International Conference on Monte Carlo techniques
Closing conference of thematic cycle

Paris July 5-8th 2016 
Campus les cordeliers
le_crc_cloitre_1630.jpg

On the two-filter approximations of marginal smoothing distributions in general state space models
Sylvain Le Corff  1@  , Eric Moulines  2@  , Thi Ngoc Minh Nguyen  3@  
1 : Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay.  -  Website
CNRS : UMR8628, Université Paris Sud - Paris XI, Paris Saclay
2 : Centre de Mathématiques Appliquées - Ecole Polytechnique  (CMAP)  -  Website
Polytechnique - X, CNRS : UMR7641
CMAP UMR 7641 École Polytechnique CNRS Route de Saclay 91128 Palaiseau Cedex -  France
3 : Laboratoire Traitement et Communication de l'Information [Paris]  (LTCI)  -  Website
Télécom ParisTech, CNRS : UMR5141
CNRS LTCI Télécom ParisTech 46 rue Barrault F-75634 Paris Cedex 13 -  France

The approximation of the smoothing distribution of a state conditional on the observations from the past, the present, and the future is a crucial problem in general state space models. In this talk, we provide a rigorous analysis of such approximations of smoothed distributions provided by the two-filter algorithms. These two-filter approaches combine a forward filter approximating the filtering distributions with a backward information filter approximating a quantity proportional to the posterior distribution of the state given future observations. We extend the results (exponential deviation inequalities, central limit theorems) available for the approximation of smoothing distributions to these procedures and in particular to the proposed methods whose complexity grows linearly with the number of particles.



  • Presentation
Online user: 1 RSS Feed