is an Ftk`1

-measurable
random variable satisfying

Etkr∆Ma
ks “ 0, Etk r|∆Ma

k|2s ă 8 and Etk r∆Ma
kHks “ 0. (3.13)

The next theorem is a Snell envelope representation of the obliquely reflected back-
ward scheme.

Proposition 3.3. For any j P I and 0 ď i ď n, the following hold:

(i) The discrete process Yℜ,π dominates any ℜ-switched backward scheme, that is,

U
ℜ,π,a
i ď p rYℜ,π

i qj , P-a.s. for any a P A
ℜ,π
i,j . (3.14)
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(ii) Define the strategy āℜ,π “ pθ̄r, ᾱrqrě0 recursively by pθ̄0, ᾱ0q :“ pi, jq and, for
r ě 1,

θ̄r :“ inf
 
k P Jθ̄r´1, nK

ˇ̌
tk P ℜ, p rYℜ,π

k qᾱr´1 ď max
m‰ᾱr´1

tp rYℜ,π
k qm ´ C

ᾱr´1m
tk

u
(
,

ᾱr :“ min
 
ℓ ‰ ᾱr´1

ˇ̌
p rYℜ,π

θr
qℓ ´ C

ᾱr´1ℓ
tθr

“ max
m‰ᾱr´1

tp rYℜ,π
θr

qm ´ C
ᾱr´1m
tθr

u
(

Then we have āℜ,π P A
ℜ,π
i,j and

p rYℜ,π
i qj “ U

ℜ,π,āℜ,π

i P-a.s. (3.15)

(iii) The following “Snell envelope” representation holds:

p rYℜ,π
i qj “ ess sup

aPA
ℜ,π
i,j

U
ℜ,π,a
i P-a.s. (3.16)

Proof. We will adapt the proof of Theorem 2.1 in [8] to the discrete time setting.
Observe first that assertion (iii) is a direct consequence of (i) and (ii).

Let us fix i P J0, nK and j P I.

Step 1. We first prove (i).

Set a “ pθr, αrqrě0 P A
ℜ,π
i,j and the process p rYa,Zaq defined, for k P Ji, nK, by

#
rYa
k :“ ř

rě0
p rYℜ,π

k qαr1θrďkăθr`1
` ξπ,an1k“n

Za
k :“

ř
rě0

pZℜ,π
k qαr1θrďkăθr`1

.
(3.17)

Observe that these processes jump between the components of the obliquely reflected
backward scheme (3.5) according to the strategy a, and, between two jumps, we have

rYa
θr

“ pYℜ,π
θr`1

qαr `
θr`1´1ÿ

k“θr

F
π,αr

k ppZℜ,π
k qαr qhk ´

θr`1´1ÿ

k“θr

hkλ
´1

k pZℜ,π
k qαrHJ

k

´
θr`1´1ÿ

k“θr

∆pMkqαr ` pKℜ,π

pθr`1´1q_θr
qαr ´ pKℜ,π

θr
qαr

“ rYa
θr`1

`
θr`1´1ÿ

k“θr

F
π,ak
k pZa

k qhk ´
θr`1´1ÿ

k“θr

hkλ
´1

k Za
kH

J
k ´

θr`1´1ÿ

k“θr

∆pMkqαr

` pKℜ,π

pθr`1´1q_θr
qαr ´ pKℜ,π

θr
qαr ` ppYℜ,π

θr`1
qαr ´ p rYℜ,π

θr`1
qαr`1q, r ě 0. (3.18)

Introducing

Ka
k :“

N a´1ÿ

r“0

„ pθr`1´1q_θr^kÿ

m“θr^k

p∆Kℜ,π
m qαr

` 1θr`1ďk

´
pYℜ,π

θr`1
qαr ´ p rYℜ,π

θr`1
qαr`1 ` pCπ

tθr`1

qαrαr`1

¯ 
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for k P Ji, nK, and summing up (3.18) over r, we get, for k P Ji, nK,

rYa
k “ξπ,an `

n´1ÿ

m“k

F π,am
m pZa

mqhm ´
n´1ÿ

m“k

hmλ´1
m Za

mHJ
m ´

N a´1ÿ

r“0

pθr`1´1q_kÿ

m“θr_k

∆pMmqαr

´ Aa
n ` Aa

k ` Ka
n ´ Ka

k.

Using the relation Y
ℜ,π
θr

“ Pθkp rYℜ,π
θk

q for all r P J0,N aK, we easily check that Ka is

an increasing process. Since Uℜ,π,a solves (3.12), we deduce by a comparison argument

(see Corollary 2.5 in [4]) that U
ℜ,π,a
i ď rYa

i . Since a is arbitrary in A
ℜ,π
i,j , we deduce

(3.14).

Step 2. We now prove (ii).

Consider the strategy āℜ,π given above as well as the associated process p rY āℜ,π
,Z āℜ,π q

defined as in (3.17). By definition of āℜ,π, we have

pYℜ,π

θ̄r`1

qᾱr “ pPπ
θ̄r`1

p rYℜ,π

θ̄r`1

qqᾱr “ p rYℜ,π

θ̄r`1

qᾱr`1 ´ pCπ
tᾱr`1

qᾱrᾱr`1 , r ě 0,

which gives that Kāℜ,π “ 0 and then, for all k P Ji, nK,

rY āℜ,π

k “ξπ,ā
ℜ,π
n `

n´1ÿ

m“k

F π,ā
ℜ,π
m

m pZ āℜ,π

m qhm ´
n´1ÿ

m“k

hmλ´1
m Z āℜ,π

m HJ
m

´
N āℜ,π

´1ÿ

r“0

pθ̄r`1´1q_kÿ

m“θ̄r_k

p∆Mmqᾱr ´ Aāℜ,π

n ` Aāℜ,π

k . (3.19)

Hence, p rY āℜ,π
,Z āℜ,πq and pU āℜ,π

,V āℜ,π q are solutions of the same backward scheme and

p rYℜ,π
i qj “ U āℜ,π

i . To complete the proof, we only need to check that āℜ,π P A ℜ,π, that

is Er|Aāℜ,π

n |2s ă 8. By definition of āℜ,π on Ji, nK and the structure condition on costs

(2.1), we have |Aāℜ,π

i | ď maxk‰j |Cjk
ti

| which gives Er|Aāℜ,π

i |2s ď C. Combining (3.19)
with the Lipschitz property of F π and estimates in Proposition 3.2, we get the square
integrability of Aāℜ,π

n and the proof is complete. l

Proposition 3.4. Assume than pHFd2q is in force. For all 0 ď i ď n, j P I, we have

E

«
sup

iďkďn

ˇ̌
ˇUℜ,π,āℜ,π

k

ˇ̌
ˇ
2

`
n´1ÿ

k“i

hk

ˇ̌
ˇVℜ,π,āℜ,π

k

ˇ̌
ˇ
2

`
ˇ̌
ˇAāℜ,π

n

ˇ̌
ˇ
2

`
ˇ̌
ˇN āℜ,π

ˇ̌
ˇ
2

ff
ď C,

for the optimal strategy āℜ,π P A ℜ
i,j.

Proof. Fix pi, jq P J0, nK ˆ I. According to the identification of pUℜ,π,āℜ,π

,Vℜ,π,āℜ,πq
with p rY āℜ,π

,Z āℜ,πq obtained in the proof of Proposition 3.3, we deduce from Proposition

3.2 expected controls on Uℜ,π,āℜ,π

and Vℜ,π,āℜ,π

.
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By taking conditional expectation in (3.19), we have

EtirAāℜ,π

n s “Eti

«
ξπ,ā

ℜ,π
n ´ rY āℜ,π

i `
n´1ÿ

m“i

F π,ā
ℜ,π
m

m pZ āℜ,π

m qhm ` Aāℜ,π

i

ff
.

Thus, using standard inequalities and the growth of F π, we easily obtain

Er|Aāℜ,π

n |2s ďCE

«
sup

iďkďn

| rY āℜ,π

k |2 `
n´1ÿ

m“i

|Z āℜ,π

m |2hm ` |Aāℜ,π

i |2
ff
.

We have already noticed in the proof of Proposition 3.3 that we have |Aāℜ,π

i | ď
maxk‰j |Cjk

i |, which inserted into the previous inequality leads to Er|Aāℜ,π

n |2s ď C.
We finally complete the proof, observing from the structure condition (2.1) that

Er|N āℜ,π |2s ď CEr|Aāℜ,π

n |2s.
l

3.3 Stability of obliquely reflected backward schemes

We now consider two obliquely reflected backward schemes, with different parameters
but the same reflection grid ℜ. For ℓ P t1, 2u, we consider an FT -measurable random
terminal condition ℓξ, a random generator z ÞÑ ℓF p., zq and random cost processes
pℓCijq1ďi,jďd satisfying the structural condition (2.1). As in Subsection 3.2, terminal
conditions, generators and cost processes are allowed to depend on π but we omit the
script π for reading convenience. We denote by pℓ rYℜ,π, ℓYℜ,π, ℓZℜ,πq the solution of the
associated obliquely reflected backward scheme.

Defining δYℜ,π :“ 1Yℜ,π ´ 2Yℜ,π, δ rYℜ,π :“ 1 rYℜ,π ´ 2 rYℜ,π, δZℜ,π :“ 1Zℜ,π ´ 2Zℜ,π,
δξ :“ 1ξ ´ 2ξ together with

|δCt|8 :“ max
i,jPI

ˇ̌
ˇ1Cij

t ´ 2C
ij
t

ˇ̌
ˇ ,

|δFk|8 :“ max
iPI

sup
zPMd,d

ˇ̌
1F i

k ´ 2F i
k

ˇ̌
pzq,

for 0 ď k ď n ´ 1, we prove the following stability result.

Proposition 3.5. Assume that pHFdpq is in force for some given p ě 2. Then we
have, for any i P J0, nK,

sup
iďkďn

E

„ˇ̌
ˇδYℜ,π

k

ˇ̌
ˇ
2

`
ˇ̌
ˇδ rYℜ,π

k

ˇ̌
ˇ
2


` 1

κ
E

«
n´1ÿ

k“i

hk

ˇ̌
ˇδZℜ,π

k

ˇ̌
ˇ
2

ff

ď CE

«
n´1ÿ

k“i

|δFk|28 hk ` |δξ|2
ff

` Cpκ
4{p

E

«
sup

0ďkďn,tkPℜ
|δCtk |p8

ff2{p

.

Proof. We adapt to our setting the proof of Proposition 2.3 in [8]. The proof is divided
into three steps and relies heavily on the reinterpretation in terms of switching problems.
We first introduce a convenient dominating process and then provide successively the
controls on δYℜ,π and δZℜ,π terms.
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Step 1. Introduction of an auxiliary backward scheme. Let us define F :“
1F _ 2F , ξ :“ 1ξ _ 2ξ and C by Cij :“ 1Cij _ 2Cij. Observe pHFdpq holds for the data

pC,F, ξq and C satisfies the structure condition (2.1). We denote by p rYℜ,π,Yℜ,π,Zℜ,πq
the solution of the discretely obliquely reflected backward scheme with generator F ,
terminal condition ξ, reflection grid ℜ and cost process C.

Using Proposition 3.1 and the definition of F , ξ and C, we obtain that

rYℜ,π
ě

1 rYℜ,π _ 2 rYℜ,π. (3.20)

Using Proposition 3.3, we introduce switched backward schemes associated to 1Yℜ,π,
2Yℜ,π and Yℜ,π and denote by ǎ “ pθ̌r, α̌rqrě0 the optimal strategy related to Yℜ,π

starting from a fixed pi, jq P J0, nK ˆ I. therefore, we have

p rYℜ,π
i qj “ U

ℜ,π,ǎ
i “ξǎn `

n´1ÿ

k“i

F
ǎk
k pVℜ,π,ǎ

k qhk ´
n´1ÿ

k“i

hkλ
´1

k V
ℜ,π,ǎ
k HJ

k ´
n´1ÿ

k“i

∆Mǎ
k

´ Aǎ
n ` Aǎ

i (3.21)

Step 2. Stability of the Y component. Since ǎ P A
ℜ,π
i,j , we deduce from Proposi-

tion 3.3 (i) that

pℓ rYℜ,π
i qj ě ℓU

ℜ,π,ǎ
i “ℓξǎn `

n´1ÿ

k“i

ℓF
ǎk
k pℓVℜ,π,ǎ

k qhk ´
n´1ÿ

k“i

hkλ
´1

k
ℓV

ℜ,π,ǎ
k HJ

k ´
n´1ÿ

k“i

∆ℓMǎ
k

´ ℓAǎ
n ` ℓAǎ

i , ℓ P t1, 2u, (3.22)

where ℓAǎ is the process of cumulated costs pℓCijqi,jPI associated to the strategy ǎ.
Combining this estimate with (3.20) and (3.21), we derive

|p1 rYℜ,π
i qj ´ p2 rYℜ,π

i qj | ď |Uℜ,π,ǎ
i ´ 1U

ℜ,π,ǎ
i | ` |Uℜ,π,ǎ

i ´ 2U
ℜ,π,ǎ
i |. (3.23)

Since both terms on the right-hand side of (3.23) are treated similarly, we focus on the
first one and introduce discrete processes Γǎ :“ Uℜ,π,ǎ ` Aǎ and 1Γǎ :“ 1Uℜ,π,ǎ ` 1Aǎ.
Rewriting (3.21) and (3.22) between k and k ` 1 for k P Ji, n ´ 1K, we get

Γǎ
k ´ 1Γǎ

k “ Γǎ
k`1 ´ 1Γǎ

k`1 ` rF ǎk
k pVℜ,π,ǎ

k q ´ 1F
ǎk
k p1Vℜ,π,ǎ

k qshk
´ hkλ

´1

k rVℜ,π,ǎ
k ´ 1V

ℜ,π,ǎ
k sHJ

k ´ r∆Mǎ
k ´ ∆1Mǎ

ks.

Using the identity |y|2 “ |x|2 ` 2xpy ´ xq ` |x ´ y|2, we obtain,

Etkr|Γǎ
k`1 ´ 1Γǎ

k`1|2s
“ |Γǎ

k ´ 1Γǎ
k|2 ´ 2pΓǎ

k ´ 1Γǎ
kqpF ǎk

k pVℜ,π,ǎ
k q ´ 1F

ǎk
k p1Vℜ,π,ǎ

k qqhk
` Etkr|rF ǎk

k pVℜ,π,ǎ
k q ´ 1F

ǎk
k p1Vℜ,π,ǎ

k qshk ´ hkλ
´1

k rVℜ,π,ǎ
k ´ 1V

ℜ,π,ǎ
k sHJ

k ´ r∆Mǎ
k ´ ∆1Mǎ

ks|2s.
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Then, by the same reasoning as in the step 2 of the proof of Proposition 3.2, previous
equality becomes

Etk r|Γǎ
k`1 ´ 1Γǎ

k`1|2s ě |Γǎ
k ´ 1Γǎ

k|2 ´ 2pΓǎ
k ´ 1Γǎ

kqpF ǎk
k pVℜ,π,ǎ

k q ´ 1F
ǎk
k p1Vℜ,π,ǎ

k qqhk

` d

Λ
hk|Vℜ,π,ǎ

k ´ 1V
ℜ,π,ǎ
k |2,

and we obtain, by summing over k and taking expectation,

E

«
|Γǎ

i ´ 1Γǎ
i |2 `

n´1ÿ

k“i

hk|Vℜ,π,ǎ
k ´ 1V

ℜ,π,ǎ
k |2

ff

ď CE

„
|Γǎ

n ´ 1Γǎ
n|2 `

n´1ÿ

k“i

|Γǎ
k ´ 1Γǎ

k||F ǎk
k pVℜ,π,ǎ

k q ´ 1F
ǎk
k p1Vℜ,π,ǎ

k q|hk

.

Since F “ 1F _ 2F and 1F is a Lipschitz function, we also get

|F ǎk
k pVℜ,π,ǎ

k q ´ 1F
ǎk
k p1Vℜ,π,ǎ

k q| ď |δFk |8 ` C|Vℜ,π,ǎ
k ´ 1V

ℜ,π,ǎ
k |,

and then, by using Young’s inequality and discrete Gronwall’s lemma, we deduce from
the last and the penultimate inequalities that

E

”
|Uℜ,π,ǎ

i ´ 1U
ℜ,π,ǎ
i |2

ı
ď C

˜
Er|δξ|2 `

n´1ÿ

k“i

|δFk|28 hk ` Er|Aǎ
n ´ 1Aǎ

n|2 ` |Aǎ
i ´ 1Aǎ

i |2s
¸
.

(3.24)

Moreover we compute, for all k P Ji, nK,

Er|Aǎ
k ´ 1Aǎ

k|2s ď Er|N ǎ|2 sup
0ďmďn,tmPℜ

|δCtm |28s.

If p “ 2, then N ǎ ď κ yields

Er|Aǎ
k ´ 1Aǎ

k|2s ď κ2Er sup
0ďmďn,tmPℜ

|δCtm |28s.

Otherwise, from Proposition 3.4, Hölder inequality and the fact that N ǎ ď κ, we deduce

Er|Aǎ
k ´ 1Aǎ

k|2s ď E

”
|N ǎ|

2p

p´2

ı p´2

p
E

«
sup

0ďmďn,tmPℜ
|δCtm |p8

ff2{p

ď E

”
κ

2p

p´2
´2|N ǎ|2

ı p´2

p
E

«
sup

0ďmďn,tmPℜ
|δCtm |p8

ff2{p

ď Cpκ
4{p

E

«
sup

0ďmďn,tmPℜ
|δCtm |p8

ff2{p

.
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Inserting the last estimate into (3.24), we get

E

”
|Uℜ,π,ǎ

i ´ 1U
ℜ,π,ǎ
i |2

ı
ď C

˜
Er|δξ|2 `

n´1ÿ

k“i

|δFk|28 hk

¸
` Cpκ

4{p
E

«
sup

0ďmďn,tmPℜ
|δCtm |p8

ff2{p

.

By symmetry, we have the same estimate for E

”
|Uℜ,π,ǎ

i ´ 2U
ℜ,π,ǎ
i |2

ı
. Therefore,

from (3.23) and the fact that j is arbitrary, we deduce the wanted estimate for Er|δ rYℜ,π
i |2s.

The estimate for Er|δYℜ,π
i |2s is a direct corollary.

Step 3. Stability of the Z component. Observing that δZ
ℜ,π
k “ Etk rpδYℜ,π

k`1
´

EtkrδYℜ,π
k`1

sqHJ
k s, one computes

hk|δZℜ,π
k |2 ď CEtk

”
|δYℜ,π

k`1
|2 ´ |Etk

”
δY

ℜ,π
k`1

ı
|2
ı

(3.25)

From the scheme’s definition, we have

|Etk

”
δY

ℜ,π
k`1

ı
|2 ě |δ rYℜ,π

k |2 ´ 2|δ rYℜ,π
k r1Fkp1Zℜ,π

k q ´ 2Fkp2Zℜ,π
k qshk| .

Inserting the last estimate into (3.25) and using pHFdpq, we obtain, for some η ą 0,

hk|δZℜ,π
k |2 ď C

ˆ
Etk

”
|δYℜ,π

k`1
|2
ı

´ |δ rYℜ,π
k |2 ` Chk

ˆ
1 ` 1

η

˙
|δ rYℜ,π

k |2 ` ηhk|δZℜ,π
k |2 ` hk|δFk |28

˙
.

Taking expectation on both sides and summing over k with η “ 1{2, we get

1

2

n´1ÿ

k“i

hkE
”
|δZℜ,π

k |2
ı

ď C

¨
˚̋
E

”
|δYℜ,π

n |2
ı

`
n´1ÿ

k“i
tkPℜ

E

”
|δYℜ,π

k |2 ´ |δ rYℜ,π
k |2

ı
` max

iďkďn´1
E

”
|δ rYℜ,π

k |2
ı

`
n´1ÿ

k“i

hk|δFk |28

˛
‹‚ ,

ď C

˜
E

”
|δYℜ,π

n |2
ı

` κ max
iďkďn´1

E

”
|δYℜ,π

k |2 ` |δ rYℜ,π
k |2

ı
`

n´1ÿ

k“i

hk|δFk |28

¸
.

The proof is concluded using estimates on δ rYℜ,π and δYℜ,π already obtained in the first
part of the proof. l

We will now use this general stability result on obliquely reflected backward schemes
to obtain a L2-stability result for the scheme (1.4) (see [6] for a general definition of
L2-stability for backward schemes). Firstly, we introduce a perturbed version of the
scheme given in (1.4).

Definition 3.2. (i) The terminal condition is given by a FT -measurable random
variable Ȳn P L 2;
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(ii) for 0 ď i ă n,
$
’’&
’’%

Z̄
ℜ,π
i :“ ErȲ ℜ,π

i`1
Hi | Ftis,

r̄Y ℜ,π
i :“ ErȲ ℜ,π

i`1
| Fti s ` hifpXπ

ti
, r̄Y ℜ,π

i , Z̄
ℜ,π
i q ` ζ

f
i ,

Ȳ
ℜ,π
i :“ r̄Y ℜ,π

i 1ttiRℜu ` P̄tipXπ
ti
, r̄Y ℜ,π

i q1ttiPℜu,

(3.26)

with P̄ the oblique projection

P̄ti : px, yq P R
d ˆ R

d ÞÑ
ˆ
max
jPI

tyj ´ c̄
kj
ti

pxqu
˙

1ďkďd

,

associated to costs c̄tipxq :“ cpxq ` ζcti . Perturbations ζYi :“ pζfi , ζctiq are Fti-
measurable and square integrable random variables. Moreover we assume that the
random costs pc̄tipXtiqq0ďiďn satisfy the structure conditions (2.1).

Setting δYi “ Y
ℜ,π
i ´ Ȳ

ℜ,π
i , δrYi “ rY ℜ,π

i ´ r̄Y ℜ,π
i and δZi “ Z

ℜ,π
i ´ Z̄

ℜ,π
i , we obtain

the following L2-stability result for the scheme (1.4).

Proposition 3.6. Assume that pHfq is in force and, for all p ě 2,

E

«
|Ȳn|2 `

n´1ÿ

i“0

|ζfi |2 ` sup
0ďiďn

ˇ̌
ζcti

ˇ̌p
ff

ď C. (3.27)

We also assume that |π|LY ă 1 and
ˆ

sup
0ďiďn´1

hi |Hi|
˙
LZ ď 1. (3.28)

Then schemes (1.4) and (3.26) are well defined and the following L2-stability holds true,
for all p ě 2,

sup
0ďiďn

E

”
|δYi|2 ` |δrYi|2

ı
` 1

κ

n´1ÿ

i“0

hiE
“
|δZi|2

‰

ď C

˜
E
“
|δYn|2

‰
`

n´1ÿ

i“0

1

hi
E

”
|ζfi |2

ı¸
` Cpκ

4{p
E

»
– sup

0ďiďn
tiPℜ

|ζci |p
fi
fl

2{p

. (3.29)

Proof. Since we have assumed |π|LY ă 1, then a simple fixed point argument shows
that schemes (1.4) and (3.26) are well defined, i.e. there exists a unique solution to
each scheme.

For the L2-stability, we want to apply Proposition 3.5 with 1ξ “ gpXπ
T q, 2ξ “ Ȳn,

1Fipzq “ fpXπ
ti
, rY ℜ,π

i , zq, 2Fipzq “ fpXπ
ti
, r̄Y ℜ,π

i , zq ` ζ
f
i ,

1Cti “ cpXπ
ti

q and 2Cti “
cpXπ

ti
q ` ζcti . To do this, we have to check that assumption pHFdpq is fulfilled for these

two obliquely reflected backward schemes. Firstly, we have assumed
ˆ

sup
0ďiďn´1

hi |Hi|
˙
LZ ď 1.
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Moreover, hypothesis pHfq, assumption (3.27) and classical estimates for processes X
and Xπ leads to

E

«
|1ξ|2 ` |2ξ|2 `

n´1ÿ

i“0

r|1Fip0q|2 ` |2Fip0q|2shi ` sup
0ďiďn

r|1Cti |p ` |2Cti |ps
ff

ď Cp ` CE

„
sup

0ďiďn

r|rY ℜ,π
i |2 ` | r̄Y ℜ,π

i |2s

.

To estimate quantities E

”
sup0ďiďn |rY ℜ,π

i |2
ı
and E

”
sup0ďiďn | r̄Y ℜ,π

i |2
ı
, we just have to

rewrite slightly the first step of the proof of Proposition 3.2. The beginning of the proof
stays true: (3.7) yields, for all i P J0, nK,

E

„
sup

iďkďn

”
|rY ℜ,π

k |2 ` | r̄Y ℜ,π
k |2

ı
ď CE

«
|1ξ|2 ` |2ξ|2 `

n´1ÿ

k“i

“
|1Fkp0q|2 ` |2Fkp0q|2

‰
hk

ff

ď C

˜
1 `

n´1ÿ

k“i

E

„
sup

kďmďn

”
|rY ℜ,π

m |2 ` | r̄Y ℜ,π
m |2

ı
hk

¸
.

Thus, the discrete Gronwall lemma allows to conclude that

E

„
sup

0ďkďn

”
|rY ℜ,π

k |2 ` | r̄Y ℜ,π
k |2

ı
ď C

and then assumption pHFdpq is fulfilled. Proposition 3.5 and pHfq imply, for all i P
J0, nK,

sup
iďkďn

E

”
|δYk|2 ` |δrYk|2

ı
` 1

κ

n´1ÿ

k“i

hkE
“
|δZk|2

‰

ď C

˜
E
“
|δYn|2

‰
`

n´1ÿ

k“i

|δFk |28

¸
` Cpκ

4{p
E

»
—– sup

0ďkďn
tkPℜ

|ζctk |p

fi
ffifl

2{p

ď C

˜
E
“
|δYn|2

‰
`

n´1ÿ

k“0

1

hk
E

”
|ζfk |2

ı
`

n´1ÿ

k“i

sup
kďmďn

E

”
|δYm|2 ` |δrYm|2

ı
hk

¸
` Cpκ

4{p
E

»
—– sup

0ďkďn
tkPℜ

|ζctk |p

fi
ffifl

2{p

.

Applying the discrete Gronwall lemma to the last inequality completes the proof. l

3.4 Convergence analysis of the discrete-time approximation

We will give now the main result of this section that provides an upper bound for the
error between the obliquely reflected backward scheme (1.4) and the discretely obliquely
reflected BSDE (1.3).
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Theorem 3.1. Assume that pHfq is in force. We also assume that |π|LY ă 1 and
weights pHiq0ďiďn´1 are given by

pHiqℓ “ ´R

hi
_

W ℓ
ti`1

´ W ℓ
ti

hi
^ R

hi
, 1 ď ℓ ď d, (3.30)

with R a positive parameter such that RLZ ď 1. Then the following holds:

sup
0ďiďn

E

”
|rY ℜ

ti
´ rY ℜ,π

i |2 ` |Y ℜ
ti

´ Y
ℜ,π
i |2

ı
` 1

κ
E

«
n´1ÿ

i“0

ż ti`1

ti

|Zℜ
s ´ Z

ℜ,π
i |2ds

ff
ď CR

´
|π|1{2 ` κ|π|

¯
.

Proof.

Step 1. Expression of the perturbing error. Since we want to apply Proposition
3.6, we first observe that pY ℜ, Zℜq can be rewritten as a perturbed obliquely reflected

backward scheme. Namely, setting Ȳi :“ Y ℜ
ti

and r̄Yi :“ rY ℜ
ti
, for all i P J0, nK, we have

$
’’&
’’%

Z̄i :“ ErȲi`1
Hi | Ftis,

r̄Yi :“ ErȲi`1
| Ftis ` hifpXπ

ti
, r̄Yi, Z̄iq ` ζ

f
i ,

Ȳi :“ r̄Yi1ttiRℜu ` P̄tipXπ
ti
, r̄Yiq1ttiPℜu,

(3.31)

with

ζ
f
i “ Eti

„ż ti`1

ti

´
fpXs, rY ℜ

s , Zℜ
s q ´ fpXπ

ti
, rY ℜ

ti
, Z̄iq

¯
ds


and ζcti “ cpXtiq ´ cpXπ

ti
q.

Let us check that (3.27) is fulfilled for all p ě 2: using pHfq, Proposition 2.3 and
classical estimates for X and Xπ, we get

E

«
|Ȳn|2 `

n´1ÿ

i“0

|ζfi |2 ` sup
0ďiďn

ˇ̌
ζcti

ˇ̌p
ff

ď CpE

«
1 ` sup

sPr0,T s
|Xs|p ` sup

iPJ0,nK
|Xπ

ti
|p ` sup

sPr0,T s
|Ỹ ℜ

s |2 `
ż T

0

|Zℜ
s |2ds `

n´1ÿ

i“0

|Ỹ ℜ
ti`1

Hihi|2
ff

ď Cp

¨
˝1 ` E

»
– sup

sPr0,T s
|Ỹ ℜ

s |4 `
˜

n´1ÿ

i“0

|Hihi|2
¸2

fi
fl
˛
‚.

Applying Burkholder-Davis-Gundy inequality, we have E

„´řn´1

i“0
|Hihi|2

¯2


ď C and

so (3.27) is fulfilled. Finally, we easily check that (3.30) implies (3.28).
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Step 2. Discretization error for the Y component. Setting p “ 4, we apply
Proposition 3.6 and get by direct calculations

sup
0ďiďn

E

”
|rY ℜ

ti
´ rY ℜ,π

i |2 ` |Y ℜ
ti

´ Y
ℜ,π
i |2

ı

ď C

˜
E
“
|gpXT q ´ gpXπ

T q|2
‰

`
n´1ÿ

i“0

1

hi
E

”
|ζfi |2

ı¸
` CpκE

»
– sup

0ďiďn
tiPℜ

|ζcti |
4

fi
fl

1{2

ď CE
“
|XT ´ Xπ

T |2
‰

` C sup
0ďiďn´1

E

«
sup

sPrti,ti`1s
|Xs ´ Xπ

ti
|2
ff

` CE

„ż T

0

|rY ℜ
s ´ rY ℜ

πpsq|2ds


` CE

«
n´1ÿ

i“0

ż ti`1

ti

|Zℜ
s ´ Z̄ℜ

ti
|2ds

ff
` CE

«
n´1ÿ

i“0

|Z̄ℜ
ti

´ Z̄i|2hi
ff

` CκE

„
sup

0ďiďn´1

|Xti ´ Xπ
ti

|4
1{2

.

Classical estimations on the Euler scheme for SDEs, see e.g. [18], yield

E
“
|XT ´ Xπ

T |2
‰
` sup

0ďiďn´1

E

«
sup

sPrti,ti`1s
|Xs ´ Xπ

ti
|2
ff

`κE

„
sup

0ďiďn´1

|Xti ´ Xπ
ti

|4
1{2

ď Cκ|π|.

Applying Proposition 2.5 and Proposition 2.6, we obtain

E

„ż T

0

|rY ℜ
s ´ rY ℜ

πpsq|2ds


` E

«
n´1ÿ

i“0

ż ti`1

ti

|Zℜ
s ´ Z̄ℜ

ti
|2ds

ff
ď Cp|π| ` |π|1{2 ` κ|π|q.

It remains to bound the term:

E

«
n´1ÿ

i“0

|Z̄ℜ
ti

´ Z̄i|2hi
ff

ď 2E

«
n´1ÿ

i“0

ˇ̌
ˇ̌Z̄ℜ

ti
´ Eti

„
Y ℜ
i`1

∆Wi

hi

ˇ̌
ˇ̌
2

hi

ff

loooooooooooooooooooooomoooooooooooooooooooooon
:“A

`2E

«
n´1ÿ

i“0

ˇ̌
ˇ̌Eti

„
Y ℜ
i`1

ˆ
∆Wi

hi
´ Hi

˙ˇ̌
ˇ̌
2

hi

ff

loooooooooooooooooooooooomoooooooooooooooooooooooon
:“B

.

By remarking that Z̄ℜ
ti

“ Eti

”şti`1

ti
Zℜ
s dWs

∆Wi

hi

ı
, we have

A “ E

«
n´1ÿ

i“0

ˇ̌
ˇ̌Eti

„ż ti`1

ti

fpXs, Y
ℜ
s , Zℜ

s qds∆Wi

hi

ˇ̌
ˇ̌
2

hi

ff

ď E

«
n´1ÿ

i“0

hi

ż ti`1

ti

|fpXs, Y
ℜ
s , Zℜ

s q|2ds
ff

ď |π|E
„ż T

0

|fpXs, Y
ℜ
s , Zℜ

s q|2ds


ď C|π|.

Finally, we also get by standard calculations, Proposition 2.3 and classical results about
Gaussian distribution tails

B ď sup
0ďiďn´1

E
“
|Yti`1

|2
‰

ˆ sup
0ďiďn´1

E

«ˇ̌
ˇ̌∆Wi

hi
´ Hi

ˇ̌
ˇ̌
2
ff

ď C

˜
2d

hi

ż `8

Rh´1

i

x2
e´x2{2

?
2π

dx

¸

ď C

hi

´
Rh´1

i e´R2h´2

i {2
¯

ď CR

h2i

ˆ
2h2i
R2

˙3{2

ď CR|π|.
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Step 3. Discretization error for the Z component. Let us remark that we have

1

κ
E

«
n´1ÿ

i“0

ż ti`1

ti

|Zℜ
s ´ Z

ℜ,π
i |2ds

ff
ď1

κ
E

«
n´1ÿ

i“0

ż ti`1

ti

|Zℜ
s ´ Z̄ℜ

ti
|2ds

ff
` 1

κ
E

«
n´1ÿ

i“0

|Z̄ℜ
ti

´ Z̄i|2hi
ff

` 1

κ
E

«
n´1ÿ

i“0

|Z̄i ´ Z
ℜ,π
i |2hi

ff
.

Previous calculations already yield

1

κ
E

«
n´1ÿ

i“0

ż ti`1

ti

|Zℜ
s ´ Z̄ℜ

ti
|2ds

ff
` 1

κ
E

«
n´1ÿ

i“0

|Z̄ℜ
ti

´ Z̄i|2hi
ff

ď C

κ

´
|π|1{2 ` κ|π|

¯
.

Moreover, we apply Proposition 3.6 to obtain

1

κ
E

«
n´1ÿ

i“0

|Z̄i ´ Z
ℜ,π
i |2hi

ff
ď C

´
|π|1{2 ` κ|π|

¯
,

thanks to estimates obtained in step 2. l

4 Application to continuously reflected BSDEs

This section is devoted to the study of the error between the scheme (1.4) and the
continuously obliquely reflected BSDEs (1.1). An upper bound of this error is stated
in Subsection 4.2 while Subsection 4.1 is devoted to the error between the continuously
obliquely reflected BSDEs (1.1) and the discretely obliquely reflected BSDEs (1.3).
Before these results, we start by giving some classical estimates on the solution of (1.1).

Proposition 4.1. Assume that pHfq is in force. There exists a unique solution
pY,Z,Kq P S2 ˆ H2 ˆ K2 to (1.1) and it satisfies, for all p ě 2,

|Y |Sp
` |Z|Hp

` |KT |L p ď Cp.

Proof. The existence and uniqueness result comes from [7]. Concerning estimates, we
want to apply Proposition 2.1 with terminal condition ξ “ gpXT q, random generator
F ps, zq “ fpXs, Ys, zq and costs C

ij
s “ cijpXsq. So, we just have to show that pHFpq

is in force. Thus, using the fact that f is a Lipschitz function with respect to y, it is
sufficient to control rY ℜ in S p to conclude. We are able to obtain estimates on |rY ℜ|S p

by a direct adaptation to the continuous time setting of the proof of Proposition 2.3.
l

4.1 Error between discretely and continuously reflected BSDEs

We show here that the error between the continuously reflected BSDE (1.1) and the dis-
cretely reflected BSDE (1.3) is controlled in a convenient way. We start by introducing
a temporary assumption.

pHzq For all px, y, zq P R
d ˆ R

d ˆ Md,d, |fpx, y, zq| ď Cp1 ` |x| ` |y|q.
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Proposition 4.2. Assume that pHfq and pHzq are in force, then

E

«
sup
rPℜ

|Yr ´ Y ℜ
r |2 ` sup

tPr0,T s
|Yt ´ Ỹ ℜ

t |2
ff

ď C|ℜ| logp2T {|ℜ|q.

Moreover, if the cost functions are constant, we obtain a better rate of convergence,
namely,

E

«
sup
rPℜ

|Yr ´ Y ℜ
r |2 ` sup

tPr0,T s
|Yt ´ Ỹ ℜ

t |2
ff

ď C|ℜ|.

Proof. 1. We denote pY̌ , Ž, Ǩq the solution of an auxiliary continuously obliquely
reflected BSDE with cost functions c, with terminal condition ξ :“ gpXT q and whose
random generator is given by

f̌ps, zq “ fpXs, Ys, zq _ fpXs, Ỹ
ℜ
s , zq .

We also denote pỸ , Z̃, K̃q the solution of the continuously obliquely reflected BSDE
with cost functions c, with terminal condition ξ :“ gpXT q and with random driver
f̃ps, zq “ fpXs, Ỹ

ℜ
s , zq. From Proposition 2.2, we know that each component of Y̌ , Y

and Ỹ can be represented as optimal values of some control problem namely

pY̌tqi “ ess sup
aPAi,t

Ǔa
t “ Ǔ ǎt , pYtqi “ ess sup

aPAi,t

Ua
t , pỸtqi “ ess sup

aPAi,t

U
ℜ,a
t , (4.1)

with t P r0, T s, i P I, Ǔa, Ua and Uℜ,a solutions to following ”switched” BSDEs:

Ǔa
t “ ξaT `

ż T

t

f̌asps, V̌ a
s qds ´

ż T

t

V̌ a
s dWs ´ Aa

T ` Aa
t , (4.2)

Ua
t “ ξaT `

ż T

t

faspXs, Ys, V
a
s qds ´

ż T

t

V a
s dWs ´ Aa

T ` Aa
t , (4.3)

U
ℜ,a
t “ ξaT `

ż T

t

faspXs, Y
ℜ
s , V ℜ,a

s qds ´
ż T

t

V ℜ,a
s dWs ´ Aa

T ` Aa
t , (4.4)

and ǎ the optimal strategy given by Proposition 2.2. Using a comparison argument, we
easily check that Ǔa ě Ua _ Uℜ,a, for any strategy a P Ai,t. This estimate combined
with (4.1) leads to

Y̌ ℓ ě Y ℓ _ prY qℓ for all ℓ P t1, . . . , du .

Moreover, Corollary 2.1 and (4.1) give us that

pỸ ℜ
t qi “ ess sup

aPA ℜ
i,t

U
ℜ,a
t ď ess sup

aPAi,t

U
ℜ,a
t “ pỸtqi.

Then, we finally obtain

Y̌ ℓ ě Y ℓ _ pỸ ℜqℓ for all ℓ P t1, . . . , du . (4.5)
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Furthermore we observe that, for all ℓ P t1, . . . , du and all t P r0, T s,

|pYtqℓ ´ pỸ ℜ
t qℓ| ď |pY̌tqℓ ´ pYtqℓ| ` |pY̌tqℓ ´ pỸ ℜ

t qℓ|. (4.6)

We will now deal separately with the two term in the right hand side of the above
inequality.

2.a We start by studying the first term. From the representation in terms of switched
BSDEs given in (4.1), we know that pY̌tqℓ “ Ǔ ǎ

t and pYtqℓ ě U ǎ
t with Ua solution to

(4.3). Indeed ǎ P Aℓ,t is the optimal strategy associated to the driver f̌ and is a priori
sub-optimal for the driver f . Combining this with (4.5), we obtain that

0 ď pY̌tqℓ ´ pYtqℓ ď Ǔ ǎ
t ´ U ǎ

t

and we only need now to control the right hand inequality. By applying Itô’s formula
to the process eβt|Ǔ ǎ

t ´ U ǎ
t |2 and by using assumption pHfq, usual computations lead

to, for some β ą 0,

eβt|Ǔ ǎ
t ´ U ǎ

t |2 ` Et

„ż T

t

eβs|V̌ ǎ
s ´ V ǎ

s |2ds


ďEt

„ż T

t

eβs
”
2C|Ǔ ǎ

s ´ U ǎ
s |p|V̌ ǎ

s ´ V ǎ
s | ` |Ys ´ Ỹ ℜ

s |q ´ β|Ǔ ǎ
s ´ U ǎ

s |2
ı
ds



ďEt

„ż T

t

eβs
”
p2C2 ´ βq|Ǔ ǎ

s ´ U ǎ
s |2 ` |V̌ ǎ

s ´ V ǎ
s |2 ` |Ys ´ Ỹ ℜ

s |2
ı
ds


,

and then, for any β large enough,

eβt|pY̌tqℓ ´ pYtqℓ|2 ď Et

„ż T

t

eβs |Ys ´ Ỹ ℜ
s |2ds


. (4.7)

2.b We now study the second term in the right hand side of (4.6). Combining (4.5)
and the representation in term of “switched BSDEs” given by (4.1), we have, for all
t P r0, T s, ℓ P t1, . . . , du,

0 ď pY̌tqℓ ´ pỸ ℜ
t qℓ ď Ǔ ǎ

t ´ pỸ ℜ
t qℓ (4.8)

for some ǎ P At,ℓ. We now introduce the strategy a, standing for the projection of
ǎ “ pθ̌k, α̌kq on the grid ℜ, namely: a :“ pθk, αkq P A ℜ

t,ℓ defined by

θk “ inftr ě θ̌k , r P ℜu and αk “ α̌k.

Note that, if the optimal strategy ǎ has many time of switching on prj , rj`1s, where
rj, rj`1 belong to the grid ℜ, the projected strategy a will have many instantaneous
switches at rj`1, see also Remark 2.2 .

From Corollary 2.1, we have Ỹ ℜ
t ě U

ℜ,a
t which, combined to (4.8), leads to

|pY̌tqℓ ´ pỸ ℜ
t qℓ| ď |Ǔ ǎ

t ´ U
ℜ,a
t | . (4.9)
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To study the right hand side of the above inequality, we treat separately the case t R ℜ

from the case t P ℜ. Let us start by assuming that t R ℜ : t Psrj , rj`1r with rj, rj`1

in ℜ. We introduce a slight modification ǎε :“ pθεk, αε
kq P At,ℓ of the optimal strategy ǎ

defined by

θε1 “ θ̌11θ̌1ąt ` tpt ` εq ^ θ̌2u1θ̌1“t, θεk “ θ̌k @k ‰ 1, αε
k “ α̌k @k ě 0,

with ε Ps0, rj`1 ´ rjr a parameter. Then (4.9) becomes

|pY̌tqℓ ´ pỸ ℜ
t qℓ| ď |Ǔ ǎ

t ´ Ǔ ǎε

t | ` |Ǔ ǎε

t ´ U
ℜ,a
t | . (4.10)

We also introduce continuous processes Γ̌ε :“ Ǔ ǎε ´ Aǎε and Γ “ Uℜ,a ´ Aa. We then
have, for all s P rt, T s,

Γ̌ε
s ´ Γs “ Γ̌ε

T ´ ΓT `
ż T

s

tf̌ ǎεpu, V̌ ǎε

u q ´ fapu, Ỹ ℜ
u , V ℜ,a

u qudu ´
ż T

s

pV̌ ǎε

u ´ V ℜ,a
u qdWu .

By applying Itô’s formula to the process eβs|Γ̌ε
s ´ Γs|2 and by using assumption

pHfq, usual computations lead to, for β ą 0 large enough,

eβt|Γ̌ε
t ´ Γt|2

ďEt

„ż T

t

eβs
”
2C|Γ̌ε

s ´ Γs|t|f̌ ǎεps, V̌ ǎε

s q ´ f̌aps, V̌ ǎε

s q| ` |V̌ ǎε

s ´ V ℜ,a
s | ` |Ys ´ Ỹ ℜ

s |u
ı
ds



´ βEt

„ż T

t

eβs
“
|Γ̌ε

s ´ Γs|2
‰
ds


´ Et

„ż T

t

eβs|V̌ ǎε

s ´ V ℜ,a
s |2ds


` Et

”
eβT |Γ̌ε

T ´ ΓT |2
ı

ďEt

„
eβT |Γ̌ε

T ´ ΓT |2 ` CeβT
ż T

t

|f̌ ǎεps, V̌ ǎε

s q ´ f̌aps, V̌ ǎε

s q|2ds `
ż T

t

eβs|Ys ´ Ỹ ℜ
s |2ds


.

(4.11)

On one hand, using pHzq we compute that

ż T

t

|f̌ ǎεps, V̌ ǎε

s q ´ f̌aps, V̌ ǎε

s q|2ds “
ż T

t

ˇ̌
ˇ̌
ˇ̌
N ǎεÿ

k“1

f̌ ǎεps, V̌ ǎε

s qp1tθε
k´1

ďsăθε
k

u ´ 1tθk´1ďsăθkuq

ˇ̌
ˇ̌
ˇ̌

2

ds

ď C|N ǎ|2 sup
sPr0,T s

p1 ` |Xs|2 ` |Ys|2 ` |Ỹ ℜ
s |2q|ℜ| (4.12)

since N ǎε “ N ǎ. On the other hand, by using pHfq we obtain

|Γ̌ε
T ´ ΓT |2 “ |Aǎε

T ´ Aa
T |2 ď C|N ǎ|2 sup

1ďkďκ

sup
rPrrk´1,rks

|Xr ´ Xrk |2 (4.13)

and, since Aǎε

t “ Aa
t “ 0,

|Γ̌ε
t ´ Γt|2 “ Ǔ ǎε

t ´ U
ℜ,a
t . (4.14)
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Combining (4.12), (4.13) and (4.14) with (4.10) and (4.11), we get

eβt|pY̌tqℓ ´ pỸ ℜ
t qℓ|2 ď 2eβt|Ǔ ǎ

t ´ Ǔ ǎε

t |2 ` 2eβt|Ǔ ǎ
t ´ U

ℜ,a
t |2

ď Cβ|Ǔ ǎ
t ´ Ǔ ǎε

t |2 ` Et

„
CβEpℜq ` 2

ż T

t

eβu|Yu ´ Ỹ ℜ
u |2du


, (4.15)

with

Epℜq :“ |N ǎ|2 sup
sPr0,T s

p1 ` |Xs|2 ` |Ys|2 ` |Ỹ ℜ
s |2q|ℜ| ` |N ǎ|2 sup

1ďkďκ

sup
rPrrk´1,rks

|Xr ´ Xrk |2.

Importantly, the constant Cβ does not depend on ε. Now, let us study the term |Ǔ ǎ
t ´

Ǔ ǎε

t |2. We recall that, for all s P rt, θε1r,

Ǔ ǎε

s “ Ǔ ǎε

θε
1

`
ż θε

1

s

f̌ ℓpu, V̌ ǎε

u qdu ´
ż θε

1

s

V̌ ǎε

u dWu ´ cℓα
ε
1pXθε

1
q ´ cα

ε
1
αε
2pXθε

1
q1θε

1
“θε

2

and

Ǔ ǎ
s “ Y̌ ℓ

s “ Y̌ ℓ
θε
1

`
ż θε

1

s

f̌ ℓpu, Žℓ
uqdu ´

ż θε
1

s

Žℓ
udWu ` Ǩℓ

θε
1

´ Ǩℓ
s.

Then, a straightforward adaptation of a classical stability result for BSDEs (see e.g.
[10]) gives us

E
“
|Ǔ ǎ

t ´ Ǔ ǎε

t |2
‰

ď CE

”
|Ǔ ǎε

θε
1

´ Y̌ ℓ
θε
1

´ cℓα
ε
1pXθε

1
q ´ cα

ε
1
αε
2pXθε

1
q1θε

1
“θε

2
|2 ` |Ǩℓ

θε
1

´ Ǩℓ
t |2

ı

with a constant C that does not depend on ε. We can remark that

Ǔ ǎε

θε
1

“ Ǔ ǎ
θε
1

“ Y̌
αε
1

θε
1

1θε
1

‰θε
2

` Y̌
αε
2

θε
1

1θε
1

“θε
2
,

and

rY̌ αε
2

θε
1

´ Y̌
αε
1

θε
1

´ cα
ε
1
αε
2pXθε

1
qs1θε

1
“θε

2
“ 0, rY̌ αε

1

θε
1

´ Y̌ ℓ
θε
1

´ cℓα
ε
1pXθε

1
qs1θ̌1ąt “ 0.

Thus we obtain

E
“
|Ǔ ǎ

t ´ Ǔ ǎε

t |2
‰

ď CE

”
|Y̌ αε

1

θε
1

´ Y̌ ℓ
θε
1

´ cℓα
ε
1pXθε

1
q|21θ̌1“t ` |Ǩℓ

θε
1

´ Ǩℓ
t |2

ı
.

Since θε1
εÑ0ÝÝÝÑ θ̌1 and Y̌ , Ǩ and X are continuous processes, by a direct domination we

can apply the dominated convergence theorem to get

lim
εÑ0

E
“
|Ǔ ǎ

t ´ Ǔ ǎε

t |2
‰

“ 0.

Thus, when ǫ tends to 0 in (4.15), up to a subsequence, we obtain

eβt|pY̌tqℓ ´ pỸ ℜ
t qℓ|2 ď Et

„
CβEpℜq ` 2

ż T

t

eβu|Yu ´ Ỹ ℜ
u |2du


. (4.16)
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We now treat the case t P ℜ. This case is simpler than the case t R ℜ since we do
not have to introduce an auxiliary strategy ǎε: we can do previous calculations directly
with the optimal strategy ǎ. The only difference comes from the fact that Aǎ

t and Aa
t

are not necessarily equal to 0, but, since t P ℜ, we have Aǎ
t “ Aa

t and so Aǎ
t ´ Aa

t “ 0.
Finally, (4.16) stays true when t P ℜ.

2.c Combining (4.7) and (4.16) with (4.6), we obtain, for all t ď s ď T ,

Et

”
eβs|Ys ´ Ỹ ℜ

s |2
ı

ď CβEtrEpℜqs ` 2

ż T

s

Et

”
eβu|Yu ´ Ỹ ℜ

u |2
ı
du.

Then, a direct application of Gronwall lemma gives us

|Yt ´ Ỹ ℜ
t |2 ď Et

”
eβt|Yt ´ Ỹ ℜ

t |2
ı

ď CβEtrEpℜqs .

Using Jensen inequality, Doob maximal inequality and Cauchy-Schwarz inequality, the
previous inequality allows us to obtain

E

«
sup

tPr0,T s
|Yt ´ Ỹ ℜ

t |2
ff

ďCE
“
Epℜq2

‰1{2

ďCE
“
|N ǎ|8

‰1{4
E

«
sup

sPr0,T s
p1 ` |Xs|8 ` |Ys|8 ` |Ỹ ℜ

s |8q
ff1{4

|ℜ|

` CE
“
|N ǎ|8

‰1{4
E

«
sup

1ďkďκ

sup
rPrrk´1,rks

|Xr ´ Xrk |8
ff1{4

.

Finally, we just have to apply estimates of Proposition 4.1, Proposition 2.3, classical
estimate for X, and Theorem 1 in [12] to get

E

«
sup

tPr0,T s
|Yt ´ Ỹ ℜ

t |2
ff

ď C|ℜ| ` C|ℜ| logp2T {|ℜ|q

and

E

„
sup
rPℜ

|Yr ´ Y ℜ
r |2


ď E

«
sup

tPr0,T s
|Yt´ ´ Ỹ ℜ

t´ |2
ff

ď C|ℜ| ` C|ℜ| logp2T {|ℜ|q.

To conclude the proof, we just have to remark that the term sup1ďkďκ suprPrrk´1,rks |Xr´
Xrk |2 does not appear in Epℜq when cost functions are constant. l

Proposition 4.3. Let us assume that pHzq and pHfq are in force, then the following
holds:

E

„ż T

0

ˇ̌
ˇZs ´ Zℜ

s

ˇ̌
ˇ
2

ds


ď C |ℜ|1{2

a
logp2T {|ℜ|q.

If cost functions are constant, previous inequality holds true without the term
a

logp2T {|ℜ|q.
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Proof. Introduce δrY :“ Y ´ rY ℜ, δY :“ Y ´Y ℜ, δZ :“ Z ´Zℜ and δf :“ fpX,Y,Zq ´
fpX, rY ℜ, Zℜq. Applying Itô’s formula to the càdlàg process |δrY |2, we get

|δrY0|2 `
ż T

0

|δZs|2ds “ |δrYT |2 ´ 2

ż

p0,T s
δrYs´dδrYs ´

ÿ

0ăsďT

|δrYs ´ δYs|2.

Recalling that δrYs´ “ δYs,
ş

p0,T s δYsdK
ℜ
s ě 0 and the Lipschitz property of f , standard

arguments lead to

E

”
|δrY0|2

ı
` E

„ż T

0

|δZs|2ds


ď CE

„ż T

0

δYsdKs


ď CE

„
sup

0ďtďT

|δYt|2
1{2

E
“
K2

T

‰1{2
.

Then, using Proposition 4.1 and Proposition 4.2 concludes the proof. l

As a by-product we get a strong estimate on Z.

Corollary 4.1. Let us assume that assumption pHfq is in force. Then we have

|Zt| ď L̄p1 ` |Xt|q dP b ds a.e.

where L̄ is the constant that appears in (2.20).

Proof. Let us introduce a new generator f̂px, y, zq :“ fpx, y, ρxpzqq with ρx the pro-
jection on the Euclidean ball of radius L̄p1 ` |x|q where L̄ comes from the estimate on
Zℜ given in (2.20). We easily have that f̂ is a Lipschitz function such that

ˇ̌
ˇf̂px, y, zq

ˇ̌
ˇ ď Cp1 ` |x| ` |y|q.

We denote pŶ , Ẑ, K̂q the solution of the obliquely reflected BSDE with generator f̂ .
Since pHfq is in force, we can use (2.20) for the discretely reflected BSDE with generator
f̂ and we get that

|Ẑℜ
t | ď L̄p1 ` |Xt|q dP b ds a.e.

Using Proposition 4.3, we take |ℜ| Ñ 0 and we obtain that

|Ẑt| ď L̄p1 ` |Xt|q dP b ds a.e.

and then
f̂ps,Xs, Ŷs, Ẑsq “ fps,Xs, Ŷs, Ẑsq dP b ds a.e.

Thus, by uniqueness of the solution to the obliquely reflected BSDE, we have that
Ẑ “ Z, concluding the proof of the Corollary. l

Theorem 4.1. We assume that pHfq is in force. Then we have

E

«
sup
rPℜ

|Yr ´ Y ℜ
r |2 ` sup

tPr0,T s
|Yt ´ Ỹ ℜ

t |2
ff

ď C|ℜ| logp2T {|ℜ|q, (4.17)
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and

E

„ż T

0

ˇ̌
ˇZs ´ Zℜ

s

ˇ̌
ˇ
2

ds


ď C

a
|ℜ| logp2T {|ℜ|q. (4.18)

If, furthermore, cost functions are constant, previous estimates hold true without the
logp2T {|ℜ|q term.

Proof. Thanks to Corollary 4.1, we can replace the generator f by f̂px, y, zq :“
fpx, y, ρxpzqq with ρx the projection on the Euclidean ball of radius L̄p1 ` |x|q with-
out modifying our BSDEs. Since pHzq is in force for the generator f̂ , we can apply
Proposition 4.2 and Proposition 4.3 and the theorem is proved. l

4.2 Proof of Theorem 1.1

Combining the previous results with the control of the error between the discrete-time
scheme and the discretely obliquely reflected BSDE derived in Section 3, we obtain the
convergence of the discrete time scheme to the solution of the continuously obliquely
reflected BSDE. Namely, we just have to put together Theorem 4.1 and Theorem 3.1.

A Appendix

A.1 Proof of Proposition 2.3

Observing that on each interval rrj , rj`1q, pỸ ℜ, Zℜq solves a standard BSDE, existence
and uniqueness follow from a concatenation procedure and [21].

Concerning estimates, we cannot apply directly Proposition 2.1 in [8] since we have a
generator f with a coupling in y. Our strategy is to apply Proposition 2.1 with terminal
condition ξ “ gpXT q, random generator F ps, zq “ fpXs, Ỹ

ℜ
s , zq and costs Cij

s “ cijpXsq.
So, we just have to show that pHFpq is in force. Thus, using the fact that f is a Lipschitz

function with respect to y, it is sufficient to control rY ℜ in S p.
As in the proof of Theorem 2.4 in [16], we consider two nonreflected BSDEs bounding

rY ℜ. Define the Rd-valued random variable ğpXT q and the random map f̆ by pğqjpxq :“
řd

i“1

ˇ̌
pgqi

ˇ̌
and pf̆qjpω, t, zq :“ řd

i“1

ˇ̌
ˇpfqipXtpωq, rY ℜ

t pωq, zq
ˇ̌
ˇ for 1 ď j ď d. We then

denote by pY̆ , Z̆q P pS p ˆ H pq the solution of the following nonreflected BSDE:

Y̆t “ ğpXT q `
ż T

t

f̆ps, Z̆sqds ´
ż T

t

Z̆sdWs, 0 ď t ď T.

Since all the components of Y̆ are similar, Y̆ P Q. We also introduce pY̊ , Z̊q the solution
of the BSDE

Y̊t “ gpXT q `
ż T

t

fpXs, rY ℜ
s , Z̊sqds ´

ż T

t

Z̊sdWs, 0 ď t ď T.

Using a comparison argument on each interval rrj, rj`1q and the monotonicity property

of P, we straightforwardly deduce pY̊ qi ď prY ℜqi ď pY̆ qi, for all 1 ď i ď d. Since pY̊ , Y̆ q
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are solutions to standard non-reflected BSDEs, classical estimates (see e.g. [2]) lead to

Et

„
sup

tďsďT

|rY ℜ
s |p


ď Et

„
sup

tďsďT

|Y̊s|p ` sup
tďsďT

|Y̆s|p


ď CpEt

„
|gpXT q|p `

ż T

t

ˇ̌
ˇfpXs, rY ℜ

s , 0q
ˇ̌
ˇ
p

ds



ď CpEt

«
1 ` sup

sPrt,T s
|Xs|p `

ż T

t

sup
sďuďT

ˇ̌
ˇ rY ℜ

u

ˇ̌
ˇ
p

ds

ff
.

Finally, using Gronwall lemma we get

Et

„
sup

tďsďT

|rY ℜ
s |p


ď Cp Et

«
1 ` sup

sPrt,T s
|Xs|p

ff

which leads to, recall (2.7),

Et

„
sup

tďsďT

|rY ℜ
s |p


ď Cp p1 ` |Xt|pq , (A.1)

and in particular to |Ỹ ℜ|Sp
ď Cp.

A.2 A priori estimates

In this section, we prove a generic estimate for a process that can be represented by
using switched BSDEs. This result is tailor-made for the solution of obliquely reflected
BSDEs. For a positive process β P S 2, we denote by Ā the set of strategies a P A ,
satisfying

Et

“
|Na|2

‰ 1

2 ď βt , for t ď T. (A.2)

We consider a process X P S p, for all p ě 2, and for a P Ā , we define

Aa
t :“

Naÿ

j“1

γaθjXθj1tθjďtďT u ,

where γ is a process in S 2 essentially bounded by a constant Λ. We also consider a
process Y P S 2 which is given by Yt “ pYi

tq1ďiďd s.t. Yi
t “ Ua

t for some a P Ā X Ai,t

where, for t ď r ď T ,

Ua
r “ νaXT `

ż T

t

F aps,Xs,U
a
s ,V

a
s ,Ysqds ´

ż T

t

Va
sdWs ` Aa

T ´ Aa
t .

with νa a FT -measurable random variable essentially bounded by Λ and F a progres-
sively measurable map satisfying

|F aps, x, u, v, yq| ď Λp|x| ` |u| ` |v| ` |y|q . (A.3)
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Proposition A.1.

|Yr|2 ď CΛp1 ` βrqEr

„
sup

rďsďT

|Xs|4
 1

2

, r P r0, T s.

Proof. Let us introduce Ga “ Ua ` Aa . Applying Ito’s formula, we obtain for all
r ď t ď u ď T ,

Er

„
|Ga

u|2 `
ż T

u

|Va
s |2ds


ď Er

„
|Ga

T |2 ` 2

ż T

u

Ga
sF

aps,Xs,U
a
s ,V

a
s ,Ysqds


.

Using classical arguments and the assumption on F , we obtain

Er

“
|Ga

u|2
‰

ď CΛEr

„
sup

tďsďT

|Xs|2 `
ż T

u

|Ys|2ds


` sup
tďsďT

Er

“
|Aa

s |2
‰
. (A.4)

We observe that, for t ď s ď T ,

Er

“
|Aa

s |2
‰

“ Er

»
–
ˇ̌
ˇ̌
ˇ

Naÿ

j“1

γaθjXθj1tθjďsďT u

ˇ̌
ˇ̌
ˇ

2
fi
fl

ď ΛEr

„
Na sup

tďsďT

|Xs|2


ď ΛβrEr

„
sup

tďsďT

|Xs|4
 1

2

.

Inserting the previous inequality into (A.4), we obtain,

Er

“
|Ga

u|2
‰

ď CΛp1 ` βrqEr

„
sup

rďsďT

|Xs|4
 1

2

` CΛEr

„ż T

u

|Ys|2ds

. (A.5)

In particular, for all r ď t ď T , we compute

Er

“
|Yt|2

‰
“

2ÿ

i“1

Er

“
|Yi

t|2
‰

ď CΛp1 ` βrqEr

„
sup

rďsďT

|Xs|4
 1

2

` CΛEr

„ż T

t

|Ys|2ds

.

Using Gronwall Lemma, we get

|Yr|2 ď CΛp1 ` βrqEr

„
sup

rďsďT

|Xs|4
 1

2

.

l

A.3 Proof of Proposition 2.6

Before starting the proof, let us state the following estimates on the Λ-process appearing
in the representation (2.18).

sup
aPA ℜ

} sup
tďsďT

Λa
t,s}L p ď C

p
L , 0 ď t ď T, p ě 2 . (A.6)

40



We also compute from the dynamics of Λ that

sup
aPA ℜ

ˆ
}Λa

t,t ´ Λa
t,u}L p ` } sup

tďsďT

|Λa
u,s ´ Λa

t,s| }L p

˙
ď C

p
L

?
t ´ u , u ď t ď T , p ě 2 .

(A.7)

The proof of Proposition 2.6 follows from the same arguments as in the proof of
Theorem 3.1 in [8]. The novelty comes from the term DY but the estimates (2.12)-
(2.13) allow to control it without any difficulty. From Remark 2.5, it is clear that

E

„ż T

0

|Zℜ
s ´ Z̄ℜ

s |2ds


ď E

„ż T

0

|Zℜ
s ´ Zℜ

πpsq|2ds

. (A.8)

For s ď T and a “ pαk, θkqkě0 P A ℜ
s,ℓ with ℓ P I, we define pV a

s,tqsďtďT by

V a
s,t :“ Et

”
BxgaT pXT qΛa

s,TDsXT ´
Naÿ

k“1

Bxcαj´1,αjpXθkqΛa
s,θk

DsXθk

`
ż T

s

´
BxfaupΘℜ

u qΛa
s,uDsXu ` ByfapΘℜ

u qΛa
s,uDs

rY ℜ
u q

¯
du

ı
.

We now fix ℓ P I and denote by au P A ℜ
u,ℓ, for u ď T , the optimal strategy associated

to the representation of prY ℜ
u qℓ, recalling (ii) in Corollary 2.1.

Observe that, by definition, we have

Nat “ Nau and at “au, for all rj ď t ď u ă rj`1 and j ă κ . (A.9)

Fix i ă n, and deduce from (2.18) and (A.9) that

E

”
|pZℜ

t qℓ ´ pZℜ
ti

qℓ|2
ı

“ E

”
|Vat

t,t ´ Vati
ti,ti

|2
ı

ď 2
´
E

”
|Vati

t,t ´ Vati
ti,t

|2
ı

` E

”
|Vati

ti,t
´ Vati

ti,ti
|2
ı¯

,

(A.10)

for t P rti, ti`1q. Combining pHrq, (2.9), (2.10), (A.6), (A.7) and Cauchy-Schwartz
inequality with the definition of V a, we deduce

E

”
|Vati

t,t ´ Vati
ti,t

|2
ı

ď CL|π| 12 , ti ď t ď ti`1 , i ď n . (A.11)

Since Vati
ti,.

is a martingale on rti, ti`1s, we obtain

E

”
|Vati

ti,t
´ Vati

ti,ti
|2
ı

ď E

”
|Vati

ti,ti`1
´ Vati

ti,ti
|2
ı

ď E

”
|Vati

ti`1,ti`1
|2 ´ |Vati

ti,ti
|2
ı

` E

”
|Vati

ti,ti`1
|2 ´ |Vati

ti`1,ti`1
|2
ı

ď E

”
|Vati

ti`1,ti`1
|2 ´ |Vati

ti,ti
|2
ı

` CL|π| 12 , ti ď t ď ti`1 , (A.12)
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where the last inequality follows from (A.11). Combining (A.10), (A.11), (A.12)
and summing up over i, we obtain

E

„ż T

0

|pZℜ
t qℓ ´ pZℜ

πptqqℓ|2dt


ď CL|π| 12 ` |π|
´
E

”
|Varκ´1

T,T |2´|Va0

0,0|2
ı

`
κ´1ÿ

j“1

p|Va
rj´1

rj ,rj
|2´|Va

rj

rj ,rj
|2q

¯
.

Combined with (2.9) and (A.6), this concludes the proof since ℓ is arbitrary.
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