International Conference on Monte Carlo techniques
Closing conference of thematic cycle

Paris July 5-8th 2016 
Campus les cordeliers
le_crc_cloitre_1630.jpg

Non-parametric regression related to rare-event, using MCMC design, and application to nested risk computations
Gersende Fort  1@  , Emmanuel Gobet  2@  , Eric Moulines  3@  
1 : Laboratoire traitement et communication de l'information  (LTCI)  -  Website
CNRS : UMR5141, Institut Télécom, Télécom ParisTech
46 Rue Barrault 75013 PARIS -  France
2 : Ecole Polytechnique [Palaiseau]  -  Website
Ecole Polytechnique
École Polytechnique, 91128 Palaiseau Cedex -  France
3 : Centre de Mathématiques Appliquées - Ecole Polytechnique  (CMAP)  -  Website
Polytechnique - X, CNRS : UMR7641
CMAP UMR 7641 École Polytechnique CNRS Route de Saclay 91128 Palaiseau Cedex -  France

We consider the problem of estimating the mean of a function of a conditional expectation in a rare-event regime, using Monte Carlo simulations. This is a problem of nested Monte Carlo computations with a special emphasis on the distribution tails. A major application is the risk management of portfolios written with derivative options; these computations are also an essential concern for Solvency Capital Requirement in insurance.

In our approach, the outer expectation is evaluated using a Metropolis-hastings type algorithm able to suitably sample the rare-event scenarii. The inner expectation is computed using non-parametric regression tools, in a context of non i.i.d. design. We provide some non-asymptotic quadratic error bounds and we experiment the final algorithm on financial examples.



  • Presentation
Online user: 1 RSS Feed